B.15 Fundatierapport opstijgpunt

ZUID-WEST 380 KV OOST VERBINDINGEN

Rapport fundaties 150 en 380 kVopstijgpunten

TenneT TSO B.V.

Meridian doc.nr.: 002.678.00 0969129

Rapport nr.: 21-1660, Rev. 3

Datum: 2022-05-02

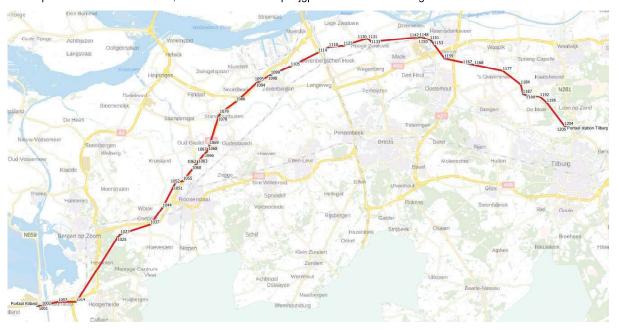
DATUM: 04-05-2022

STATUS TENNET: DEFINITIEF

REVISIE TENNET: 1.0

Projectnaam: Zuid-West 380 kV Oost Verbindingen **Energy Systems** Rapport fundaties 150 en 380 kV- opstijgpunten Rapport titel: DNV Netherlands B.V. TenneT TSO B.V., Klant: Utrechtseweg 310-B50 Contactpersoon klant: 6812 AR Arnhem 2022-05-02 Datum uitgave: Project nr.: 10124719 TDT Tel: 026 356 9111 Organisatie unit: Handelsregister Arnhem 09006404 002.678.00 0969129 Meridian doc.nr..: Rapport nr.: 21-1660, Rev. 3 Copyright @ DNV 2022. All rights reserved. Unless otherwise agreed in writing; (i) This publication or parts thereof may not be copied, reproduced or transmitted in any form, or by any means, whether digitally or otherwise; (ii) The content of this publication shall be kept confidential by the customer; (iii) No third party may rely on its contents; and (iv) DNV undertakes no duty of care toward any third party. Reference to part of this publication which may lead to misinterpretation is prohibited. **DNV** Distributie: Trefwoorden: □ Intern ☐ Commercieel vertrouwelijk □ Vertrouwelijk ☐ Geheim *Specificatie distributie: --

Inhoudsopgave


1	INLEIDING	
2	UITGANGSPUNTEN EN RANDVOORWAARDEN	,
2.1	Normen	
2.2	TenneT-specificaties	
2.3	Materialen	(
2.4	Software	4
2.5	Gevolgklasse en referentieperiode	
2.6	Gebruikte gegevens	4
2.7	Sonderingen	4
2.8	Beschrijving grondopbouw	4
2.9	Uitgangspunten geotechniek	8
3	FUNDATIES COMPONENTEN OPSTIJGPUNTEN	1 ¹
3.1	Inleiding	1:
3.2	EA-3_so	1:
3.3	EA-3_co	12
3.4	HA+0_ci	10
3.5	HA+3_ca	14
4	TOETSING NIEUWE FUNDATIES OPSTIJGPUNT	
4.1	Aanpak	15
4.2	Resultaten	15
5	CONCLUSIE	17
Appen	ndix A Uitvoer Technosoft paalfunderingen	

Appendix B Berekening fundaties van de opstijgpunten

1 INLEIDING

In het basisontwerp van de vakwerkmasten voor de verbinding RLL-TLB380 in het project Zuid-West 380 kV-Oost zijn voor het vaststellen van de haalbaarheid constructieve berekeningen uitgevoerd aan de masten en fundaties. In de Definitief Ontwerpfase, moeten berekeningen verder worden uitgewerkt om te kunnen dienen voor de benodigde vergunningsdocumentatie, voor de aanbesteding en als voorbereiding voor de uitvoeringsfase. Het DO omvat het ontwerp van de mastconstructies, de fundaties en de opstijgpunten in de verbinding.

Figuur 1 Globale ligging tracé met hoekmastnummers

Het definitieve tracé van de hoogspanningslijn is nog niet vastgesteld. Daardoor zijn sonderingen op de precieze mastlocaties nog niet in uitvoering. Dit heeft tot gevolg dat voor het ontwerp van de fundaties nog geen sonderingen beschikbaar zijn. Om toch een ontwerp op te kunnen stellen is door TenneT een geotechnisch lengteprofiel opgesteld uitgaande van sonderingen in de nabijheid van het tracé. Dit lengteprofiel vormt het uitgangspunt voor de berekeningen.

De uitvoeringsfase van de fundaties zal in de vorm van een UAV GC contractvorm plaatsvinden. Dat houdt in dat in de uitvoeringsfase de sonderingen door de opdrachtnemer worden uitgevoerd. Vervolgens kan de opdrachtnemer het definitieve fundatieontwerp opstellen. De voorliggende rapportage is bedoeld om richting te geven aan het ontwerp op basis van de nu beschikbare gegevens. Het is een indicatie wat verwacht wordt in de uitvoeringsfase.

In het project worden voor mastfundaties en opstijgpunten enkelpaalsfunderingen en meerpaalsfunderingen toegepast afhankelijk van de bodemgesteldheid, het type constructie en de belasting.

Deze rapportage bevat de beschrijving van het constructieve ontwerp van de fundaties van de nieuwe opstijgpunten (OSP's) in de nieuwe 380/150 kV combilijn RLL-TLB en de toetsing aan de eisen uit de geotechnische normen en TenneT-specificaties. Het gaat om de opstijgpunten bij mast 1014, 1025, 1051, 1066, 1098, 1099, 1114, 1147, 1153, 1167, 1168 en 1204.

De fundaties van de opstijgpunten bestaan uit verschillende typen poeren, balken of platen, met palen eronder. Op de poeren komen de volgende componenten te staan:

een OSA (overspanningsafleider), dit is een op een balk ingeklemde stalen buiskolom met daarop de OSA.
 Gedurende de loop van het project is uit studies gebleken dat de OSA niet noodzakelijk zijn voor de 150 kV-

inlussingen en het begin van de 380 kV-kabelverbinding bij mast 1014. De fundaties voor de 150 kV OSA's zijn opgenomen in deze rapportage, maar moeten als optioneel worden beschouwd. De 380 kV OSA bij 1014 is buiten de uitwerking gelaten.

- een KES (kabeleindsluiting) dit is een vakwerkkolom op een balk met daarop de eindsluiting, met een bocht gaat de kabel naar beneden de grond in.
- een afspanconstructie via een grondafspanning (GRA), dat wil zeggen een voetplaat met gaffelstrippen op een balk waar een trekkracht door de geleider op wordt uitgeoefend.
- een afspanconstructie via een verhoogde (bundel)afspanning (BUA), dat wil zeggen een vakwerkkolom op een plaat waar een trekkracht door één of meerdere geleiders op wordt uitgeoefend.

Er zijn vier masttypes die verbonden zijn met opstijgpunten namelijk de types EA-3_so, EA-3_co, HA+0_ci en HA+3_ca.

Bij EA-3_so komen de volgende types OSP-componenten voor namelijk KES 380 en GRA 380 (twee typen geometrie). Het gaat om mast 1014.

Bij EA-3_co komen de volgende types OSP-componenten voor namelijk OSA150 (deze OSA is optioneel), KES 150 (twee typen geometrie), GRA 150, OSA 380, KES 380 en BUA 380. Het gaat om mast 1025.

Bij HA+0_ci komen de volgende types OSP-componenten voor namelijk OSA150 (deze OSA is optioneel), KES 150 (twee typen geometrie) en GRA 150. Het gaat om de masten 1051,1066,1098,1099, 1147, 1153, 1167, 1168 en 1204.

Bij HA+3_ca komen de volgende types OSP-componenten voor namelijk OSA150 (deze OSA is optioneel), KES 150 (twee typen geometrie) en GRA 150 (met een andere belasting dan bij type HA+0 ci). Het gaat om mast 1114.

De fundaties worden in de volgende volgorde behandeld, namelijk de tweepaalspoeren OSA 150, KES 150 (geometrie 1 en 2), GRA 150 (sondering 20 en 21), OSA 380, KES 380, GRA 380 (geometrie 1 en 2) en de vierpaalspoer BUA 380.

Buiten de scope van dit DO-rapport valt de controle van de wapening in de betonconstructies en de wapening van palen.

In hoofdstuk 2 zijn de uitgangspunten en randvoorwaarden vanuit de van toepassing zijnde normen en TenneT-specificaties opgenomen. In hoofdstuk 3 zijn de fundatieontwerpen van de nieuwe opstijgpunten opgenomen en in hoofdstuk 4 de toetsing van de opstijgpunten. In hoofdstuk 5 zijn vervolgens de conclusies opgenomen.

Het constructieve ontwerp van de fundaties van de mastconstructies (hoek- en eindmasten) wordt behandeld in het DNV rapport 21-1250 (Meridiannummer 002.678.00 0950632).

2 UITGANGSPUNTEN EN RANDVOORWAARDEN

2.1 Normen

Er is gebruik gemaakt van de normen volgens Tabel 1.

Tabel 1 Gebruikgemaakte normen, voorschriften en richtlijnen

Norm	Titel
NEN-EN 50341-1:2013	"Overhead electrical lines exceeding AC 1 kV - Part 1: General requirements – Common"
NEN-EN 50341-2-15:2019	"Overhead electrical lines exceeding AC 1 kV Part 2 National Normative Aspects (NNA) for THE NETHERLANDS"
NEN-EN 1990+A1+A1/C2:2011	"Grondslagen van het ontwerp"
NEN-EN 1991-1-4+A1+C2:2011	"Deel 1-4: Windbelasting op constructies"
NEN-EN 1992-1-1+C2:2011/NB:2016+A1:2020	"Eurocode 2: Ontwerp en berekening van betonconstructies, deel 1-1: algemene regels en regels voor gebouwen"
NEN-EN 1993-1-1+C2+A1:2016 nl	"Eurocode 3: Ontwerp en berekening van staalconstructies, deel 1-1: algemene regels en regels voor gebouwen"
NEN-EN 1993-1-8+C2:2011/NB:2011 nl	"Ontwerp en berekening van staalconstructies, deel 1-8: ontwerp en berekening van verbindingen"
NEN-EN 1997-1+C1+A1:2016/NB:2016 nl	"Geotechnisch – Algemeen"
CUR 2001-4	"Ontwerpregels voor trekpalen"

2.2 TenneT-specificaties

In Tabel 2 zijn de documenten opgenomen die relevant zijn voor de berekeningen en toetsingen die binnen dit project in de mastrapportage uitgevoerd zullen worden.

Tabel 2 Relevante documenten t.b.v. mechanische rapportages

Nummer	Onderwerp
PVE.05.000 v3.2	PvE Lijnen
sPVE.05.001	sPvE Lijnen
PVE.04.000	Bouwkunde
SPE.04.004	Specificatie Constructieberekeningen
SPE 04.009	Paalfunderingen

2.3 Materialen

Voor het ontwerp van de funderingen wordt uitgegaan van de eigenschappen volgens Tabel 3.

Tabel 3 Materialen nieuwe constructies

abel 3 Materialen nieuwe constructies				
Onderdeel	Materiaal			
Staalsoort	S355J0 (t≤16 mm)			
Staaisoort	S355J2 (16 <t≤40 mm)<="" td=""></t≤40>			
Boutkwaliteit	8.8 gerolde draad			
Betonkwaliteit	C30/37 met E = 10000 kN/m ² om gescheurd beton te modelleren.			
Wapeningsstaal	B500			

2.4 Software

De gebruikte software wordt benoemd in Tabel 4.

Tabel 4 Toegepaste software

Software		Versie	
Mastontwerp	PLS-CADD	16.65	
Mastberekeningen	PLS-TOWER	16.65	
Constructieve analyse	AxisVM	X5 R4h	
Geotechnische berekeningen	Technosoft paalfunderingen	V6.70	

2.5 Gevolgklasse en referentieperiode

Alle funderingen zijn nieuwbouw, daarom geldt als uitgangspunt voor de gevolgklasse CC2 met een referentieperiode van 50 jaar.

2.6 Gebruikte gegevens

De belastingen vanuit de componenten van het OSP worden ontleend aan de rapportage 002.678.00 0935998, Rapport "21-0966 Rapport ondersteuningsconstructies OSP's".

In Tabel 5 zijn de tekeningnummers weergegeven waar het DO op is vastgelegd.

Tabel 5 Bijbehorende tekeningen

Tekening	Tekeningnummer	Meridiannummer
Overzicht fundatie OSP 1014	10124719-12-1010	002.678.00 0988860
Overzicht fundatie OSP 1025	10124719-12-1011	002.678.00 0988861
Overzicht fundatie OSP HA+0/ci	10124719-12-1012	002.678.00 0988862
Overzicht fundatie OSP HA+3/ca	10124719-12-1013	002.678.00 0988863

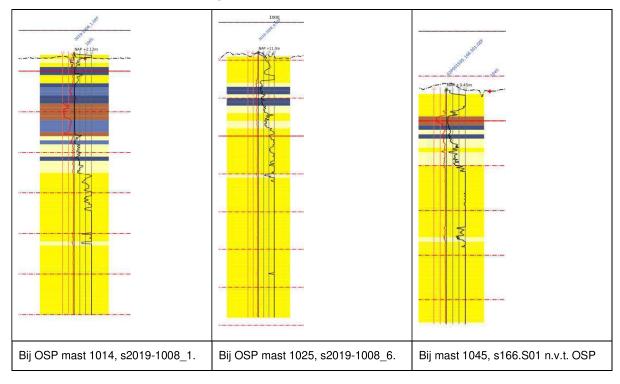
2.7 Sonderingen

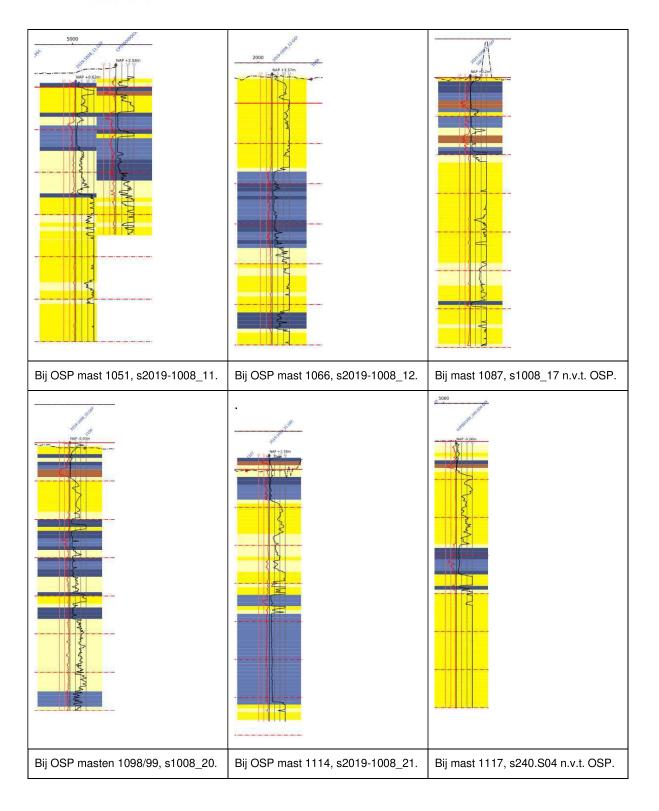
Bij het opstellen van deze rapportage zijn nog geen sonderingen beschikbaar aangezien de mastlocaties nog niet definitief zijn vastgesteld. Om te komen tot een ontwerp is door TenneT samen met Movares een geotechnisch lengteprofiel samengesteld. In dit profiel zijn over de lengte van het tracé de hoogtegegevens van het maaiveld weergegeven vanuit de Algemene Hoogtekaart Nederland 3. De vanuit openbare bron (Dino-loket) beschikbare sonderingen in de nabijheid van het tracé zijn weergegeven. Dit betreft elektrische sonderingen in digitaal formaat. Van de mechanische sonderingen die beschikbaar zijn uit de asset-gegevens vanuit de hoogspanningslijnen in de nabijheid van het nieuwe tracé is geen gebruik gemaakt.

De sonderingen bevinden zich doorgaans in de directe nabijheid van het tracé (< 500 m afstand). Voor het verkrijgen van een indicatie is dit voldoende nauwkeurig. Lokaal kunnen echter grote verschillen optreden. Er wordt alleen gebruik gemaakt van sonderingen die dieper dan 20 m onder maaiveld eindigen en die gebruikt werden bij het bepalen van de fundaties van de steunmasten en hoekmasten RLL-TLB.

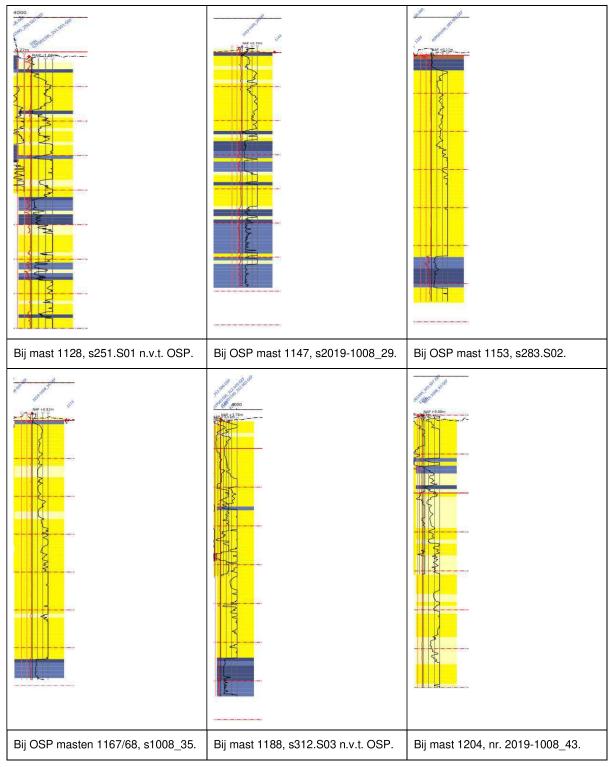
Indien uit nog uit te voeren veld- en bodemonderzoeken naar voren komt dat de sonderingen te veel verschillen (30%) dan is de CUR 114 (toezicht op realisatie van paalfunderingen) van toepassing door opdrachtnemer.

2.8 Beschrijving grondopbouw


In Tabel 6 is de grondopbouw volgens het geotechnisch lengteprofiel van TenneT opgenomen. Voor het beschrijven van de grondopbouw maken we gebruik van de sonderingen die beschikbaar zijn gesteld.


De sonderingen laten over de lengte verschillen zien in ondergrond. Westelijk van Geertruidenberg en dat betekent over circa tweederde van de lengte van het tracé is er een wisselend beeld van zandlagen en cohesieve lagen. Noemenswaardig is hierbij dat de slappere lagen ook op vrij grote diepte voorkomen met een dikte van meerdere meters. De pakking van de zandlagen is over het algemeen tussen los en matig. Maar er zijn ook locaties met dicht gepakte lagen. Ondiep gelegen slappere lagen komen vooral voor tussen Standdaarbuiten en Moerdijk. Voor afdracht van de horizontale belastingen is dat ongunstig.

Globaal bevindt zich oostelijk van Geertruidenberg over de gehele diepte van de sondering een draagkrachtig zandpakket. Aandachtspunt zijn hier de dieper gelegen kleilagen, die voor de weerstand van de paalpunt op druk nadelige invloed hebben.


Tabel 6 Overzicht voorbeeldsonderingen

Voor het bepalen van de draagkracht van de palen maakt DNV gebruik van de sonderingen die beschikbaar zijn gesteld. Deze worden ingelezen in Technosoft paalfunderingen en daarmee wordt de grondopbouw laag per laag opnieuw bepaald ter plaatse van de sondering. Deze kan afwijken van het geotechnisch lengteprofiel.

2.9 Uitgangspunten geotechniek

2.9.1 Paalklassefactoren paaltypes

In Tabel 7 zijn de paalklassefactoren van de paaltypes uit deze rapportage op basis van NEN-EN 1997-1 samengevat waarmee de berekeningen worden uitgevoerd. Alle nieuwe palen worden uitgevoerd met een schroef-injectiepaal, omdat deze trillingsarm kan worden aangebracht en er weinig werkhoogte is benodigd. Indien een SI Ø323/450 niet voldoet wordt met een SI Ø508/670 gedimensioneerd.

Tabel 7 Paalklassefactoren nieuwe funderingen

	SI Ø323/450
Paaltype	Schroefinjectiepaal
Diameter stalen buis (m)	0,323
Diameter in berekening (m). 1	0,387
Factor α_s	0,009
Factor α_t	0,009
Factor α_p	0,63
Factor β	1,0

2.9.2 Kleef cohesieve lagen

In de berekeningen wordt de weerstand van de cohesieve lagen boven de draagkrachtige zandlaag meegenomen. Volgens opmerking (b) van 7.6.3.3 (8) van NEN-EN 1997-1 is de schachtwrijving tot 50% gereduceerd. Negatieve kleef is gerekend over de hoogte van de cohesieve laag en de grondlagen daarboven.

2.9.3 Correlatiefactoren

De correlatiefactoren ksi3 en ksi4 worden toegepast bij de bepaling van de karakteristieke weerstand van een paal. De waarden zijn afhankelijk van de aard van de constructie en het aantal beschikbare sonderingen. De correlatiefactoren zijn ontleend aan NEN-EN 1997-1:2016, bijlage A, tabel 10. Fundaties met één paal per hoekpunt, zoals tweepaalspoeren van de OSP, vallen onder "niet-stijf" met factoren volgens Tabel 8. Het aantal sonderingen dat wordt gebruikt hangt af van het dekkingsbereik van de sonderingen voor een van de vier hoekpunten. Voor het DO, waarin nog geen volledig grondonderzoek beschikbaar is, wordt uitgegaan van een dekkingsbereik per hoekpunt van één sondering.

Tabel 8 Correlatiefactoren niet-stijf bouwwerk

Aantal sonderingen	1	2	3	4
ksi3	1,39	1,32	1,30	1,28
ksi4	1,39	1,32	1,30	1,03

Fundaties met meer dan twee palen per hoekpunt in een blokpoer, zoals de vierpaalspoeren van de OSP, worden als "stijf bouwwerk" beschouwd, met correlatiefactoren volgens **Error! Reference source not found.**. Ook hier wordt uitgegaan van één sondering, dus 1,26 voor zowel ksi3 als ksi4.

Tabel 9 Correlatiefactoren stijf bouwwerk

Aantal sonderingen	1	2	3	4
ksi3	1,26	1,20	1,18	1,17
ksi4	1,26	0,96	0,94	0,93

Uitgangspunt voor de nieuwe palen met groutomhulling is in de berekening de halve dikte van de groutschil

2.9.4 Materiaalfactor $\gamma_{m,var,qc}$

De parameter die de berekende draagkracht reduceert is de partiele factor $\gamma_{m,var,qc}$. volgens NEN-EN 1997-1 artikel 7.6.3.3 (8) opmerking (d). Voor een paal die een wisselende belasting ondergaat tussen trek- en druk treedt een vermindering op van de schuifweerstand. Afhankelijk van de verhouding tussen uiterste trek- en drukkracht in de SLS is de $\gamma_{m,var,qc}$ tussen de 1,0 en 1,5.

$$\gamma_{\text{m;var;qc}} = 1 + 0.25 \cdot \frac{F_{\text{t,max;rep}} - F_{\text{t,min;rep}}}{F_{\text{t,max;rep}}} \text{ en } \gamma_{\text{m;var;qc}} \le 1.5$$

Voor Moldau hoekmasten is volgens het uitgangspuntenrapport een waarde van 1,25 van toepassing. Voor Moldau steunmasten met variatie waarbij de maximale drukbelasting minimaal gelijk is aan de trekbelasting levert de formule de waarde van 1,50 op.

Voor de masten van de stijgpunten waarbij de op belastingrichting één kant op is, kan worden uitgegaan van een variatie tussen maximale trekbelasting en geringe trekbelasting. Dit levert een waarde van 1,25 op. Deze waarde zal worden gebruikt voor de vierpaalspoeren. Voor de tweepaalspoeren is met 1,50 gerekend.

2.9.5 Staaldikte funderingspalen

Voor het dimensioneren van stalen palen dient volgens TenneT-specificatie 04.009 rekening te worden gehouden met afname van staaldikte op basis van NEN 1993-5. Dit komt overeen met de CUR-aanbeveling 166 voor damwanden. Op dit moment is nog geen milieukundig onderzoek beschikbaar waaruit de agressiviteit of zuurtegraad van het grondwater (pH-waarde) kan worden afgeleid. De invloed van het zoutgehalte in het grondwater is gering². Er moet uitgegaan worden van 100 jaar ontwerplevensduur.

Tabel 9.2. Aantasting (mm) van damwanden in bodem en ophogingen met of zonder grondwater (per blootgestelde zijde) *).

Beoogde levensduur (jaar)	5 ***)	25 ***)	50	75	100
Ongeroerde, schone bodem	0,00	0,30	0,60	0,90	1,20
Verontreinigde bodem, geroerde grond	0,15	0,75	1,50	2,25	3,00
Zure bodem (veen, moeras)	0,20	1,00	1,75	2,50	3,25
Onverdichte grond (klei, zand) **)	0,18	0,70	1,20	1,70	2,20
Onverdicht, agressief ophoogmateriaal (bodemas, slakken, sintels)	0,50	2,00	3,25	4,50	5,75

Figuur 2 Tabel 9.2 uit CUR 166

Voor het DO wordt uitgegaan van zure grond en minimaal 12,5 mm dikte. Met de gereduceerde dikte van 12,5-3,25=9,25 mm is gerekend. Omdat deze buisdikte niet voorkomt is met dikte 8 mm gerekend.

De aanwezigheid van zwerfstromen betekent een risico op snellere corrosie. In de nabijheid van stations is dit risico het grootst. Als mitigerende maatregel kan de buispaal geheel met gewapend beton worden gevuld zodat ook na corrosie van de stalen paal voldoende sterkte aanwezig blijft.

² Deltares, rapport 1209030, Corrosie van stalen damwandplanken in de grond;

2.9.6 Horizontale bedding

De beddingwaardes worden gebaseerd op ontwerprichtlijn CUR228. Waarden in Tabel 10 zijn hieruit afgeleid en gelden als gemiddelde waarden. De breedte van de grond die wordt gemobiliseerd door een paal ten opzichte van de breedte van de paal wordt uitgedrukt in de schelpfactor. Empirische waarden voor de schelpfactor worden gebruikt volgens Tabel 10.

Tabel 10 Aan te houden waarden voor grondbeddingen en schelpfactoren

Grond	\mathbf{k}_{h}	schelpfactor	passieve druk	
	[kN/m³]	[-]	[-]	
Veen	1500	1,2	2	
Klei	3000	1,3	2	
Zand	15000	2,0	3	

Volgens NEN-EN 50341-2-15:2019 art. 8.2. NL.4 moet het effect van variatie van bedding op de krachtsverdeling worden beschouwd. De twee berekeningen per Axis model worden uitgevoerd met een lage veerwaarde (k uit de tabel gedeeld door $\sqrt{2}$) en met een hoge veerwaarde (k uit de tabel maal $\sqrt{2}$).

De reactie van de grondbedding op palen en poeren is gelimiteerd tot de grenswaarde van de maximale passieve gronddruk die zich kan ontwikkelen afhankelijk van de diepte. De bedding van de balk is daarbij nog gelimiteerd tot 50% van deze bedding. Voor de plaat is die weggelaten.

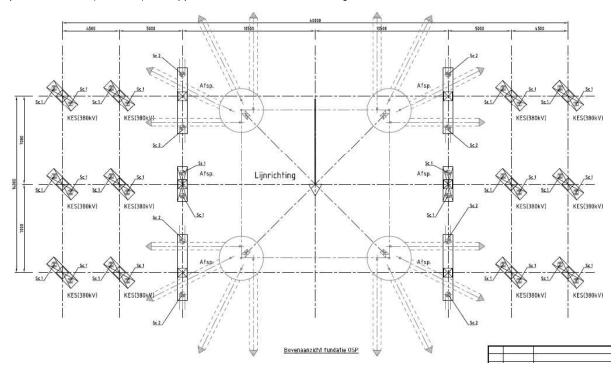
In de bijlage wordt verder ingegaan op de gehanteerde waarden in de berekening.

2.9.7 Verticale bedding

In de berekening van de tweepaalspoeren is een starre steun gehanteerd onder aan de palen. De verticale bedding van de paalpunt heeft geen invloed op de krachtsverdeling indien deze voor beide palen gelijk zijn.

In de berekening van de vierpaalspoeren heeft de verticale bedding van de paalpunt invloed op de krachtsverdeling. In de berekening is de invloed meegenomen van de verticale stijfheid. Er is gebruikt gemaakt van de empirische waarde 1 \times 10⁵ kN/m.

3 FUNDATIES COMPONENTEN OPSTIJGPUNTEN

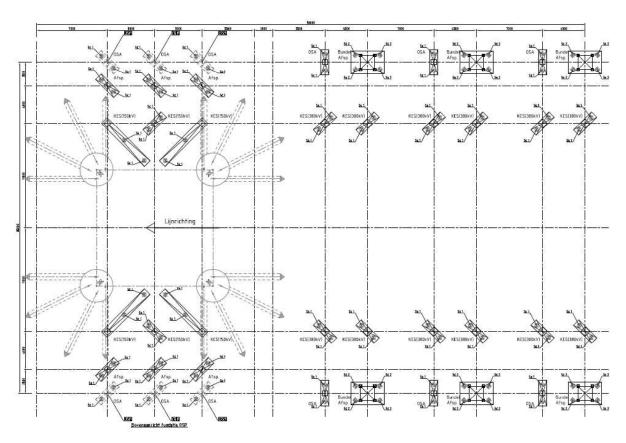

3.1 Inleiding

De opzet van de opstijgpunten verschilt bij de twaalf locaties. Er zijn in de basis drie componenten aanwezig: de grondafspanning (GRA) of bundelafspanning (BUA) voor de isolator, de kabeleindsluiting (KES) en de overspanningsafleider (OSA). Alle poeren, zowel balken als platen, hebben een hoogte van 1 m en liggen met de bovenzijde boven maaiveld. De betonnen balken worden geplaatst op twee funderingspalen en de platen op vier. In de poeren zijn ankers opgenomen waarop de component wordt geplaatst.

De tweepaalspoeren OSA 150 (deze zijn optioneel) hebben een breedte van 0,75 m, de KES 150 (geometrie 1 symmetrisch en 2 met een overstek) hebben een breedte van 0,85 m, de GRA 150 (berekend voor zowel sondering 20 als 21) hebben een breedte van 0,75 m, de OSA 380 hebben een breedte van 0,75 m, de KES 380 hebben een breedte van 0,90 m en de GRA 380 (geometrie 1 symmetrisch en 2 asymmetrisch) hebben ook een breedte van 0,75 m.

3.2 EA-3 so

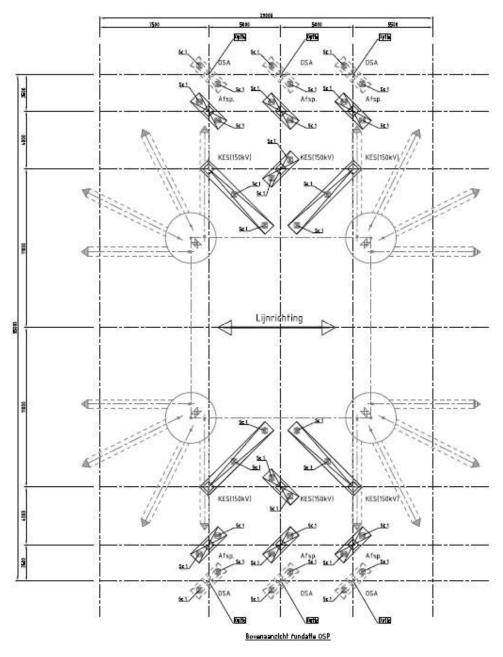
Bij EA-3_so (mast 1014) komen de volgende types componenten voor namelijk KES 380 en GRA 380 (GRA met twee typen geometrie). Vanwege de schuine palen van de mast hebben de balken van de GRA 380 ook een langere versie waarbij de palen verder uit elkaar staan en beiden schoor staat met schoorstand 10 op 1. Dan worden de funderingspalen van de GRA 380 niet tegen die van de mast geschroefd. De scheefstand en positie is zodanig dat bij de dichtste nadering een afstand van tenminste driemaal de diameter van de grootste paal wordt bereikt tussen de palenschachten (circa 2 m). Zie Appendix B voor verdere toelichting.



Figuur 3 Overzicht van OSP masttype EA-3_so

3.3 EA-3_co

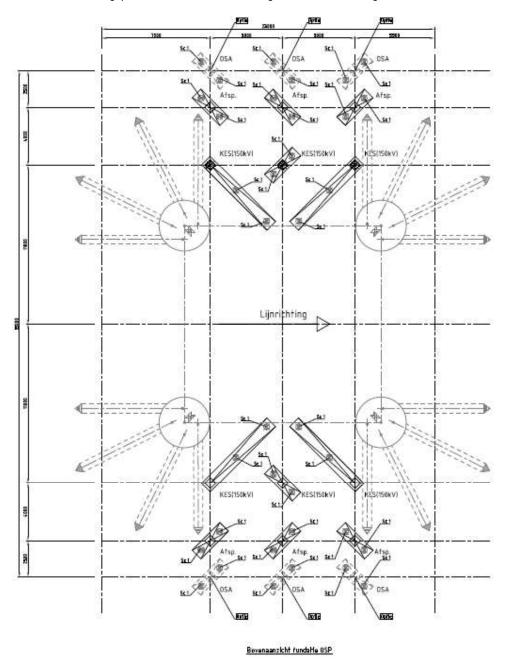
Bij EA-3_co (mast 1025) komen de volgende types componenten voor namelijk OSA150 (optioneel), KES 150 (twee typen geometrie), GRA 150, OSA 380, KES 380 en BUA 380. Vanwege de schuine palen van de mast hebben de balken van de KES 150 ook een langere versie waarbij de balk voorzien is van een overstek. Dan worden de funderingspalen van de KES 150 niet tegen die van de mast geschroefd. De palen onder de plaat waar de BUA 380 op staat zijn diagonaal schoor gezet met een helling 10 op 1 om meer op trek en druk belast te worden dan op buiging.



Figuur 4 Overzicht van OSP EA-3/co

3.4 HA+0_ci

Bij HA+0_ci (mast 1051,1066,1098,1099, 1147, 1153, 1167, 1168 en 1204) komen de volgende types componenten voor namelijk OSA150 (optioneel), KES 150 (twee typen geometrie) en GRA 150. Vanwege de schuine palen van de mast hebben de balken van de KES 150 ook een langere versie waarbij de balk voorzien is van een overstek. Dan worden de funderingspalen van de KES 150 niet tegen die van de mast geschroefd.



Figuur 5 Overzicht van OSP masttype HA+0_ci

3.5 HA+3_ca

Bij HA+3_ca (mast 1114) komen de volgende types componenten voor namelijk OSA150 (optioneel), KES 150 (twee typen geometrie) en GRA 150 (met een andere belasting dan bij type HA+0_ci). Vanwege de schuine palen van de mast hebben de balken van de KES 150 ook een langere versie waarbij de balk voorzien is van een overstek. Dan worden de funderingspalen van de KES 150 niet tegen die van de mast geschroefd.

Figuur 6 Overzicht van OSP masttype HA+3_ca

4 TOETSING NIEUWE FUNDATIES OPSTIJGPUNT

4.1 Aanpak

De fundering wordt gecontroleerd op de volgende aspecten:

- De toetsing van de betonnen balken en plaat op buiging, dwarskracht en torsie
- De toetsing van de palen op buiging en normaalkracht. En op de verplaatsing in SLS conditie.
- Het geotechnisch draagvermogen van de palen op trek en druk.

In rapportage 002.678.00 0935998, DNV rapport 21-0966, zijn belastingen bepaald vanuit de componenten op de fundatie.

De toetsing van de balk en palen op buiging is uitgevoerd met het programma AxisVM. De geotechnische draagkracht wordt met TS/Paalfunderingen uitgevoerd, zie **Error! Reference source not found.**.

4.2 Resultaten

De berekeningen zijn opgenomen in Appendix B. In Tabel 11 zijn de resultaten samengevat over alle onderzochte balken poertypes. De buigspanning in de paal voldoet. De verplaatsing en rotatie als gevolg van de kortsluitbelasting en windbelasting voldoet. De hoofdwapening in de balk is passend bij de betreffende balkafmeting. Naast de hoofdwapening moet nog rekening worden gehouden met wapening in de zijvlakken voor wringing en wapening voor het inleiden van de krachten in de palen.

Tabel 11 Samenvatting resultaten toetsing opstijgpunten

	Berekend	Toelaatbaar			
Spanningsniveau buispaal	6	5 355	N/mm ²	0,18	OK osp10
Max. u.c. paalbelasting druk	17	7 313	kN	0,57	OK osp10
Max. u.c. paalbelasting trek	15	8 334		0,47	OK osp10
Verplaatsing phi-r	0,001	3 0,0020		0,65	OK osp10
Hoofdwapening balk	8Ø1	6			
Beugelwapening balk	Ø10-20	0			

De palen worden voornamelijk op druk belast. In Tabel 12 zijn de resultaten opgenomen voor druk en in Tabel 13 voor trek. Per opstijgpunt zijn de maximale reacties over alle balken en poeren genomen. Uit de tabel blijkt dat de palen voldoen. Op het moment dat nieuwe sonderingen uitgevoerd zijn, kan het paalpuntniveau definitief worden bepaald.

Tabel 12 Toetsing palen opstijgpunten op druk

Mast	Masttype	Component OSP	Paaltype	F _{Ed} [kN]	Paalpunt niveau (t.o.v. N.A.P.)	F _{R,d,druk} [kN]	U.C.
1014	EA-3_so	KES 380 geom.5	SI-paal 323/450	78	-13	404	0,19
1025 2pp	EA-3_co	KES 150 geom.2.2	SI-paal 323/450	177	0	604	0,29
1025 4pp	EA-3_co	BUA 380 geom.7	SI-paal 323/450	241	0	671	0,36
1051	HA+0_ci	KES 150 geom.2.2	SI-paal 323/450	177	-13	517	0,34
1066	HA+0_ci	KES 150 geom.2.2	SI-paal 323/450	177	-4,5	1185	0,15
1098/1099	HA+0_ci	KES 150 geom.2.2	SI-paal 323/450	177	-7,5	313	0,57
1114	HA+3_ca	KES 150 geom.2.2	SI-paal 323/450	177	-7,5	364	0,49
1147	HA+0_ci	KES 150 geom.2.2	SI-paal 323/450	177	-7,5	886	0,20
1153	HA+0_ci	KES 150 geom.2.2	SI-paal 323/450	177	-7,5	607	0,29
1167/1168	HA+0_ci	KES 150 geom.2.2	SI-paal 323/450	177	-7,5	563	0,31
1204	HA+0_ci	KES 150 geom.2.2	SI-paal 323/450	177	+2	686	0,26

Tabel 13 Toetsing palen opstijgpunten op trek

					Paalpunt		
Mast	Masttype	Component OSP	Paaltype	Fed [kN]	niveau (t.o.v. N.A.P.)	FR,d,trek [KN]	U.C.
1014	EA-3_so	GRA 380 geom.6.1	SI-paal 323/450	19	-13	166	0,11
1025 2pp	EA-3_co	KES 150 geom.2.2	SI-paal 323/450	10	0	272	0,06
1025 4pp	EA-3_co	BUA 380 geom.7	SI-paal 323/450	158	0	334	0,47
1051	HA+0_ci	KES 150 geom.2.2	SI-paal 323/450	10	-13	248	0,06
1066	HA+0_ci	KES 150 geom.2.2	SI-paal 323/450	10	-4,5	359	0,04
1098/1099	HA+0_ci	KES 150 geom.2.2	SI-paal 323/450	10	-7,5	97	0,16
1114	HA+3_ca	KES 150 geom.2.2	SI-paal 323/450	10	-7,5	159	0,10
1147	HA+0_ci	KES 150 geom.2.2	SI-paal 323/450	10	-7,5	249	0,06
1153	HA+0_ci	KES 150 geom.2.2	SI-paal 323/450	10	-7,5	198	0,08
1167/1168	HA+0_ci	KES 150 geom.2.2	SI-paal 323/450	10	-7,5	192	0,08
1204	HA+0_ci	KES 150 geom.2.2	SI-paal 323/450	10	+2	327	0,05

Druk is maatgevend. De OSP palen bij de masten 1014 en 1051 (sonderingen 1 en 11) zijn met zodanige lengte uitgevoerd dat de punt in een zandlaag staat.

5 CONCLUSIE

Deze rapportage bevat de beschrijving van het constructieve ontwerp van de fundaties van de nieuwe opstijgpunten in nieuwe 150 en 380 kV-lijnen (OSP) en de toetsing aan de eisen uit de geotechnische normen en TenneT-specificaties. Het gaat om de opstijgpunten bij de nieuwe masten met mastnummers 1014, 1025, 1051, 1066, 1098, 1099, 1114, 1147, 1153, 1167, 1168 en 1204.

De fundaties van de opstijgpunten bestaan uit verschillende typen betonnen poeren, balken met twee palen of platen met vier palen.

Deze balken en platen worden op buiging en wringing belast door de krachten vanuit de componenten en de afloper. De palen dragen de belastingen uit de balken en platen af via buiging en door druk. De palen, balken en platen zijn getoetst en voldoen. Er worden schroefinjectiepalen gebruikt.

De berekeningen zijn gebaseerd op bestaande sonderingen of op sonderingen in de nabijheid van de locatie. In de UOfase moeten nieuwe sonderingen bij iedere locatie worden uitgevoerd om de definitieve berekeningen te kunnen maken.

APPENDIX A

Berekening fundatie van de opstijgpunten

Deze Appendix bevat de resultaten van de berekening van de paaldraagvermogen.

- Nieuwe palen opstijgpunten op trek.
- Nieuwe palen opstijgpunten op druk.

APPENDIX B

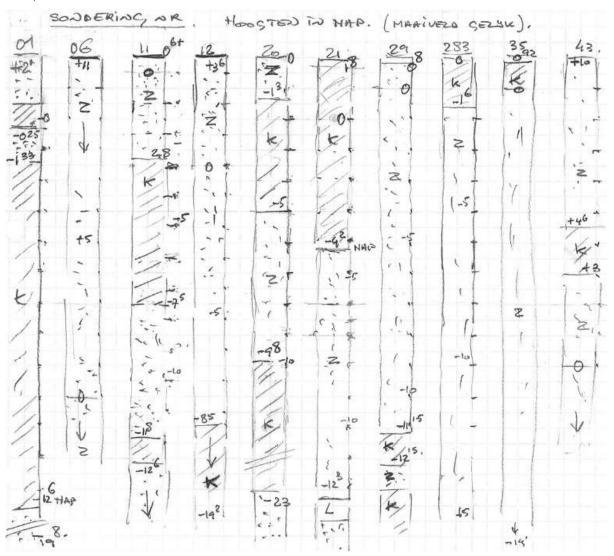
Berekening fundatie van de opstijgpunten

In deze Appendix is het rekenmodel van de fundatiebalken van de opstijgpunten opgenomen.

Schematisering

De poerconstructies worden geschematiseerd als betonbalken of een plaat met ondersteuningen in de vorm van elastisch ondersteunde palen. De belasting grijpt aan in x- en y- en z-richting op het niveau van de poeren. Het programma AxisVM is gebruikt voor de berekening. Het model van één van de negen fundatietypes met balken (OSA 150 als voorbeeld) is in Figuur 7 weergegeven, ernaast het model voor de plaat (BUA 380).

Figuur 7 Rekenmodellen tweepaalspoeren en vierpaalspoer


In Tabel 14 zijn de uitgangspunten gegeven voor de beddingen tegen de palen. Volgens NEN-EN 50341-2-15:2019 art. 8.2. NL.4 moet het effect van variatie van bedding op de krachtsverdeling worden beschouwd. De twee berekeningen per Axis model worden uitgevoerd met een lage veerwaarde (k uit de tabel gedeeld door $\sqrt{2}$) en met een hoge veerwaarde (k uit de tabel maal $\sqrt{2}$).

Tabel 14 Beddingwaarden

Paal	Grond	k_h	schelp	Diameter	Gem.	Laag	Hoog
		[kN/m³]	[-]	[m]	[kN/m]	[kN/m]	[kN/m]
Ø323/450	Veen	1500	1,2	0,323	581	411	822
	Klei	3000	1,3	0,323	1260	891	1781
	Zand	15000	2,0	0,387	11595	8199	16398
Balk	Veen	1500	1	1,00	1500	1061	2121
	Klei	3000	1	1,00	3000	2121	4243
	Zand	15000	1	1,00	15000	10607	21213

De volgende bodemprofielen in Figuur 8 zijn vereenvoudigd afgeleid per sondering uit de resultaten van Technosoft software. Deze zijn naast elkaar gezet waarbij het maaiveld gelijk is gehouden. Daarbij staat voor de bovenste lagen "k" voor klei en "z" voor zand. De hoogten in N.A.P. staan erbij vermeld. Doel van deze schets is om in één oogopslag te kunnen zien welke sondering de grootste horizontale verplaatsing van de bovenste lagen geeft. Deze wordt gebruikt voor het doorrekenen met AxisVM van een type OSP die op meerdere plaatsen voorkomt. Bij de sondering met de zwakste tegendruk wordt de grootste verplaatsing of rotatie bereikt. Als die na berekening met AxisVM te groot is kan voor een groter paaltype gekozen worden of voor meer palen. Ook kunnen de vergelijkingsspanningen te hoog worden in de palen.

Figuur 8 Grondopbouw afgeleid uit sonderingen

In Tabel 15 staat het overzicht van de sonderingen met bijbehorende masten en van de bijbehorende OSP's met tweepaalspoeren en de vierpaalspoer. Er zijn zeven verschillende opstijgpunten. Bij de opstijgpunten KES 150 kV en GRA 380 kV komen twee verschillende geometrieën voor. Bij het opstijgpunt GRA 150 kV komen twee verschillende belastinggevallen voor. We komen dan tot tien AxisVM modellen OSP nummers 01 t./m. 10. Sommige OSP nummers komen voor bij verschillende masten en dus bij verschillende sonderingen. Dit is aangegeven met een x. Per AxisVM model wordt één maatgevende sondering gekozen waarmee gerekend wordt. Dit is aangegeven met een xM. Dat is de sondering per OSP nummer die de zwakste tegendruk geeft. Vier sonderingen zijn maatgevend, namelijk de sonderingen 19-1008_1, 6, 20 en 21.

Tabel 15 Overzicht OSP versus sonderingen

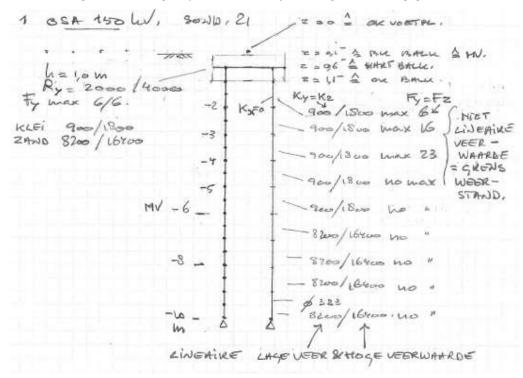
			Mastnummers									
			1014	1025	1051	1066	1098 & 99	1114	1147	1153	1167 & 68	1204
							Sondering	nummers				
OSP doel	geom./b.g.	OSP nr.	1008_1	1008_6	1008_11	1008_12	1008_20	1008_21	1008_29	283.S02	1008_35	1008_43
OSA 150 kV optie	geom.1	OSP 01		x	х	х	х	xM	x	х	X	х
KES 150 kV	geom.2.1	OSP 02		×	х	x	x	xM	x	x	х	х
KES 150 kV	geom.2.2	OSP 03		×	x	x	x	xM	x	x	X	х
GRA 150 kV	b.g.3.1	OSP 04		×	X	X	xM		x	X	x	х
GRA 150 kV	b.g.3.2	OSP 05						×M				
OSA 380 kV	geom.4	OSP 06		×M								
KES 380 kV	geom.5	OSP 07	xM	×								
GRA 380 kV	geom.6.1	OSP 08	xM									
GRA 380 kV	geom.6.2	OSP 09	xM									
BUA 380 kV	geom.7	OSP 10		хM								

De reacties van de grondbedding op palen en poeren is gelimiteerd tot de grenswaarde van de maximale passieve gronddruk die zich kan ontwikkelen afhankelijk van de diepte. De reacties van de grondbeddingen op de balken zijn daarbij gelimiteerd tot 50% van de maximale passieve gronddruk om de relatief stijve balk niet teveel te laten afdragen aan de grond(bedding). Voor de plaat is die om dezelfde reden de grondbedding geheel weggelaten.

Over de bovenste meters waar de grootste verplaatsingen optreden, is vanuit die overweging de reactie van de lijnondersteuning aan de paal in de berekening begrensd tot de grenswaarde van de maximale passieve gronddruk. Daarbij is drie meter aangehouden beginnende onder de onderzijden van balken en poeren. We nemen aan dat de grond daar enigszins ontspannen is.

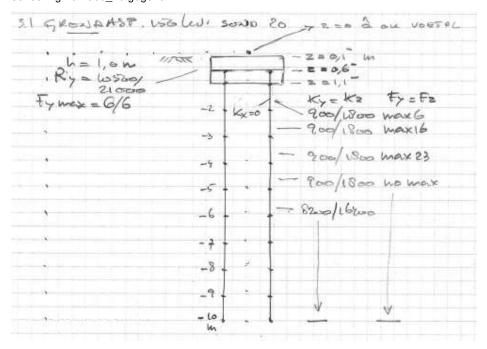
Er is voor het bepalen van de gronddrukken uitgegaan van een volumiek gewicht van 17 kN/m³, met een grondwaterstand van 0,5 m beneden maaiveld.

De methode van Bijlage C van NEN 1997-1 is gevolgd. De grenswaarde van de maximale passieve gronddruk is conservatief bepaald met de lage k_{pa} van klei, namelijk 2 kN/m³. In Tabel 16 zijn de maximale grondweerstanden samengevat die zijn toegekend aan de elastische ondersteuningen van de palen. Toegepast over de bovenste drie meters palen zijn de waarden per meter dus 6, 16 en 23 kN. Voor de paalbreedte geldt dat deze in cohesieve grond gelijk is aan de schachtbreedte. In zand komt daar de halve dikte van het grout bij. Wij rekenen met waarde zand in Technosoft en bij de bepaling van de passieve gronddruk.


Tabel 16 Begrenzing passieve gronddruk

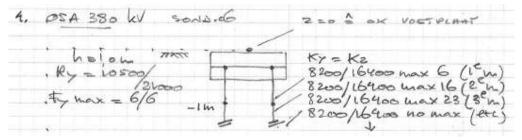
Paal	Grond	Niveau	р	k _{pa}	schelp	Diameter	Max. druk	Max. druk
		[m]	[kN/m³]	[kN/m³]	[-]	[m]	[kN]	[kN] 50%
Ø323	Klei	0	0	2	1,3	0,323	0,0	0,0
		-1	12	2	1,3	0,387	6,0	3,0
		-2	19	2	1,3	0,387	15,6	7,8
		-3	26	2	1,3	0,387	22,6	11,3
Balk	Klei	0	0					
		-1	12	2	1	1	12,0	6,0

De betonbalken zijn volledig door grond ingebed. Hier is de maximale druk gelimiteerd tot 50% van de maximale passieve gronddruk zoals eerder vermeld, met waarde 6 kN/m.

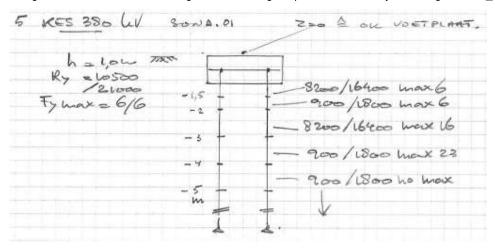


De Axis modellen lopen tot -8 m door. Dit voldoet aan de minimum verticale lengte van 7 m. In Figuur 9 staat de schematisering van de beddingen op de constructie bij sondering 19-1008_21 gegeven.

Figuur 9 Beddingen op sondering 2019-1008_21


In Figuur 10 Beddingen op sondering 2019-1008_20 staat de schematisering van de beddingen op de constructie bij sondering 19-1008_20 gegeven.

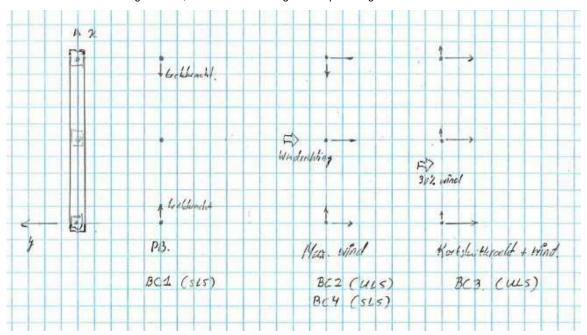
Figuur 10 Beddingen op sondering 2019-1008_20



In Figuur 11 staat de schematisering van de beddingen op de constructie bij sondering 19-1008_6 gegeven.

Figuur 11 Beddingen op sondering 2019-1008_6

In Figuur 12 staat de schematisering van de beddingen op de constructie bij sondering 19-1008_1 gegeven.


Figuur 12 Beddingen op sondering 2019-1008_1

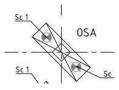
Belastingen

De belastingen zijn ontleend aan de berekeningen zoals beschreven in 002.678.00 0935998, DNV rapport 21-0966. Er zijn drie belastingcombinaties gerekend, zie Figuur 13:

- permanente belasting (eigen gewicht en EDS-trekkracht uit geleider). Eigen gewicht van de poeren wordt automatisch meegenomen door het programma. Vanwege extra elementen aan de componenten is 1,5 toeslag gehanteerd;
- maximale windbelasting;
- de combinatie van kortsluitbelasting en gereduceerde windbelasting, richting haaks op of evenwijdig aan de balk;
- De wind belasting als SLS, voor de beoordeling van verplaatsingen.

Figuur 13 Onderzochte belastinggevallen

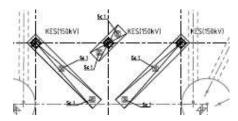
Alle componenten zijn volbelast gerekend. De herkomst van de belastingen worden aangegeven per type OSP (van de tien).


De belastingen van de OSP's zijn zowel opgenomen in de lokale richting van deze component als in de richting van de balk. Dit heeft te maken met de soms 45° geroteerde opstelling. De balken van OSA 150 en GRA 150 worden daarom in diagonale richting gemodelleerd.

In Tabel 17 tot en met Tabel 24 zijn de belastingen opgenomen.

Tabel 17 Belastingen OSA 150 kV

Masttype HA+0_ci, HA+3_ca en EA-3_co, tek. 1011, 1012 en 1013 Eén poertype

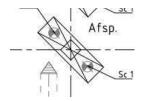


Onderdeel	Belastinggeval	F _x (kN)	F _y (kN)	F_z (kN)	M_x (kNm)	M _y (kNm)
OSA150	Wind ULS	0,8	1,8	-3,1	-3,9	3,4
	Kortsluiting	0,6	7,1	-3,1	-28,8	2,3
	Wind SLS	0,8	1,2	-2,5	-2,6	3,4
	Permanent	0,6	0	-1,7	0	2,3

Herkomst is de berekening van de OSA met AxisVM. De belastingen gelden voor de SLS combinatie pb, en de ULS voor wind en kortsluiting. De belastingen zijn in het orthogonale stelsel, de x-richting is de lijnrichting in de plattegrond. De balk is in diagonale richting gemodelleerd.

Tabel 18 Belastingen KES 150 kV

Masttype HA+0_ci, HA+3_ca en EA-3_co, tek. 1011, 1012 en 1013 Twee poertypes


Onderdeel	Belastinggeval	F_x (kN)	F_y (kN)	F_z (kN)	M_x (kNm)	M_y (kNm)
KES (lokaal)	ULS 1a_45	- 2,7	-3,5	-15,8	-5,9	-2,3
	ULS_8_45	-5,2	-5,6	-15,8	-19,7	-16,1
	SLS 1a_45	-1,8	-2,4	-13,1	-4,0	-1,4
	SLS_7	0,2	-0,2	-13,4	-0,7	0,6

Dit is het resultaat uit reacties PLS-TOWER. Uitgangspunt is de lokale richting van de balk. De balk wordt in x- en yrichting gemodelleerd.

Tabel 19 Belastingen GRA 150 kV

Masttype HA+0_ci, HA+3_ca en EA-3_co, tek. 1011, 1012 en 1013 Eén poertype

Onderdeel	Belastinggeval	$F_x (kN)$	F_v (kN)	F_z (kN)
Grondafsp. 150 kV	Permanent	1,1	3	5,0
HA+0_ci	Wind ULS	4,2	8,1	18,4
EA-3_co	Kortsluiting	3,1	8,0	23,6
	Wind SLS	2,9	6,5	14,8

Dit geldt voor alle masten behalve mast 1014 en 1114. Ongunstigste is sondering 20. Gebaseerd op Appendix B mastrappport HA+0_ci, omhullende van Rx, Ry en Rz. De krachten gelden voor het orthogonale assenstelsel, de x-as is de lijnrichting. Balk is diagonaal gemodelleerd.

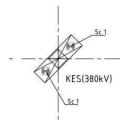
Tabel 20 Belastingen GRA 150 kV (mast 1114)

Onderdeel	Belastinggeval	F _x (kN)	F_{y} (kN)	F_z (kN)
Grondafsp. 150 kV	Permanent	1,0	2,7	5,0
HA+3_ca	Wind ULS	4,0	8,0	19,6
	Kortsluiting	2,7	7,0	22,8
	Wind SLS	2,9	6,4	14,8

Alleen mast 1114 met sondering 21. Gebaseerd op Appendix B mastrappport HA+3_ca, omhullende van Rx, Ry en Rz. De krachten gelden voor het orthogonale assenstelsel, de x-as is de lijnrichting. Balk dus diagonaal gemodelleerd.

Tabel 21 Belastingen OSA 380 kV

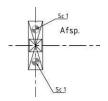
Mast 1025, tek. 1011 Eén poertype

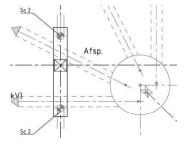

Onderdeel	Belastinggeval	F_x (kN)	F_y (kN)	F_z (kN)	M _x (kNm)	M _y (kNm)
OSA380	Wind ULS	1,9	3,7	-7,3	-14,2	12,6
	Kortsluiting	1,3	9,8	-7,3	- 62,5	8,4
	Wind SLS	1,9	2,5	-6,1	9,5	12,6
	Permanent	1,3	0	-6,1	0	8,4

Herkomst is de berekening van de OSA met AxisVM. De belastingen gelden voor de SLS combinatie pb, en de ULS voor wind en kortsluiting. Het max. moment belast de balk op torsie.

Tabel 22 Belastingen KES 380 kV

Mast 1014 en 1025, tek. 1010 en 1011 Eén poertype



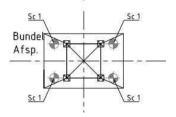

Onderdeel	Belastinggeval	F _x (kN)	F _y (kN)	F_z (kN)	M_x (kNm)	M _y (kNm)
KES380 (lokaal)	ULS 8_0	-7,7	-6,9	-25,5	-44,8	-41,4
	ULS 8_90	-6,0	-8,7	-25,5	-49,0	-37,3
	SLS 1a_0	-5,2	-0,6	-21,2	-4,2	-9,6
	SLS 1a_90	0,6	-6,4	-21,2	-18,3	4,0
	SLS 7	0,4	-0,3	-21,2	-2,2	2,2

Dit is het resultaat uit reacties PLS-TOWER. Bestand: "OSP KES (380kV) 2.5m - Reacties PLS TOWER v1.4 v3.xlsx". ULS 8-combinaties zijn dominant voor sterkte. SLS-combinatie is alleen wind relevant, short circuit heeft geen BGT. SLS 7 is de permanente belasting. Uitgangspunt is de lokale richting van de balk. De balk wordt in x- en y-richting gemodelleerd.

Tabel 23 Belastingen GRA 380 kV

Mast 1014 - tek. 1010

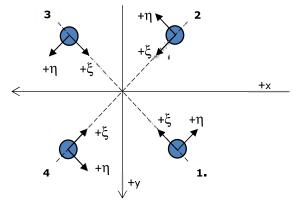
2 poertypes te berekenen


Onderdeel	Belastinggeval	F _x (kN)	F _v (kN)	F_{z} (kN)
Grondafsp. 380 kV	Permanent	0,7	2,2	10,0
	Wind ULS	6,6	3,8	50,0
	Kortsluiting	0,0	3,2	64,0
	Wind SLS	4,7	3,0	39,4

Gebaseerd op Appendix B mastrappport EA-3_so. Kortsluitbelasting gebaseerd op Appendix 21-0966 of mastrapport EA-3_so. De krachten gelden voor het orthogonale assenstelsel, de x-as is in de balkrichting.

Tabel 24 Belastingen BUA 380 kV

Twee types met verschillende belasting, maar kunnen gelijk genomen worden Belasting komt uit vier pootjes vanuit de vakwerkkolom



Belastingen op 4-paalspoeren	Belastingen gebaseerd op zwaarst belaste poer				
Stijl	Combinatie	Rx	Ry	Rz	
		[kN]	[kN]	[kN]	
					Max Mx,
1	ULS 1a_105	0,5	-10,62	122,3	wind UGT
2	ULS 1a_105	34,6	-1,2	256,8	
3	ULS 1a_105	0,4	-13,5	-115,9	
4	ULS 1a_105	30,9	-0,89	-247,8	
	11104 405	0.0	0.55	100 7	Max My,
1	ULS 1a_135	0,9	-8,55	193,7	wind UGT
2	ULS 1a_135	44,5	-1,32	302,3	
3	ULS 1a_135	0,6	-10,96	-183,8	
4	ULS 1a_135	41,3	-0,91	-290,7	
4	CL C 1 = 10F	0.4	7.00	01.4	Max Mx,
1	SLS 1a_105	0,4	-7,08	91,4	wind BGT
2	SLS 1a_105	25,1	-0,8	181,9	
3	SLS 1a_105	0,3	-9,11	-88,3	
4	SLS 1a_105	22,7	-0,66	-177,0	
1	SLS 1a 135	0,6	-5,71	142,2	Max My, wind BGT
2	SLS 1a_135	32,3	-0,89	215,5	WING BG I
	_	-		,	
3	SLS 1a_135	0,5	-7,43	-136,3	
4	SLS 1a_135	30,1	-0,68	-208,4	
1	SLS 7	0,2	0	57,3	Permanent
2	SLS 7	11,4	-0,18	59,2	
3	SLS 7	0,2	-0,37	-62,1	
4	SLS 7	11,0	-0,18	-63,9	

Bron: Belastingen op basis berekening PLS-TOWER. Voor ULS en SLS de combinatie opgezocht met max Mx of My en de permanente belasting.

Onderaanzicht van de BUA.

Stijl 1 komt overeen met Axis knopen 80 en 181. Stijl 2 komt overeen met Axis knopen 78 en 179. Stijl 3 komt overeen met Axis knopen 4 en 111. Stijl 4 komt overeen met Axis knopen 38 en 145.

Tabel 25 Belastingcombinaties BUA

Naam	Туре	EG (PERM1)	Perm SLS7 (PERM1)	WindULS 1a_105 (VER1)	WindULS 1a_135 (VER1)	WindSLS 1a_105 (VER1)	WindSLS 1a_135 (VER1)
Co #1	UGT	1,20	1,20	0,0	0,0	0,0	0,0
Co #2	UGT	1,35	1,35	0,0	0,0	0,0	0,0
Co #3	UGT	1,2	0,0	1,0	0,0	0,0	0,0
Co #4	UGT	1,2	0,0	0,0	1,0	0,0	0,0
Co #5	UGT	0,6	0,0	1,0	0,0	0,0	0,0
Co #6	UGT	0,6	0,0	0,0	1,0	0,0	0,0
Co #7	BGT Karakteristiek	1,0	0,0	0,0	0,0	1,0	0,0
Co #8	BGT Karakteristiek	1,0	0,0	0,0	0,0	0,0	1,0
Co #9	BGT Quasi-blijvend	1,0	1,0	0,0	0,0	0,0	0,0

Co #2. De 1,35 combinatie alleen PB.

Co #3 en 4. Combinaties van alle geleiderbelastingen factor 1,0 (zijn al rekenwaarden) met ongunstig effect eigen gewicht balk.

Co #5 en 6. Combinaties van alle geleiderbelastingen factor 1,0 (zijn al rekenwaarden) met gunstig effect eigen gewicht balk inclusief grondwaterdruk.

Co #7 en 8. SLS combinatie alleen eigen gewicht.

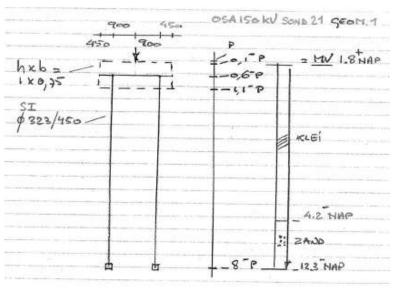
Co #9. SLS combinatie, alleen in combinatie wind, niet voor kortsluitbelasting.

Toetsing

De fundering wordt gecontroleerd op de volgende aspecten:

- De buiging, dwarskracht en torsie in de betonnen balk, zijn de krachten opneembaar binnen de gekozen doorsnede en voldoet een indicatief bepaalde wapening.
- De toetsing van de palen op buiging en normaalkracht, voldoen de spanningen;
- Het geotechnisch draagvermogen van de palen op trek en druk;
- de verplaatsing in SLS-conditie. Als eis geldt 1/150 scheefstand, er wordt getoetst aan 1/500 omdat de vervorming van de kolom boven op de vervorming uit de fundatie komt. De uitbuiging onder de kortsluitbelasting hoeft niet te worden getoetst, er is geen schakelende apparatuur.

De gronddruk wordt niet getoetst, deze is immers reeds begrensd. Voor de toetsing van de betonconstructie wordt gebruikgemaakt van de DNV-spreadsheet "Beton". De spanning in de palen wordt rechtstreeks in AxisVM beoordeeld. Het draagvermogen van de palen is bepaald met TS/paalfunderingen.


In de volgende paragrafen wordt per OSP de toetsing uitgevoerd.

OSP 01 OSA 150 kV sond 21 geom 1

Schema

De betonbalken zijn groot b x h = 750×1000 mm bij OSP 01 OSA 150 kV sond 21 geom 1. Zie de Figuur 14. Deze constructie komt voor bij de sonderingen 2019-1008-6, -11, -12, - 20, -21, -29, - 35, -43 en bij 02P001595_283.S02 (die zich tussen -29 en -35 in bevindt op het lengteprofiel). Het grondprofiel met sond 21 is weergegeven ernaast. Dit grondprofiel is voor het Axis model gebruikt omdat daar de zwakste horizontale tegendruk in de bovenste lagen wordt verwacht waardoor de verplaatsing het grootst is aan de paalkop.

Figuur 14 OSP 01 OSA 150 kV sondering 21 geometrie 1

Resultaten

Zie berekening AxisVM voor de doorsnedekrachten in de betonbalk. In Tabel 26 zijn de resultaten van AxisVM samengevat voor de balk. De toetsing van palen is in Tabel 27 opgenomen.

Tabel 26 Resultaten betonbalk OSP 01 OSA 150 kV sond 21 geom 1

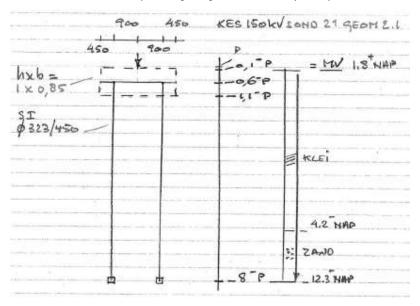
Doorsnedekracht	Berekend	
$V_{z,Ed}$	38	kN
$V_{y,Ed}$	2	kN
$M_{y,Ed}$	19	kNm
$M_{z,Ed}$	1	kNm
$M_{t,Ed}$	13	kNm

Tabel 27 Resultaten

OSP 01	Berekend	Toelaatbaar			
Spanningsniveau buispaal	27	355	N/mm ²	0,08	OK
Max. paalbelasting druk	47	>313	kN	<0,15	OK
Max. paalbelasting trek	=	=			OK
Verplaatsing phi-x	0,0002	1/500=0,002		0,10	OK
Hoofdwapening balk	8Ø16		kN		
Beugelwapening balk	Ø10-200		kN		

Conclusie: de fundatie voldoet.

Bijlage: rapport AxisVM OSP 01 OSA 150 kV sond 21 geom 1.


De omhullende van alle toetsingen is in de rapportage opgenomen-

OSP 02 KES 150 kV sond 21 geom 2.1

Schema

De betonbalken zijn groot b x h = 850×1000 mm bij OSP 02 KES 150 kV sond 21 geom 2.1. Zie de Figuur 15. Deze constructie komt voor bij de sonderingen 2019-1008-6, -11, -12, - 20, -21, -29, - 35, -43 en bij 02P001595_283.S02 (die zich tussen -29 en -35 in bevindt op het lengteprofiel). Het grondprofiel met sond 21 is weergegeven ernaast. Dit grondprofiel is voor het Axis model gebruikt omdat daar de zwakste horizontale tegendruk in de bovenste lagen wordt verwacht waardoor de verplaatsing het grootst is aan de paalkop.

Figuur 15 OSA 02 KES 150 kV sondering 21 geometrie 2.1

Resultaten

Zie berekening AxisVM voor de doorsnedekrachten in de betonbalk. In Tabel 28 zijn de resultaten van AxisVM samengevat voor de balk. De toetsing van palen is in Tabel 29 opgenomen.

Tabel 28 Resultaten betonbalk OSP 02 KES 150 kV sond 21 geom 2.1

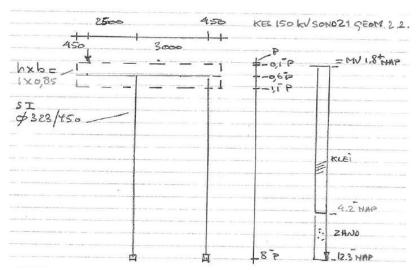
Doorsnedekracht	Berekend	
$V_{z,Ed}$	46	kN
$V_{y,Ed}$	3	kN
$M_{y,Ed}$	24	kNm
$M_{z,Ed}$	3	kNm
$M_{t,Ed}$	8	kNm

l	ab	el	29	Res	ul	ta	ter

OSP 02	Berekend	Toelaatbaar			
Spanningsniveau buispaal	21	355	N/mm ²	0,06	OK
Max. paalbelasting druk	57	>313	kN	<0,18	OK
Max. paalbelasting trek	=	=			OK
Verplaatsing phi-x	0,0001	0,0020		0,05	OK
Hoofdwapening balk	8Ø16		kN		
Beugelwapening balk	Ø10-200		kN		

Conclusie: de fundatie voldoet.

Bijlage: rapport AxisVM OSP 02 KES 150 kV sond 21 geom 2.1.


De omhullende van alle toetsingen is in de rapportage opgenomen.

OSP 03 KES 150 kV sond 21 geom 2.2

Schema

De betonbalken zijn groot b x h = 850×1000 mm bij OSP 03 KES 150 kV sond 21 geom 2.2. Zie de Figuur 16. Deze constructie komt voor bij de sonderingen 2019-1008-6, -11, -12, - 20, -21, -29, - 35, -43 en bij 02P001595_283.S02 (die zich tussen -29 en -35 in bevindt op het lengteprofiel). Het grondprofiel met sond 21 is weergegeven ernaast. Dit grondprofiel is voor het Axis model gebruikt omdat daar de zwakste horizontale tegendruk in de bovenste lagen wordt verwacht waardoor de verplaatsing het grootst is aan de paalkop.

Figuur 16 OSA 03 KES 150 kV sondering 21 geometrie 2.2

Resultaten

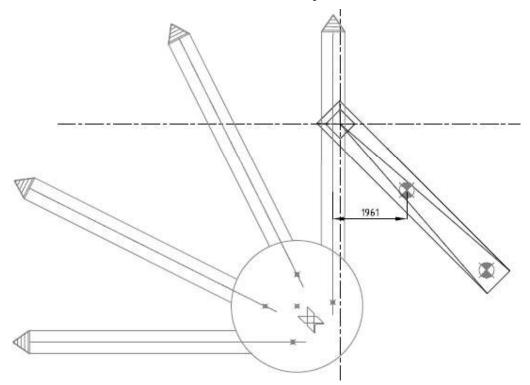
Zie berekening AxisVM voor de doorsnedekrachten in de betonbalk. In Tabel 30 zijn de resultaten van AxisVM samengevat voor de balk. De toetsing van palen is in Tabel 31 opgenomen.

Tabel 30 Resultaten betonbalk OSP 03 KES 150 kV sond 21 geom 2.2

Doorsnedekracht	Belasting	
$V_{z,Ed}$	91	kN
$V_{y,Ed}$	4	kN
$M_{y,Ed}$	156	kNm
$M_{z,Ed}$	11	kNm
$M_{t,Ed}$	16	kNm

Bij deze constructie zijn de doorsnedekrachten in de balk het grootst. De doorsnede is getoetst en voorzien van realistische wapening. Een doorsnedecontrole is opgenomen in de bijlage.

Tabel 31 Resultaten

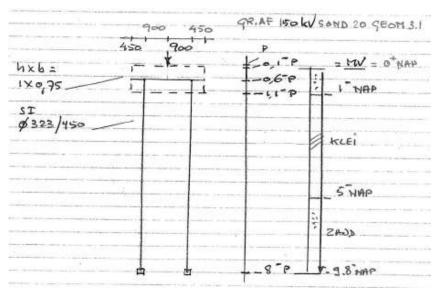

OSP 03	Berekend	Toelaatbaar			
Spanningsniveau buispaal	36	355	N/mm ²	0,10	OK
Max. paalbelasting druk	177	>313	kN	<0,57	OK
Max. paalbelasting trek	16	>97		<0,16	OK
Verplaatsing phi-x	0,0001	0,0020		0,05	OK
Hoofdwapening balk	8Ø16				
Beugelwapening balk	Ø10-200				

Conclusie: de fundatie voldoet.

Als uitgangspunt is genomen dat de afstand van de paal dichtbij de schoorpaal van de mast groter is dan drie maal de diameter van de paal. Hart op hart wordt dat vier maal de diameter.

 $L = 1961 \text{ mm} > 0.5 \times 450 + 3 \times 670 + 0.5 \times 670 = 1910$. Zie Figuur 17.

Figuur 17 OSP 03 KES 150 kV Toetsing afstand tot schoorpaal mast


Bijlage: rapport AxisVM OSP 03 KES 150 kV sond 21 geom 2.2.

OSP 04 Grondafspanning 150 kV sond 20 bg 3.1

Schema

De betonbalken zijn groot b x h = $750 \times 1000 \text{ mm}$ bij OSP 04 Grondafspanning 150 kV sond 20 bg 3.1. Zie de Figuur 18. Deze constructie met belastinggevallen komt voor bij de sonderingen 2019-1008-6, -11, -12, -20, -29, - 35, -43 en bij 02P001595_283.S02 (tussen -29 en -35 op het lengteprofiel). Het grondprofiel met sond 20 is weergegeven ernaast. Dit grondprofiel is voor het Axis model gebruikt omdat daar de zwakste horizontale tegendruk in de bovenste lagen wordt verwacht waardoor de verplaatsing het grootst is aan de paalkop.

Figuur 18 OSP 04 Grondafspanning 150 kV sondering 20 bg 3.1

Resultaten

Zie berekening AxisVM voor de doorsnedekrachten in de betonbalk. In Tabel 32 zijn de resultaten van AxisVM samengevat voor de balk. De toetsing van palen is in Tabel 33 opgenomen.

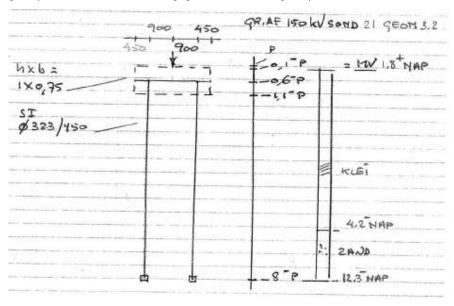
Tabel 32 Resultaten betonbalk OSP 04 Grondafspanning 150 kV sond 20 bg 3.1

Doorsnedekracht	Berekend	
$V_{z,Ed}$	21	kN
$V_{y,Ed}$	4	kN
$M_{y,Ed}$	8	kNm
$M_{z,Ed}$	3	kNm
M _{t Ed}	3	kNm

Tabel 33 Resultaten

OSP 04	Berekend	Toelaatbaar			
Spanningsniveau buispaal	8	355	N/mm ²	0,02	OK
Max. paalbelasting druk	33	>313	kN	<0,11	OK
Max. paalbelasting trek	=	=			OK
Verplaatsing phi-x	0,0002	0,0020		0,10	OK
Hoofdwapening balk	8Ø16		kN		
Beugelwapening balk	Ø10-200		kN		

Conclusie: de fundatie voldoet.


Bijlage: rapport AxisVM OSP 04 Grondafspanning 150 kV sond 20 bg 3.1.

OSP 05 Grondafspanning 150 kV sond 21 bg 3.2

Schema

De betonbalken zijn groot b x h = $750 \times 1000 \text{ mm}$ bij OSP 05 Grondafspanning 150 kV sond 21 bg 3.2. Zie de Figuur 19. Deze constructie met afwijkende belastinggevallen t.o.v. geom 3.1. komt alleen voor bij de sondering 2019-1008-21. Het grondprofiel met sond 21 is weergegeven ernaast. Dit grondprofiel is voor het Axis model gebruikt.

Figuur 19 OSP 05 Grondafspanning 150 kV sondering 21 bg 3.2

Resultaten

Zie berekening AxisVM voor de doorsnedekrachten in de betonbalk. In Tabel 34 zijn de resultaten van AxisVM samengevat voor de balk. De toetsing van palen is in

Tabel 41 opgenomen.

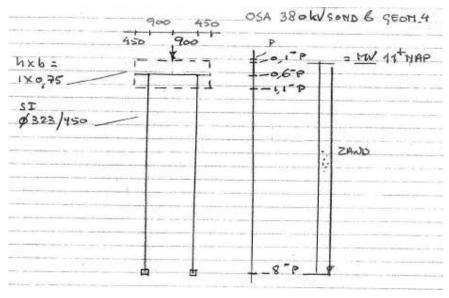
Tabel 34 Resultaten betonbalk OSP 05 Grondafspanning 150 kV sond 21 bg 3.2

Doorsnedekracht	Berekend	
$V_{z,Ed}$	21	kN
$V_{y,Ed}$	4	kN
$M_{y,Ed}$	8	kNm
$M_{z,Ed}$	3	kNm
$M_{t,Ed}$	3	kNm

Tabel 35 Resultaten

OSP 05	Berekend	Toelaatbaar			
Spanningsniveau buispaal	8	355	N/mm²	0,02	OK
Max. paalbelasting druk	32	364	kN	0,09	OK
Max. paalbelasting trek	-	-			OK
Verplaatsing phi-x	0,0003	0,0020		0,15	OK
Hoofdwapening balk	8Ø16		kN		
Beugelwapening balk	Ø10-200		kN		

Conclusie: de fundatie voldoet.


Bijlage: rapport AxisVM OSP 05 Grondafspanning 150 kV sond 21 bg 3.2.

OSP 06 OSA 380 kV sond 06 geom 4

Schema

De betonbalken zijn groot b x h = 750×1000 mm bij OSP 06 OSA 380 kV sond 06 geom 4. Zie de Figuur 20. Deze constructie komt alleen voor bij de sondering 2019-1008-6. Het grondprofiel met sond 6 is weergegeven ernaast. Dit grondprofiel is voor het Axis model gebruikt.

Figuur 20 OSP 06 OSA 380 kV sondering 06 geometrie 4

Resultaten

Zie berekening AxisVM voor de doorsnedekrachten in de betonbalk. In Tabel 36 zijn de resultaten van AxisVM samengevat voor de balk. De toetsing van palen is in Tabel 37 opgenomen.

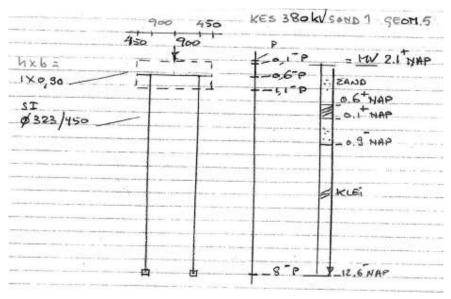
Tabel 36 Resultaten betonbalk OSP 06 OSA 380 kV sond 06 geom 4

Doorsnedekracht	Berekend	
$V_{z,Ed}$	34	kN
$V_{y,Ed}$	4	kN
$M_{y,Ed}$	18	kNm
$M_{z,Ed}$	3	kNm
$M_{t,Ed}$	34	kNm

Tabel 37 Resultaten

OSP 06	Berekend	Toelaatbaar			
Spanningsniveau buispaal	61	355	N/mm²	0,17	OK
Max. paalbelasting druk	45	604	kN	0,08	OK
Max. paalbelasting trek	-	-			OK
Verplaatsing phi-x	0,0002	0,0020		0,10	OK
Hoofdwapening balk	8Ø16		kN		
Beugelwapening balk	Ø10-200		kN		

Conclusie: de fundatie voldoet.


Bijlage: rapport AxisVM OSP 06 OSA 380 kV sond 06 geom 4.

OSP 07 KES 380 kV sond 01 geom 5

Schema

De betonbalken zijn groot b x h = 900×1000 mm bij OSP 07 KES 380 kV sond 01 geom 5. Zie de Figuur 21. Deze constructie komt voor bij de sonderingen 2019-1008-1, en -6. Het grondprofiel met sond 01 is weergegeven ernaast. Dit grondprofiel is voor het Axis model gebruikt omdat daar de zwakste horizontale tegendruk in de bovenste lagen wordt verwacht waardoor de verplaatsing het grootst is aan de paalkop.

Figuur 21 OSP 07 KES 380 kV sondering 01 geometrie 5

Resultaten

Zie berekening AxisVM voor de doorsnedekrachten in de betonbalk. In Tabel 38 zijn de resultaten van AxisVM samengevat voor de balk. De toetsing van palen is in

Tabel 39 opgenomen.

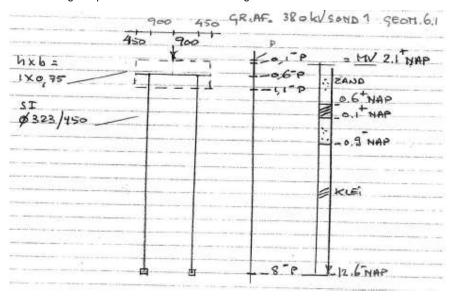
Tabel 38 Resultaten betonbalk OSP 07 KES 380 kV sond 01 geom 5

Doorsnedekracht	Berekend	
$V_{z,Ed}$	66	kN
$V_{y,Ed}$	9	kN
$M_{y,Ed}$	42	kNm
$M_{z,Ed}$	5	kNm
$M_{t,Ed}$	22	kNm

Tabel 39 Resultaten

OSP 07	Berekend	Toelaatbaar			
Spanningsniveau buispaal	45	355	N/mm ²	0,13	OK
Max. paalbelasting druk	78	>404	kN	<0,19	OK
Max. paalbelasting trek	=	=			OK
Verplaatsing phi-x	0,0004	0,0020		0,20	OK
Hoofdwapening balk	8Ø16		kN		
Beugelwapening balk	Ø10-200		kN		

Conclusie: de fundatie voldoet.


Bijlage: rapport AxisVM OSP 07 KES 380 kV sond 01 geom 5.

OSP 08 Grondafspanning 380 kV sond 01 geom 6.1

Schema

De betonbalken zijn groot b x h = 750×1000 mm bij OSP 08 Grondafspanning 380 kV sond 01 geom 6.1. Zie de Figuur 22. Deze constructie komt alleen voor bij de sondering 2019-1008-1. Het grondprofiel met sond 1 is weergegeven ernaast. Dit grondprofiel is voor het Axis model gebruikt.

Figuur 22 OSP 08 Grondafspanning 380 kV sondering 01 geometrie 6.1

Resultaten

Zie berekening AxisVM voor de doorsnedekrachten in de betonbalk. In Tabel 40 zijn de resultaten van AxisVM samengevat voor de balk. De toetsing van palen is in

Tabel 41 opgenomen

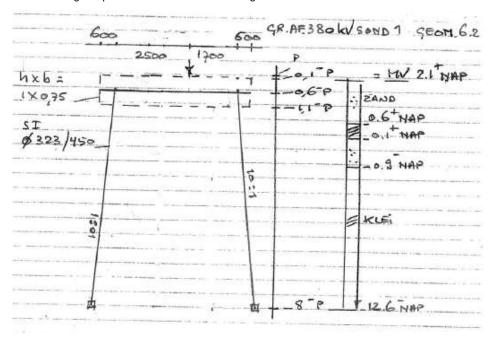
Tabel 40 Resultaten betonbalk OSP 08 Grondafspanning 380 kV sond 01 geom 6.1

Doorsnedekracht	Berekend		
$V_{z,Ed}$	34	kN	
$V_{y,Ed}$	2	kN	
$M_{y,Ed}$	25	kNm	
$M_{z,Ed}$	1	kNm	
$M_{t,Ed}$	1	kNm	

Tabel 41 Resultaten

OSP 08	Berekend	Toelaatbaar			
Spanningsniveau buispaal	10	355	N/mm²	0,03	OK
Max. paalbelasting druk	28	404	kN	0,07	OK
Max. paalbelasting trek	19	166		0,11	OK
Verplaatsing phi-x	0,0001	0,0020		0,05	OK
Hoofdwapening balk	8Ø16		kN		
Beugelwapening balk	Ø10-200		kN		

Conclusie: de fundatie voldoet.


Bijlage: rapport AxisVM OSP 08 Grondafspanning 380 kV sond 01 geom 6.1.

OSP 09 Grondafspanning 380 kV sond 01 geom 6.2

Schema

De betonbalken zijn groot b x h = $750 \times 1000 \text{ mm}$ bij OSP 09 Grondafspanning 380 kV sond 01 geom 6.2. Zie de Figuur 23. Deze constructie komt alleen voor bij de sondering 2019-1008-1. Het grondprofiel met sond 1 is weergegeven ernaast. Dit grondprofiel is voor het Axis model gebruikt.

Figuur 23 OSP 09 Grondafspanning 380 kV sondering 01 geometrie 6.2

Resultaten

Zie berekening AxisVM voor de doorsnedekrachten in de betonbalk. In Tabel 42 zijn de resultaten van AxisVM samengevat voor de balk. De toetsing van palen is in

Doorsnedekracht	Belasting	
$V_{z,Ed}$	46	kN
$V_{y,Ed}$	2	kN
$M_{y,Ed}$	42	kNm
$M_{z,Ed}$	2	kNm
$M_{t,Ed}$	2	kNm

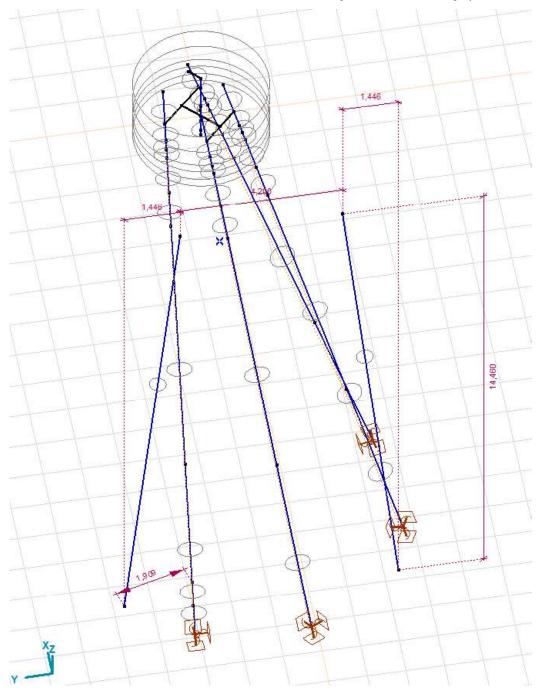
Tabel 43 opgenomen.

Tabel 42 Resultaten betonbalk OSP 09 Grondafspanning 380 kV sond 01 geom 6.2

Doorsnedekracht	Belasting	
$V_{z,Ed}$	46	kN
$V_{y,Ed}$	2	kN
$M_{y,Ed}$	42	kNm
$M_{z,Ed}$	2	kNm
$M_{t,Ed}$	2	kNm

Tabel 43 Resultaten

OSP 09	Berekend	Toelaatbaar			
Spanningsniveau buispaal	12	355	N/mm ²	0,03	OK
Max. paalbelasting druk	62	404	kN	0,15	OK
Max. paalbelasting trek	8	166		0,05	OK



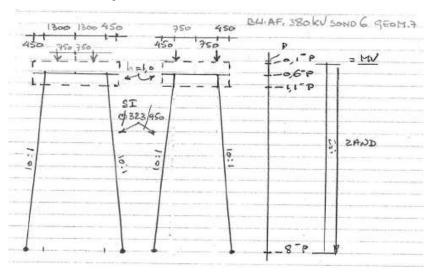
Verplaatsing phi-x	0,0001	0,0020	0,05 OK
Hoofdwapening balk	8Ø16		
Beugelwapening balk	Ø10-200		

Conclusie: de fundatie voldoet.

Als uitgangspunt is genomen dat de afstand van de paal dichtbij de schoorpaal van de mast groter is dan drie maal de diameter van de paal. Hart op hart wordt dat vier maal de diameter.

 $L = 1909 \text{ mm} = 0.5 \times 450 + 3 \times 670 + 0.5 \times 670 = 1910 \text{ mm}$. Zie Figuur 24. De afstand is gelijk aan 4 maal D.

Figuur 24 OSP 09 GRA 380 kV Toetsing afstand tot schoorpaal mast.


Bijlage: rapport AxisVM OSP 09 Grondafspanning 380 kV sond 01 geom 6.2

OSP 10 Bundelafspanning 380 kV sond 06 geom 7

Schema

De plaat is hoog 1000 mm bij OSP 10 Bundelafspanning 380 kV sond 06 geom 7. Zie de Figuur 25. Deze constructie komt alleen voor bij de sondering 2019-1008-6. Het grondprofiel met sond 6 is weergegeven ernaast. Dit grondprofiel is voor het Axis model gebruikt.

Figuur 25 OSP 10 Bundelafspanning 380 kV sondering 06 geometrie 7

Resultaten

Zie berekening AxisVM voor de doorsnedekrachten in de betonplaat. In Tabel 44 zijn de resultaten van AxisVM samengevat voor de plaat. De toetsing van palen is in Tabel 45 opgenomen.

Tabel 44 Resultaten betonplaat OSP 10 Bundelafspanning 380 kV sond 06 geom 7

Doorsnedekracht	Berekende piek	
$M_{x,D+}$	161	kNm/m
$M_{x,D}$	-178	kNm/m
$M_{y,D+}$	83	kNm/m
$M_{y,D}$	80	kNm/m

De maximale waarden voor Vxz en Vyz zijn pieken die optreden boven de palen. Kleinere pieken staan onder de belasting. Als we een grenswaarde instellen voor de toelaatbare centrale schuifspanningen Sxz C en Syz C van de door ongewapend beton opneembare schuifspanning vRd,c,min =.0,34 N/mm² dan blijkt deze alleen te worden overschreden binnen de ponskegel (d+a) = (1 + 0,323m). Dit is zichtbaar in de Axis VM berekening. Er is directe afdracht.

Daarnaast is de verhouding L/H = 2.6/1 = 2.6 < 10. En grijpt de belasting zeer dicht aan nabij de oplegging ($\beta < 0.25$). Een gedrongen constructie dus waarbij de druk via drukdiagonalen wordt afgevoerd naar de paal. Een doorsnedecontrole als ligger (per meter plaatbreedte) is opgenomen in de bijlage. Met realistische buigwapening.

Tabel 45 Resultaten

OSP 10	Berekend	Toelaatbaar			
Spanningsniveau buispaal	65	355	N/mm ²	0,18	OK
Max. paalbelasting druk	241	671	kN	0,36	OK
Max. paalbelasting trek	158	334		0,47	OK
Hv $\phi_r = \sqrt{\phi_x(6)^2 + \phi_y(11)^2}$	0,0013	0,0020		0,65	OK
Hoofdwapening balk	8Ø16/m		kN		
Beugelwapening balk	Ø12-200		kN		

Conclusie: de fundatie voldoet.

Bijlage: rapport AxisVM OSP 10 Bundelafspanning 380 kV sond 06 geom 7.

About DNV

DNV is the independent expert in risk management and assurance, operating in more than 100 countries. Through its broad experience and deep expertise DNV advances safety and sustainable performance, sets industry benchmarks, and inspires and invents solutions.

Whether assessing a new ship design, optimizing the performance of a wind farm, analyzing sensor data from a gas pipeline or certifying a food company's supply chain, DNV enables its customers and their stakeholders to make critical decisions with confidence.

Driven by its purpose, to safeguard life, property, and the environment, DNV helps tackle the challenges and global transformations facing its customers and the world today and is a trusted voice for many of the world's most successful and forward-thinking companies.

B.16 Mastrapportage

ZUID-WEST-OOST

Rapport Mastverzwaringen Permanente OSP's 150 kV

TenneT TSO B.V.

Report No.: 21-0980, Rev. 2

Meridian doc. No.: 002.678.00 0934582

Date: 2021-07-29

DATUM: 20-09-2021
STATUS TENNET: DEFINITIEF
REVISIE TENNET: 1.0

Project name: Zuid-West-Oost

Report title: Rapport Mastverzwaringen Permanente OSP's 150 kV

Customer: TenneT TSO B.V.,

Customer contact:

Date of issue: 2021-07-29 Project No.: 10124719

Organisation unit: TDT

Meridian doc.no..: 002.678.00 0934582 Report No.: 21-0980, Rev. 2 Energy Systems DNV Netherlands B.V. Utrechtseweg 310-B50 6812 AR Arnhem

Tel: +31 26 356 9111

The Netherlands

Registered Arnhem 09006400

Copyright © DNV 2021. All rights reserved. Unless otherwise agreed in writing: (i) This publication or parts thereof may not be copied, reproduced or transmitted in any form, or by any means, whether digitally or otherwise; (ii) The content of this publication shall be kept confidential by the customer; (iii) No third party may rely on its contents; and (iv) DNV undertakes no duty of care toward any third party. Reference to part of this publication which may lead to misinterpretation is prohibited.

DNV Distribution:

- □ Open
- Internal use only
- □ Commercial in confidence
- □ Confidential*
- Secret
- *Specify distribution: -

Rev. No.	Date	Reason for Issue	Prepared by	Verified by	Approved by
0	2021-06-18	First issue			
1	2021-07-23	RFA comments addressed			
2	2021-07-29	RFA comments round 2			

Table of contents

1	INTRO	DUCTION	1
1.1	Introdu	ction	1
1.2	Goal a	nd scope of this report	1
1.3	Relate	d documents	1
2	CALC	JLATIONS	2
2.1	Method	dology	2
3	RESUI	_TS	2
3.1	GT-BD	Tower 1	4
3.2	RSB-R	SD Tower 11	ç
3.3	RSD-V	VDT Tower 19a	14
3.4	RSD-M	IDK Tower 97	18
4	REFER	RENCES	23
Appendix		Conductor loads	
Appendix Appendix		PLS-tower output Redundant members analysis	
Appendix Appendix	D	Shear blocks and miscellaneous calculations Drawings	

1 INTRODUCTION

1.1 Introduction

To increase the future capacity of electricity transmission, it is necessary to upgrade the transmission grid by building new and modifying existing high voltage connections.

It is for this reason the client (OG) intends to build a new 380 kV line between Rilland and Tilburg and to modify the existing 380 kV and 150 kV lines in the vicinity of the new line. This upgrading is part of the program "Zuid-West-Oost" and consists of the following designs related to the D2.3 component of the program:

Design permanent interfaces (OSP's, "opstijgpunten") to connect to underground 150 kV cable connections at the following locations:

- Geertruidenberg Breda, tower 1 (GT–BD150)
- Roosendaal Borchwerf, tower 11 (RSD–RSB150)
- Roosendaal Borchwerf Woensdrecht, tower 19a (RSB-WDT150)
- Roosendaal Moerdijk tower 97 (RSD-MDK150).

This report concerns the existing towers which will interface to the permanent underground cable connections. The towers have been analyzed based on the applicable loads resulting from the droppers to the cable connections and the existing line spans. Based on the analyses, modifications to the existing tower have been developed which will ensure the towers are able to accommodate the new loading situations. The modifications have been kept to a minimum (where possible) without comprising the foreseen longevity of the structures. As a basis of design, the NEN 8700 standard is used.

1.2 Goal and scope of this report

The goals of this study are to determine whether the tower types described in this report are suitable to interface with the permanent underground cable connection and what modifications, if any, are required to ensure suitability.

After modifications have been applied, the ability of the system to fulfil the applicable requirements will be verified.

1.3 Related documents

1.3.1 Verification & validation plan

For details relating to the verification and validation of requirements, refer to 21-0978 "Verificatie en validatie tijdelijke OSP's" (meridian nr: 002.678.00 0935198, 21-0978).

1.3.2 BO-phase1

In the report "D2.2 Ondersteuning Basisontwerp 150 kV Opstijgpunten" [1] an investigation into the various OSP locations was conducted. The investigation focused on aspects such as internal clearances, E and M fields and basic structural calculations.

2 CALCULATIONS

2.1 Methodology

2.1.1 Introduction

In the previously submitted report regarding the permanent OSPs [1], the structures were analysed on verbouwniveau only. For the DO phase, the structures were first analysed on afkeumiveau and any failing members were then replaced and assessed according to verbouwniveau. This report expands on the structural analysis from the BO report [1] by proposing modifications to resolve the over-utilisations exhibited by certain tower members.

2.1.2 Starting points

The calculations are executed based on the starting points as included in Table 1.

Table 1 Calculation starting points

	Code	NEN-EN50341-2-15:2019
General	Wind zone	III
	Terrain category	II (onbebouwde omgeving)
	Reduction factor cdir	1,00
	Consequence class	CC2-0
Initial situation	Reliability level	Afkeur CC2-0
	Reference period	30 years
	Consequence class	CC2
Situation after modifications	Reliability level	Verbouw
	Reference period	50 years

2.1.3 Process steps

The process required to determine whether tower reinforcements are required or not consists of the following steps:

- Step 1: Test the existing tower (Init) on "Afkeur"
- Step 2: Define the required reinforcements when the initial tower does not fulfill the "Afkeur" criterion (Def. Aanp.)
- Step 3: Testing (only) the prescribed modifications (AanP) on "Verbouw"
- Step 4: Test the complete tower including reinforcements (Initi + Aanp) on "Afkeur"

The process described above is represented in Figure 1.

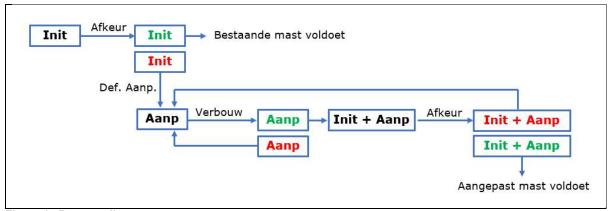


Figure 1 Process diagram

2.1.4 Conductor loads

The calculations have been performed with the conductor loads program developed by DNV. For the conductor loads of the droppers a separate calculation sheet was used. Short circuit loads were determined based on the IEC-standard. The results of the load calculations have been included in Appendix A.

2.1.5 Reaction forces on foundation

The reaction forces on the foundation have been calculated using PLS Tower which considers all possible load cases from conductors in the span and the droppers including short-circuit loads.

2.1.6 Modelling

Based on the received as-built information, the towers were modelled in PLS-Tower. Only the main elements were modelled. Profiles such as redundant members which are not critical for load support were excluded and checked separately. The angle profiles including the bolted connections were modelled and checked in PLS-Tower. Checking of detailed connections such as gusset plates is not included in the scope of work.

The conductor loads from the aforementioned conductor loads programs were used as input for the calculations. For the short circuit loads, a separate calculation was performed. The parameters and results of this calculation can be found on the first page of Appendix A.

Diagonals in the front-, rear and side planes of the tower have been grouped and the check of these members is performed per group. In case one of the elements in the group is overloaded, the resulting upgrades apply for all members in the group.

3 RESULTS

3.1 GT-BD Tower 1

3.1.1 Tower outline

The tower outline from the received asset data is included in Figure 2.

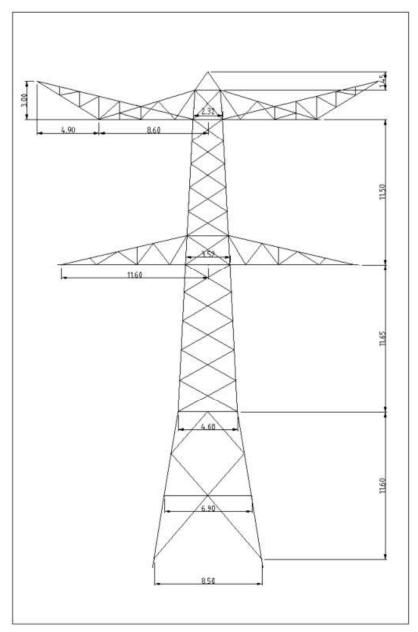


Figure 2 Tower outline for tower 1 GT-BD

The construction drawings provided by TenneT did not include workshop drawings for the onderstuk and bovenstuk of type E1. The onderstuk and bovenstuk drawings of the H1 were then used. This was more conservative since the H1 uses smaller members than the E1. According to the drawings the crossarms of the H1 and E1 are the same. The calculations showed that the mast body was not critical and only modifications on the crossarms were required. It is still advisable to perform field measurements and thereafter analyse the exact structure.

3.1.2 Tower details

Table 2 summarises the wind and weight span parameters for tower 1 GT-BD.

Table 2 Tower details for tower 1 GT-BD

Tower number	Tower type	Line Angle (°)	Back span (m) (line side)	Ahead span (m) (OSP side)
1	E1	180	263	Varies per phase between 1 and 5m

3.1.3 Tower analysis

The results of the analysis for tower 1 GT-BD with the loads calculated according to "afkeurniveau" are depicted in Figure 3 below. It should be noted that the results obtained during the BO analysis were more conservative since the BO calculations only considered the verbouw level. Even though the BO analysis was more conservative, more modifications are now required for mast 1 due to the increase in the extension length. In the BO phase the extension was 0.75m long but this has now been increased to 1.5m.

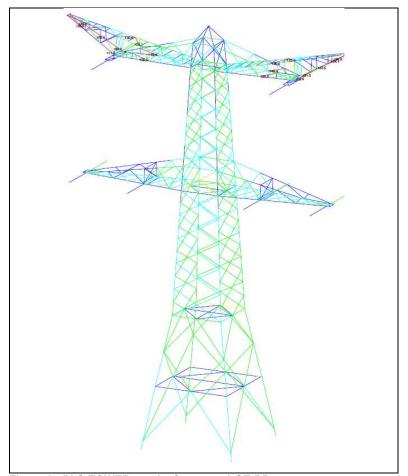


Figure 3 PLS-TOWER results for tower 1 GT-BD

The results of the analysis of the angle profiles, redundant members and main leg column anchors have been included in Table 3.

Table 3 Summary of performed checks for tower 1

Check of	Evaluation	Referentie
Profiles	NOK	Figure 3
Redundants	OK	Appendix C
Shear blocks	OK	Appendix D

3.1.4 Modifications

This section proposes tower reinforcements to ensure the tower fulfils the "afkeurniveau" loads. The proposal contains the following measures:

- Replacement of diagonals in the upper crossarm
- Strengthening of joints in the upper crossarm using plates
- Addition of new crossing diagonals in the upper crossarm (designed to withstand verbouw level)
- Addition of new members to outwardly extend the attachment point of the insulator in the upper crossarm.

3.1.5 Strengthening

As per the group summary outputs in Appendix B, the bracing members indicated in blue in Figure 4 are to be replaced.

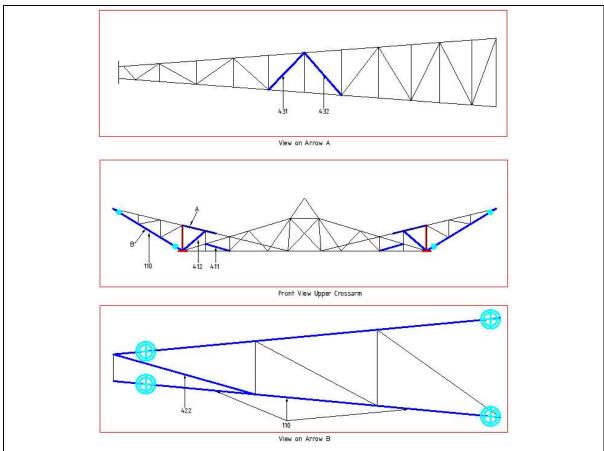


Figure 4 Members to be replaced in the upper crossarm of tower 1 GT-BD

For member 110, replacement has been chosen as the preferred upgrade instead of doubling. The presence of bracing on both planes makes it difficult to attach a double member. When executing the exchange, the earthwire should be temporarily attached to the opposite end of the crossarm while the bracing on the top plane of the crossarm remains intact. In this way the members can be exchanged one by one.

As per Figure 4, member 110 requires joint strengthening using plates (cyan circles, refer to Appendix E). The joint calculations for member 110 were performed based on 1 existing bolt. It should be noted that the schematic drawing of mast 1 shows 2 bolts but the workshop drawing of the upper crossarm shows 1 bolt. To be conservative, the calculation in Appendix D should remain until field measurements can provide clarity.

Due to the proximity of the OSP to the tower, the attachment point for the upper conductor is to be outwardly extended by 2.24m as measured from the centre line of the tower on the side view. The main beams of the extension will be attached to the existing pairs of parallel beams that connect the current strain insulator. Refer to Appendix E for more details.

To facilitate the extension of the upper conductor attachment point, new bracings are required. Figure 5 depicts the position of the conductor attachment extension and the bracings required. A schematic of the connection between the new modification and the existing crossarm is shown in Figure 6. Further details are available in Appendix E

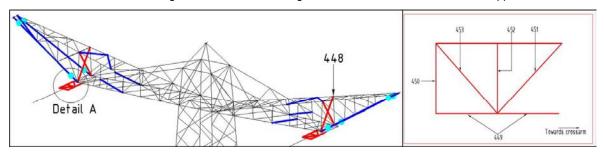


Figure 5 Bracing arrangement for upper conductor attachment point

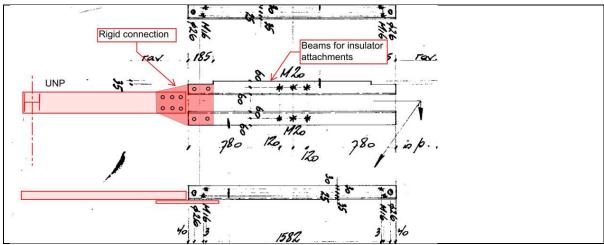


Figure 6 Connection between the modified conductor attachment and the existing crossarm

Table 4 provides an overview of the weight of profiles required for the strengthening of tower 1. The weight of plates is not included in the calculation.

Table 4 Weight of profiles required for modifications on tower 1

Group Label	Profile ini.	Material ini.	Bolts ini.	Profile new	Material new	Bolts new	Mitigation	Number	Length (m)	Weight (kg)
411	50x50x5	S235	1M16-5.6t	60x60x6	S355	1M16-8.8t	Profile exchanged	4	1.77	38.58
412	50x50x5	S235	1M16-5.6t	50x50x5	S355	1M16-8.8t	Profile exchanged	4	2.15	32.59
422	50x50x5	S235	1M16-5.6t	55x55x6	S355	1M16-8.8t	Profile exchanged	2	2.19	21.56
431	50x50x5	S235	1M16-5.6t	55x55x6	S355	1M16-8.8t	Profile exchanged	2	1.90	18.74
432	50x50x5	S235	1M16-5.6t	60x60x6	S355	1M16-8.8t	Profile exchanged	2	1.74	18.96
448				50x50x5	S355	1M16-8.8t	Profile added	4	2.24	33.96
449				UNP160	S355	2M20-8.8t	Profile added	2	3.00	113.23
450				HEB160	S355	2M20-8.8t	Profile added	2	0.62	53.06
451				50x50x5	S355	1M16-8.8t	Profile added	2	0.99	7.53
452				50x50x5	S355	1M16-8.8t	Profile added	2	0.62	4.70
453				50x50x5	S355	1M16-8.8t	Profile added	2	1.00	7.55
110-1	55x55x6	S235	1M16-5.6t	70x70x7	S355	1M16-8.8t	Profile exchanged	4	1.84	54.58
110-2	55x55x6	S235		70x70x7	S355		Profile exchanged	4	1.82	53.99
110-3	55x55x6	S235	1M16-5.6t	70x70x7	S355	1M16-8.8t	Profile exchanged	4	2.12	62.89
										521.93

3.2 RSB-RSD Tower 11

3.2.1 Tower outline

The tower outline based on the received asset data is included in Figure 7. The asset data did not include a tower outline drawing so Figure 7 is based on the dimensions in the individual section drawings.

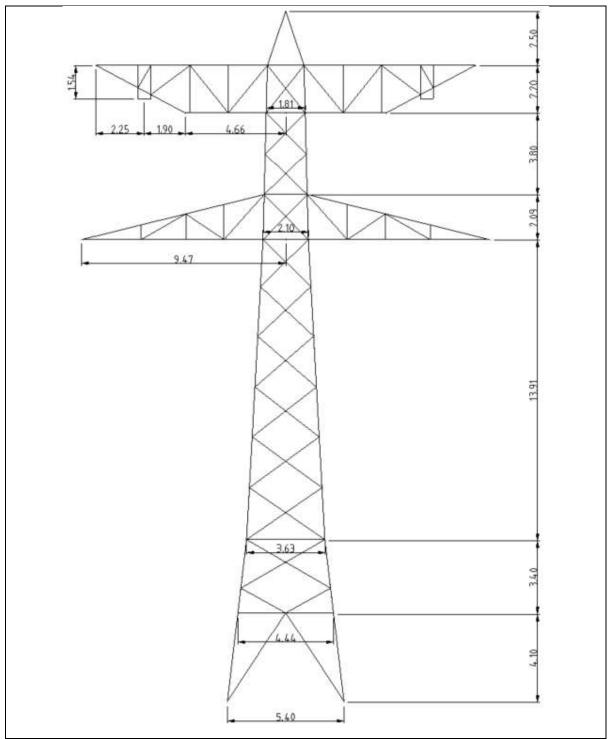


Figure 7 Tower outline for tower 11 RSB-RSD

3.2.2 Tower details

Table 5 summarises the wind and weight span parameters for tower 11 RSB-RSD.

Table 5 Tower details for tower 11 RSB-RSD

Tower number	r lower type (°)		Back span (m) (line side)	Ahead span (m) (OSP side)		
11	H150°	152	229.1	Varies per phase between 1 and 5m		

3.2.3 Tower analysis

The results of the analysis for tower 11 RSB-RSD with the loads calculated according to "afkeurniveau" are depicted in Figure 8 below. It should be noted that the results obtained during the BO analysis were more conservative since the BO calculations only considered the verbouw level.

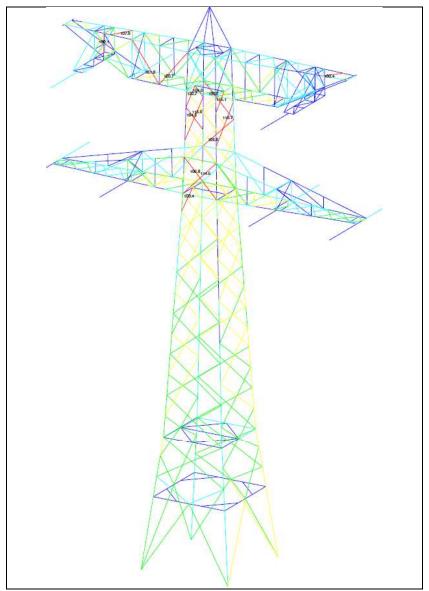


Figure 8 PLS-TOWER results for tower 11 RSB-RSD

The results of the analysis of the angle profiles, redundant members and main leg column anchors have been included in Table 6.

Table 6 Summary of performed checks for tower 11

Check of	Evaluation	Referentie
Profiles	NOK	Figure 3
Redundants	OK	Appendix C
Shear blocks	OK	Appendix D

3.2.4 Modifications

This section proposes tower reinforcements to ensure the tower fulfils the "afkeurniveau" loads. The proposal contains the following measures:

- Replacement of diagonals in the upper crossarm
- Strengthening of joints in the upper crossarm using plates
- Replacement of crossing diagonals on the front and side faces in the upper section of the mast body between the two crossarms
- Addition of a frame to outwardly extend the attachment point of the insulator in the upper crossarm (designed to withstand verbouw level).

3.2.5 Strengthening

As per the group summary outputs in Appendix B, the bracing members indicated in blue in Figure 9 and Figure 10 are to be replaced.

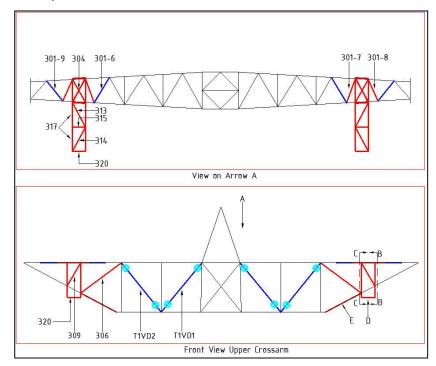


Figure 9 Members to be replaced in the upper crossarm of tower 11 RSB-RSD

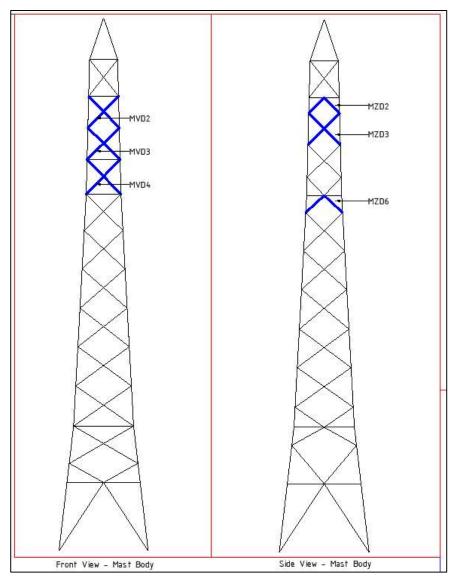


Figure 10 Crossing diagonals to be replaced in the upper section of the mast body

Internal bracings are required to secure the extension frame on the upper conductor attachment point. The bracings shown in Figure 11 should be installed at the locations of sections B-B and C-C from Figure 9.

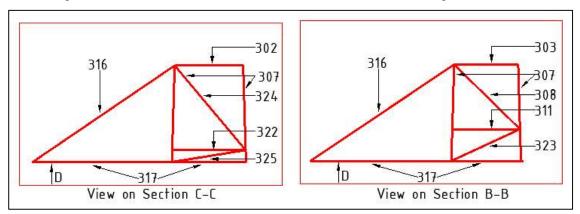


Figure 11 Internal bracing arrangements for the extension frame on the upper crossarm

Refer to Appendix E for further details on the new bracings which are to be installed.

Table 7 provides an overview of the weight of profiles required for the strengthening of tower 11. The weight of plates is not included in the calculation.

Table 7 Weight of profiles required for modifications on tower 11

Group Label	Profile ini.	Material ini.	Bolts ini.	Profile new	Material new	Bolts new	Mitigation	Number	Length (m)	Weight (kg)
302				50x50x5	S355	1M16-8.8t	Profile added	2	1.10	8.30
303				50x50x5	S355	1M16-8.8t	Profile added	2	1.03	7.81
304				50x50x5	S355	1M16-8.8t	Profile added	4	1.22	18.50
305				50x50x5	S355	1M16-8.8t	Profile added	4	2.22	33.66
306				70x70x7	S355	1M16-8.8t	Profile exchanged	4	2.27	67.22
307				60x60x6	S355	1M16-8.8t	Profile added	8	1.54	67.31
308				50x50x5	S355	1M16-8.8t	Profile added	2	1.48	11.22
309				50x50x5	S355	1M16-8.8t	Profile added	4	1.20	18.12
311				50x50x5	S355	1M16-8.8t	Profile added	2	1.09	8.26
312				50x50x5	S355	1M16-8.8t	Profile added	2	1.30	9.85
313				50x50x5	S355	1M16-8.8t	Profile added	2	1.29	9.78
314				50x50x5	S355	1M16-8.8t	Profile added	2	1.27	9.60
315				50x50x5	S355	1M16-8.8t	Profile added	2	0.60	4.55
316				80x80x8	S355	1M20-8.8t	Profile added	4	2.78	107.71
317				80x80x8	S355	1M16-8.8t	Profile added	2	6.79	131.81
320				HEB160	S355	2M20-8.8t	Profile added	2	0.60	51.35
321				50x50x5	S355	1M16-8.8t	Profile added	4	0.60	9.10
322				50x50x5	S355	1M16-8.8t	Profile added	2	1.18	8.91
323				50x50x5	S355	1M16-8.8t	Profile added	2	1.22	9.25
324				60x60x6	S355	1M16-8.8t	Profile added	2	1.77	19.25
325				50x50x5	S355	1M16-8.8t	Profile added	2	1.20	9.06
301-6	55x55x5	S235	1M16-5.6t	55x55x6	S355	1M16-8.8t	Profile exchanged	2	1.38	13.55
301-7				50x50x5	S355	1M16-8.8t	Profile added	2	1.19	9.02
301-8				50x50x5	S355	1M16-8.8t	Profile added	2	1.10	8.32
301-9	55x55x5	S235	1M16-5.6t	60x60x6	S355	1M16-8.8t	Profile exchanged	2	1.20	13.02
mvd2	65x65x6	S235	2M20-5.6t	70x70x7	S355	2M20-8.8t	Profile exchanged	4	2.66	78.85
mvd3	65x65x6	S235	2M20-5.6t	70x70x7	S355	2M20-8.8t	Profile exchanged	4	2.73	80.84
mvd4	70x70x7	S235	2M20-5.6t	70x70x7	S355	2M20-8.8t	Profile exchanged	4	2.93	86.89
mzd2	65x65x6	S235	2M20-5.6t	70x70x7	S355	2M20-8.8t	Profile exchanged	4	1.33	39.45
mzd3	65x65x6	S235	2M20-5.6t	70x70x7	S355	2M20-8.8t	Profile exchanged	4	2.69	79.83
mzd6	90x90x8	S235	3M22-5.6t	90x90x9	S355	3M22-8.8t	Profile exchanged	4	1.51	73.24
t1vd1	70x70x7	S235	1M16-5.6t	8x88x88	S355	1M16-8.8t	Profile exchanged	2	2.85	55.29
t1vd2	70x70x7	S235	1M16-5.6t	80x80x8	S355	1M16-8.8t	Profile exchanged	2	2.83	54.91
										1213.82

3.3 RSD-WDT Tower 19a

3.3.1 Tower outline

The tower outline from the received asset data is included in Figure 12.

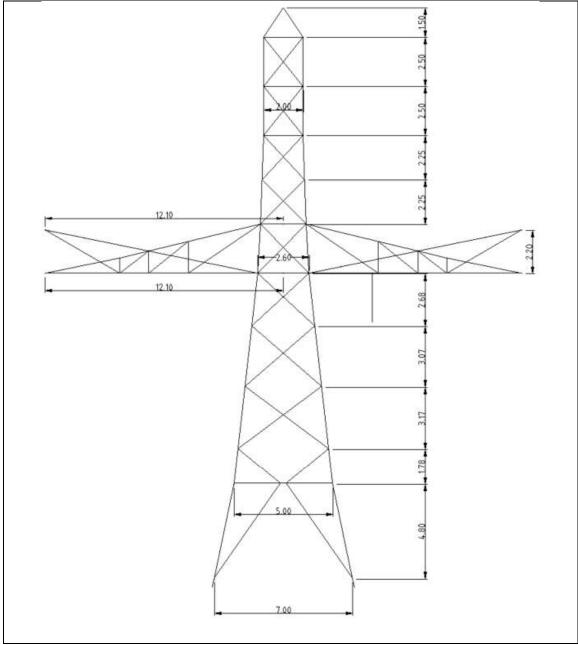


Figure 12 Tower outline for tower 19a RSD-WDT

The structure was modelled with S355 steel quality. This assumption was used after consulting with TenneT and the basis for the assumption is that the tower was constructed during/ after 2010. A workshop drawing of one of the tower components was also provided by TenneT which indicated that the steel material was S355.

Mast 19a currently exists as a "dual-mast" tower with a bridge connecting the two sides. The bridge and the mast which is furthest from the portaal at Borchwerf will be removed resulting in a singular tower as shown in Figure 12. For the purposes of the structural calculations, the bridge and adjacent mast were not considered.

3.3.2 Tower details

Table 8 summarises the wind and weight span parameters for tower 19a RSD-WDT.

Table 8 Tower details for tower 19a RSD-WDT

Tower number	Tower type	Line Angle (°)	Back span (m) (line side)	Ahead span (m) (OSP side)			
19a	Lijnportaal	143	110	Varies per phase between 1 and 2m			

3.3.3 Tower analysis

The results of the analysis for tower 19a with the loads calculated according to "afkeurniveau" are depicted in Figure 13 below.

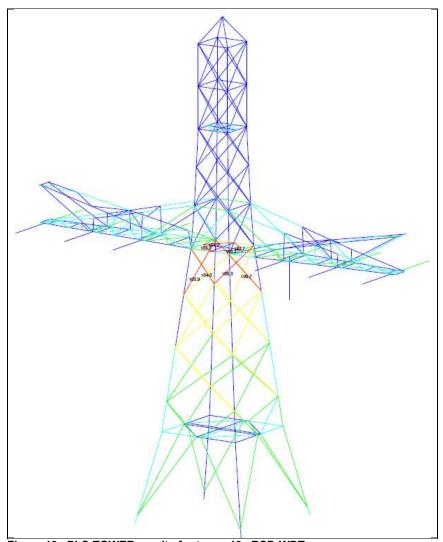


Figure 13 PLS-TOWER results for tower 19a RSD-WDT

The results of the analysis of the angle profiles, redundant members and main leg column anchors have been included in Table 9.

Table 9 Summary of performed checks for tower 19a

Check of	Evaluation	Referentie
Profiles	NOK	Figure 3
Redundants	OK	Appendix C
Shear blocks	OK	Appendix D

3.3.4 Modifications

This section proposes tower reinforcements to ensure the towers fulfill the "afkeurniveau" loads. The proposal contains the following measures:

- Replacement of crossing diagonals in the tower body beneath the crossarm
- Strengthening of crossing diagonal joints using plates
- Replacement of diagonals in the body diaphragm of the crossarm

Provision will have to be made for a dropper attachment point at the crossarm. No new extension frames are required for this structure as for the towers 1, 11 and 97.

3.3.5 Strengthening

As per the group summary outputs in Appendix B, the bracing members indicated in blue in Figure 14 are to be replaced.

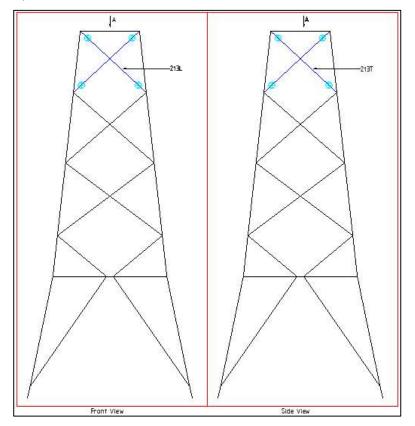


Figure 14 Crossing diagonals to be replaced in the body of mast 19a

At location where the crossarm meets the tower body, the diagonal bracing in the diaphragm is to be replaced as shown in Figure 15.

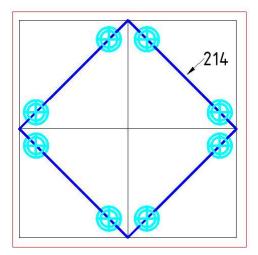


Figure 15 Diagonal bracing in the diaphragm to be replaced

Table 10 provides an overview of the weight of profiles required for the strengthening of tower 19a. The weight of plates is not included in the calculation.

Table 10 Weight of profiles required for modifications on tower 19a

Group Label	Profile ini.	Material ini.	Bolts ini.	Profile new	Material new	Bolts new	Mitigation	Number	Length (m)	Weight (kg)
213L	100x100x10	S355	2M24-8.8t	100x100x12	S355	2M24-8.8t	Profile exchanged	4	3.96	283.40
213T	100x100x10	S355	2M24-8.8t	100x100x12	S355	2M24-8.8t	Profile exchanged	4	3.96	283.40
214	70x70x7	S355	1M20-8.8t	100x100x12	S355	1M20-8.8t	Profile exchanged	4	1.84	131.64
										698.45

3.4 RSD-MDK Tower 97

3.4.1 Tower outline

The tower outline based on the received asset data is included in Figure 16. The asset data did not include a tower outline drawing so Figure 16 is based on the dimensions in the individual section drawings.

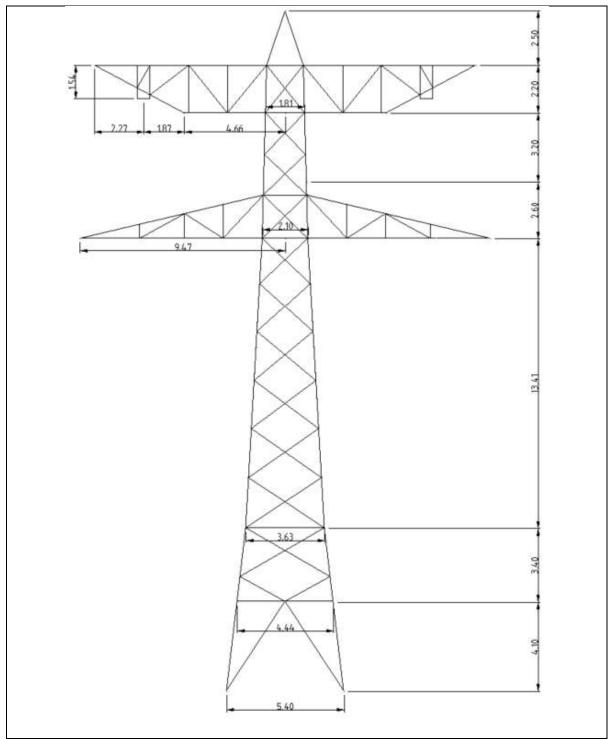


Figure 16 Tower outline for tower 97 RSD-MDK

3.4.2 Tower details

Table 11 summarises the wind and weight span parameters for tower 97 RSD-MDK.

Table 11 Tower details for tower 97 RSD-MDK

Tower number	umber Tower type		Back span (m) (line side)	Ahead span (m) (OSP side)			
97	W150°	169	323	Varies per phase between 1 and 5m			

3.4.3 Tower analysis

The results of the analysis for tower 97 RSD-MDK with the loads calculated according to "afkeurniveau" are depicted in Figure 17 below.

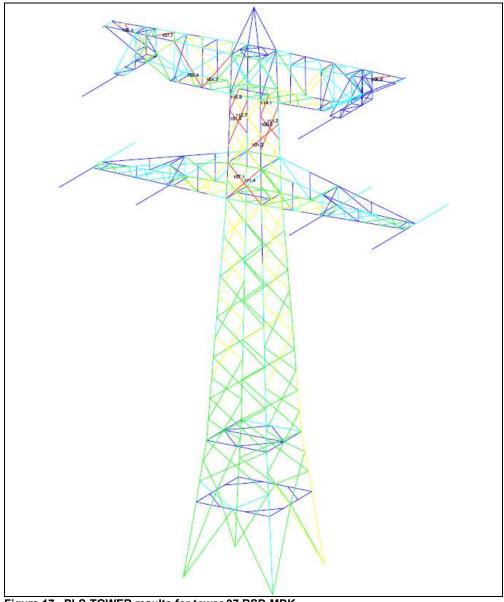


Figure 17 PLS-TOWER results for tower 97 RSD-MDK

The results of the analysis of the angle profiles, redundant members and main leg column anchors have been included in Table 12.

Table 12 Summary of performed checks for tower 97

Check of	Evaluation	Referentie
Profiles	NOK	Figure 3
Redundants	OK	Appendix C
Shear blocks	OK	Appendix D

3.4.4 Modifications

This section proposes tower reinforcements to ensure the tower fulfils the "afkeurniveau" loads. The proposal contains the following measures:

- Replacement of diagonals in the upper crossarm
- Strengthening of joints in the upper crossarm using plates
- Replacement of crossing diagonals on the front and side faces in the upper section of the mast body between the two crossarms
- Addition of a frame to outwardly extend the attachment point of the insulator in the upper crossarm (designed to withstand verbouw level).

3.4.5 Strengthening

As per the group summary outputs in Appendix B, the bracing members indicated in Figure 18 and Figure 19 are to be replaced.

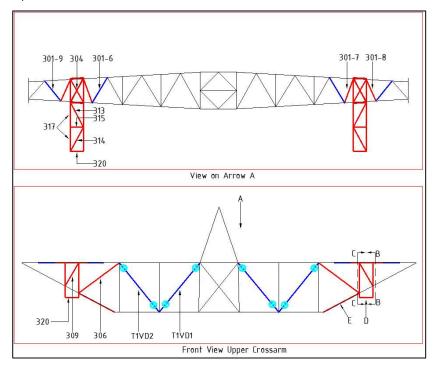


Figure 18 Members to be replaced in the upper crossarm of tower 97 RSD-MDK

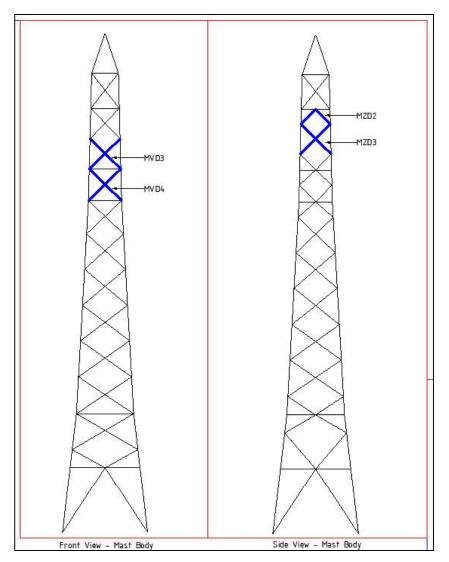


Figure 19 Crossing diagonals to be replaced in the upper section of the mast body

Internal bracings are required to secure the extension frame on the upper conductor attachment point. The bracings shown in Figure 20 should be installed at the locations of sections B-B and C-C from Figure 18.

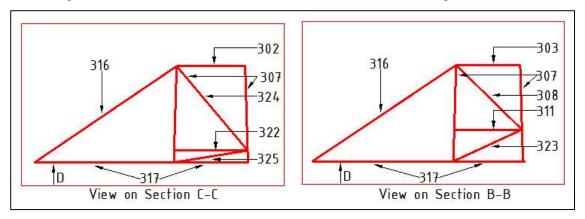


Figure 20 Internal bracing arrangements for the extension frame on the upper crossarm

Refer to Appendix E for further details on the new bracings which are to be installed.

Table 13 provides an overview of the weight of profiles required for the strengthening of tower 97. The weight of plates is not included in the calculation.

Table 13 Weight of profiles required for modifications on tower 97

Table 13	Weight		equileu io	i illoullicatio		VCI 31				
Group Label	Profile ini.	Material ini.	Bolts ini.	Profile new	Material new	Bolts new	Mitigation	Number	Length (m)	Weight (kg)
302				50x50x5	S355	1M16-8.8t	Profile added	2	1.10	8.30
303				50x50x5	S355	1M16-8.8t	Profile added	2	1.03	7.81
304				50x50x5	S355	1M16-8.8t	Profile added	4	1.22	18.50
305				50x50x5	S355	1M16-8.8t	Profile added	4	2.22	33.66
306				70x70x7	S355	1M16-8.8t	Profile added	4	2.27	67.22
307				60x60x6	S355	1M16-8.8t	Profile added	8	1.54	67.31
308				50x50x5	S355	1M16-8.8t	Profile added	2	1.48	11.22
309				50x50x5	S355	1M16-8.8t	Profile added	4	1.20	18.12
311				50x50x5	S355	1M16-8.8t	Profile added	2	1.09	8.26
312				50x50x5	S355	1M16-8.8t	Profile added	2	1.30	9.85
313				50x50x5	S355	1M16-8.8t	Profile added	2	1.29	9.78
314				50x50x5	S355	1M16-8.8t	Profile added	2	1.27	9.60
315				50x50x5	S355	1M16-8.8t	Profile added	2	0.60	4.55
316				80x80x8	S355	1M20-8.8t	Profile added	4	2.78	107.71
317				80x80x8	S355	1M16-8.8t	Profile added	2	6.79	131.81
320				HEB160	S355	2M20-8.8t	Profile added	2	0.60	51.35
321				50x50x5	S355	1M16-8.8t	Profile added	4	0.60	9.10
322				50x50x5	S355	1M16-8.8t	Profile added	2	1.18	8.91
323				50x50x5	S355	1M16-8.8t	Profile added	2	1.22	9.25
324				60x60x6	S355	1M16-8.8t	Profile added	2	1.77	19.25
325				50x50x5	S355	1M16-8.8t	Profile added	2	1.20	9.06
301-6	55x55x5	S235	1M16-5.6t	55x55x6	S355	1M16-8.8t	Profile exchanged	2	1.38	13.55
301-7				50x50x5	S355	1M16-8.8t	Profile added	2	1.19	9.02
301-8				50x50x5	S355	1M16-8.8t	Profile added	2	1.10	8.32
301-9	55x55x5	S235	1M16-5.6t	55x55x6	S355	1M16-8.8t	Profile exchanged	2	1.20	11.76
mvd3	65x65x6	S235	2M20-5.6t	70x70x7	S355	2M20-8.8t	Profile exchanged	4	2.73	80.84
mvd4	70x70x7	S235	2M20-5.6t	70x70x7	S355	2M20-8.8t	Profile exchanged	4	2.93	86.89
mzd2	65x65x6	S235	2M20-5.6t	70x70x7	S355	2M20-8.8t	Profile exchanged	4	1.33	39.45
mzd3	65x65x6	S235	2M20-5.6t	70x70x7	S355	2M20-8.8t	Profile exchanged	4	2.69	79.83
t1vd1	70x70x7	S235	1M16-5.6t	80x80x8	S355	1M16-8.8t	Profile exchanged	2	2.85	55.29
t1vd2	70x70x7	S235	1M16-5.6t	80x80x8	S355	1M16-8.8t	Profile exchanged	2	2.83	54.91
										1060.47

4 REFERENCES

- [1] 002.678.00 0678980 20-0423 D2.2 Ondersteuning Basisontwerp 150 kV Opstijgpunten.
- [2] 002.678.00 0935199 21-0981 Verificatie en validatie ontwerpeisen permanente OSP's.

APPENDIX A

Conductor loads

Number of loops	Number of Different Scenarios Considered	12				8	hort Cir	Short Circuit Force Calculations	e Calcu	ations				
			10	Mast 1 GT-BD 12	11	Mast 10	Mast 11 RSD-WDT150	11	Mast 10	Mast 19a RSD-RSB150	11	10 Ma	Mast 97 MDK-RSD150	111
	Name of the Span / Location / Scenario													
CT_min CT_max CT_10	Conductor Bundle Tersion of dropper at specified max, temp (N) Conductor Bundle Tension of dropper at specified max, temp (N) Conductor Bundle Tension of dropper at 10°C (N)		0009	0009	0009	3000	3000	3000	3000	3000	3000	3000	3000	3000
SHORT CIRCUIT CURRENT PARAMETERS I'K Short Circuit TK1 Duration of It	NT PARAMETERS Since Circuit Current Duration of the current flow (5)		30000	30000	30000	30000	30000	30000	30000	30000	30000	30000	30000	30000
SYSTEM PARAMETERS. A freq k r - tau	Factor for calculation of the first current dow System Frequency Factor for calculation of peak short-circuit current Time Constant of the network		1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044
CONDUCTOR PARAMETERS Can Mat Can Mat cth (m^4/(A^22*s) mis mis E E	Conductor Definition Conductor Definition Conductor Definition Conductor Definition Conductor Definition Conductor Organization Conductor Con	A^2*s))	ACSR 224/20E ACSR 1,70E-19 0,0033 0,7745158 2,44E-04 7,44E+10 5,00E+07	ACSR 224/20E A CSR 224/20E A CSR 1.70E-19 0.0203 0.7745158 2.44E-10 7.44E+10 5.00E+07	ACSR 224/20E A ACSR ACSR ACSR O,0203 O,0203 O,744158 Z,44E-10 A,74E+10 B,74E+10 B,74E+10 B,74E+10 B,00E+07 B,00E+07	ACSR 224/20E / ACSR 1/ACSR 1/ACSR 0,0203 0,0203 0,745158 2,44E+10 5,00E+07	ACSR 224/20E , ACSR ACSR ACSR ACSR ACSR ACSR O,7745158 O,7745158 ACS	ACSR 224/20E ACSR 1/70E-19 0,7243158 0,7745158 2,44E-10 5,00E+07	Bobolink acsr ACSR 1,70E-19 0,036.2 2,457696.28 7,76E-04 7,79E+10 5,00E+07	Bobolink acsr ACSR 1,70E-19 0,0362 2,425569228 7,76E-04 7,79E+10 5,00E+07	Bobolink acsr 4.058 1.70E-19 0.0362 2.45569628 7.75E-04 7.79E+10 5.00E+07	ACSR 224/20E ACSR 1,70E-19 0,0203 0,7745158 2,44E-10 7,74E+10 5,00E+07	ACSR 224/20E ACSR 1,70E-19 0,0203 0,774158 2,44E-04 7,44E+10 5,00E+07	ACSR 224/20E ACSR 1,70E-19 0,0203 0,745158 2,44E-04 7,44E+10 5,00E+07
PRA AND BUNDLE GEOMETRY 1	Abreed of Subconductors in Bundle Abreed of Subconductors in Bundle Centre line Distance between phase conductors Centra line Distance between Subconductors Centra line Distance between Subconductor in Span Centra line Distance and Centra line Centra lin		4 4 65 4 65 65 65 65 65 65 65 65 65 65 65 65 65	4 4 65 2 4 65 2 4 65 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 6 5 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 9 1 1 9 1	2 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5	2 4 5 665 2	2 4.5 4.5 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4	2 4,65 0,4 15,7 4,65 6,4 4,65 6,4 4,65 6,4	2 4,65 4,65 1,57 1,57 2,70 2,70 1,57 1,57 1,57 1,57 1,57 1,57 1,57 1,57	2 2 4 65 6 4 65 6 4 65 6 4 65 6 6 4 65 6 6 6 4 6 6 6 6	2 4/75 4/75 0,49 0,49 12.1 21.55 2.159 2.0,940 2.0,940 2.0,940 2.0,940 2.0,940 2.0,940 2.0,940 2.0,940 2.0,940 2.0,940 2.0,950	2 4/75 2,88 2,88 0,4 4,75 18,9 2,0,881 2,0,881 18,9 18,9 18,9	2 4.75 4.75 0.44 1.55 4.75 2.15 2.15 2.15 2.15 2.15 2.15 2.15 2.1
CALCULATION RESULTS	Check if force should be calculated as a dropper or main conductor. Check validity of chapter 6,3		Cakulate as dropper Valid	Calculate as dropper Invalid	Calculate as dropper Valid	Calculate as dropper Valid	Calculate as dropper Invalid	Calculate as dropper Valid	Calculate as dropper Invalid	Calculate as dropper Invalid	Calculate as dropper Invalid	Calculate as dropper Valid	Cakulate as dropper Invalid	Calculate as dropper Valid
Short Circuit Force using Winimum Temperature	P.E.G. Short Circuit Force of one phase (IV) as main conductor (IV) Fel.G. Short Circuit Force of the phase (IV) as dropper (IV) Fel.G. Proche Force one phase (IV) as main conductor (IV) Fel.G. Proch Force of one phase (IV) as dropper (IV) Fel.G. Proch Force of one phase (IV) as dropper (IV) Do., Meaximum Horizontal Displacement (III) amin, Distance between the midpoints of the two phases - Minimum air dearance (III) (IV)		7078 2319 17010 0	12220 14839 22453 0	9006 4166 17010 0	5263 2322 16293 0	10565 9574 29023 0	7847 3961 16293 0	3413 826 8910 0	3413 826 8910 0	3413 826 8910 0	4846 1838 15568 0,00	9576 7794,4 29594 0,00	7532 3385 15568 0,00
Short Circuit Force using. Maximum. Temperature	P.E.G. Short Circuit Force of one phase (1) as main conductor (1) P.E.G. Short Circuit Force of one phase (1) as dropper (1) P.E.G. Short Force of one phase (1) as far forper (1) P.E.G. Pinch Force of one phase (1) as forper (1) P.E.G. Pinch Force of one phase (1) as forper (1) P.E.G. Pinch Force of one phase (1) as forper (1) P.E.G. Pinch Polymore (1) P		7078 2319 17010 0	12220 14839 22453 0	9006 4166 17010 0	5263 2322 16293 0	10565 9574 29023 0	7847 3961 16293 0	3413 826 8910 0	3413 826 8910 0	3413 826 8910 0	4845,87 1838,34 15568,28 0,00	9575,67 7794,41 29594,10 0,00	7531,67 3384,99 15568,28 0,00
Short Circuit Force Using JOST	P. E.d.; Short Circuit Force of one phase (it) as main conductor (it) R.d.; Short Circuit Force of one phase (it) as dropper (it) R.d.; Short Circuit Force of one phase (it) as dropper (it) Fipl. A. Pinch Force of one phase (it) as main conductor (it) Fipl. A. Pinch Force of one phase (it) as dropper (it) D. Razamum Horizontal Displacement (in) annin, Distance between the midpoints of the two phases - Milmum air dearance (in) (in)		7078 2319 17010 0	12220 14839 22453 0	9006 4166 17010 0	5263 2322 16293 0	10565 9574 29023 0	7847 3961 16293 0	3413 826 8910 0	3413 826 8910 0	3413 826 8910 0	4846 1838 15568 0	9576 7794 29594 0	7532 3365 15568 0
	Short Circuit Force to be applied (N) (79)		17010	22453	17010	16293	29023	16293	8910	8910	8910	15568	29594	15568

Inhoud

- Uitgangspunten
- Mastconstructie
- Tussenresultaten
- Belastingen initiëel
- Belastingen na aanpassing
p. 15

Gegevens

Norm NEN-EN50341-2-15:2019

Initieel

Gevolgklasse CC2 Betrouwbaarheidsniveau Afkeur Referentieperiode 30 jaar

Na aanpassing

Gevolgklasse CC2
Betrouwbaarheidsniveau Verbouw
Referentieperiode 50 jaar

Windgebied III
Windsnelheid 24,5 m/s
Terreincategorie II
Reductie factor Cdir 1,00
IJsgebied B

MasttypeHoekmastMasthoogte38,5 mMax. veldlengte263 mLijnhoek180°Trekparameter1100 m

Wind span 134 m EDS Weight span 486 m Min. Weight span 112 m Max. Weight span 3426 m

0.0	2021-07-28			
ISSUE	DATE	REVISION	CHK'D	APP'D

Client:

Title:

Berekening masttype H1

JOB No.	-	DATE	-
DRAWN	-	CHKD	-
DESIGN	-	APPD	-

Document name:

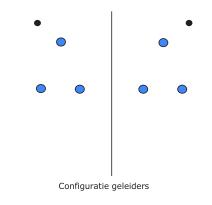
ZWO380 D2.2 OSP Mast 1_H1_1_Report.pdf

Project number:

Project client number:

0.0

Project: Tower: Number:


Auteur: TBR Geleiderbelastingen Versie: v11.9

Algemeen

Angelieeri Benaming Masttype Aantal circuits Configuratie Aantal bliksemgeleiders Н1 Hoekmast 2-circuit-donau

Uitgangspunten

NEN-EN50341-2-15:2019 Norm Gevolgklasse initieel Betrouwbaarheidsniveau initieel Afkeur CC2-0 30 jaar CC2 Verbouw 50 jaar III Referentieperiode initieel Gevolgklasse na aanpassing Betrouwbaarheidsniveau na aanpassing Referentieperiode na aanpassing Windgebied Windsnelheid (m/s) 24,5 m/s II Terreincategorie Reductiefactor c_{dir} IJsgebied fasegeleider IJsgebied bliksemgeleider 1,00 В

Geleiders Back

Omschrijving	Spanning	Geleider Back	Bundel Ba	IJsgebied	Toeslag gewicht	Toeslag diameter	Intrekwaarden P _{back}
Circuit 1	150 kV	ACSR 20/224	4	В	2 %	2 %	1100
Circuit 2	150 kV	ACSR 20/224	4	В	2 %	2 %	1100
Bliksemdraad 1		ACSR 30/52 PETREL	1	Α	2 %	2 %	1600
Bliksemdraad 2		ACSR 30/52 PETREL	1	Α	2 %	2 %	1600

Geleiders Ahead							
Omschrijving	Spanning	Geleider Ahead	Bundel Ah	IJsgebied	Toeslag gewicht	Toeslag diameter	Intrekwaarden P _{ahead}
Circuit 1	150 kV	ACSR 20/224	4	В	2 %	2 %	50
Circuit 2	150 kV	ACSR 20/224	4	В	2 %	2 %	50
Bliksemdraad 1		Niet aanwezig	1	Α	2 %	2 %	1600
Bliksemdraad 2		Niet aanwezig	1	Α	2 %	2 %	1600

Isolatoren	(1)			
Omschrijving	Ophanging	Gewicht	Lengte	Windopp.
		[kN]	[m]	[m ²]
Circuit 1	Afspanketting	2,50	4,50	1,00
Circuit 2	Afspanketting	2,50	4,50	1,00
Bliksemdraad 1	Afspanketting	0,10	0,20	0,10
Bliksemdraad 2	Afspanketting	0,10	0,20	0,10

Eigenschappen gelden voor geheel van de isolatorset

Ophanghoogte en positie in mast

					Positie in mast	
Circuits	Aandui	ding Nummer	Ophanghoogte	Aangrijppunt	Horizontale afstand	
Circuit 1	10	150ct1f1	24,0 m	24,0 m	11,6 m	
Circuit 1	11	150ct1f2	24,0 m	24,0 m	5,6 m	
Circuit 1	12	150ct1f3	35,5 m	35,5 m	8,6 m	
Circuit 2	20	150ct2f1	24,0 m	24,0 m	-5,6 m	
Circuit 2	21	150ct2f2	24,0 m	24,0 m	-11,6 m	
Circuit 2	22	150ct2f3	35,5 m	35,5 m	-8,6 m	
Bliksemdraad 1	1	bl1	38,5 m	38,5 m	13,5 m	
Bliksemdraad 2	3	bl2	38,5 m	38,5 m	-13,5 m	

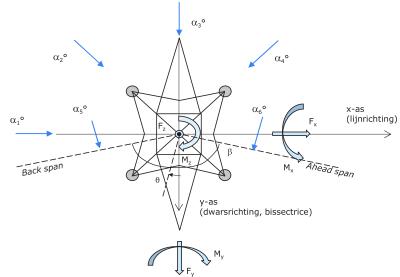
28-7-2021 2 van 21

Project: Tower: Number:

Hoogteaanpassing naastgelegen masten (aanpassing wind- en weight span)

	Back	Ahead	
Verhoging voor windbelasting	0,0 m	0,0 m	(positief: omhoog)
Verlaging voor verticale belasting	0,0 m	0,0 m	(negatief: omlaag, grotere weight span)
Verlaging: Niet in 0,9EG-combinaties			

Hoogteafwijking mastbeeld naastgelegen masten en richtingsverandering t.o.v. Lijnrichting


i i oogteai wijkii ig i	iiastbeeiu i	naastyelegen n	nasten en m	ciiciiigsveraniue	ining tioivi Eijiniitii	ung	
			Hoogte	verschil	Richtingsver	andering	
Circuits	Aandui	ding Nummer	∆h_back	∆h_ahead	∆y_back	∆y_ahead	
Circuit 1	10	150ct1f1	0,0	-23,7 m	0,0	-2,4 m	
Circuit 1	11	150ct1f2	0,0	-23,7 m	0,0	-1,4 m	
Circuit 1	12	150ct1f3	0,0	-35,2 m	0,0	-1,9 m	
Circuit 2	20	150ct2f1	0,0	-23,7 m	0,0	1,4 m	
Circuit 2	21	150ct2f2	0,0	-23,7 m	0,0	2,5 m	
Circuit 2	22	150ct2f3	0,0	-35,2 m	0,0	1,9 m	
Bliksemdraad 1	1	bl1	1,2	0,0 m	0,0	0,0 m	
Bliksemdraad 2	3	bl2	1,2	0,0 m	0,0	0,0 m	
	1 3			.,	- / -	-,-	

Lijn- en mastgegevens

zijii dii iiidatgagaraiia				
		Back	Ahead	
		263,0	5,0 m	
Ruling span $\sqrt{(\Sigma L^3/\Sigma L)}$		303,0	5,0 m	
Lijnhoek	β	180 °		
Rotatie mast t.o.v. bissectrice	θ	-3 °		
Vaklengte		1798	5 m	
Hoogte onderkant mast t.o.v. m	aaiveld	0,5 m		
Beschouwde windrichtingen	α_1	0 °		
Windrichtingen volgens:	α_2	135 °		
Geleiderbelastingen	α_3	45 °		
	α_4	93 °		
	α_5	75 °		
	α_6	105 °		

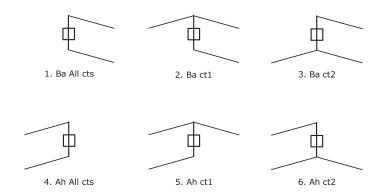
Windrichtingen gelden t.o.v. hoofdrichting mastconstructie, niet t.o.v. bissectrice.

Windrichtingen en positieve richtingen belastingen

Beschouwd aantal windrichtinge	n
1a	6
3	6
4	1
6	1
Overig	1

28-7-2021 3 van 21

Project: Tower: Number:


Geleiderafval

		SPLS	SPLS - torsie		kelzijdige trek	5a - gele	iderbreuk
		Aanw.	Afw.	Aanw.	Afw.	Aanw.	Afw.
Circuit 1	150ct1f1	1	0	1	0	1	0
Circuit 1	150ct1f2	1	0	1	0	1	0
Circuit 1	150ct1f3	1	0	1	0	1	0
Circuit 2	150ct2f1	0	1	1	0	1	0
Circuit 2	150ct2f2	0	1	1	0	1	0
Circuit 2	150ct2f3	0	1	1	0	1	0
Bliksemdraad 1	bl1	1	0	1	0	1	0
Bliksemdraad 2	bl2	0	1	1	0	1	0

Belastingsituaties SPLS

Beschouwde situaties SPLS: 1 t/m 6, alle mogelijke situaties.

Principe belastingssituaties:

Belastingsituaties 5a. Geleiderbreuk

Beschouwde situaties geleiderbreuk 5a: 1 en 2, alle mogelijke situaties.

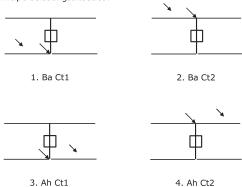
Principe belastingssituaties:

28-7-2021 4 van 21

Project: ZWO380 D2.2 OSP Mast 1

Tower: H1 Number: 1

Belastingsituaties 6. Bouw- en onderhoud

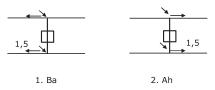

Onder 6a wordt de belasting door aanwezigheid lijnwagen of lijnfiets in combinatie met puntlast op traverse in rekening gebracht. Combinatie 6b bevat geen belastingen in geleider of op traverse. Deze combinatie is toegevoegd om te kunnen combineren met separate controle bordessen etc. De situaties worden in ULS en in iedere SPLS-situatie (in geval van hoekmast) toegepast.

	Fase	Bliksem
Lijnwagen	3,0 kN	2,0 kN
Puntlast op traverse	1,0 kN	1,0 kN

Beschouwde situaties bouw- en onderhoud 6a: 1 en 2, uitgangspunt is symmetrie tussen back / ahead.

Aanwezigheid lijnwagen: Circuit, belasting tegelijk aanwezig in alle geleiders per circuit.

Principe belastingssituaties:


Belastingsituaties 8. Lijndansen als statische belasting

Geleider			
Steunmast fase	0,866 W	1,5 W	
Steunmast bliksem	1,5 EDS	1,5 W	
Hoekmast fase en bliksem	1,5 EDS	1,5 W	

Beschouwde situaties lijndansen 8: Geen (bestaande constructie)

Belasting tegelijk aanwezig in alle geleiders van het circuit.

Principe belastingssituaties:

Belastingcombinatie 8. Lijndansen als dynamische belasting

Alleen van toepassing op hoek- en eindmasten

Belasting bestaat uit EDS-trekbelasting in één van de geleiders aan één zijde van de mast Door gebruiker via het belastingsspectrum van tabel 4.11/NL.1 om te zetten naar spanningspectrum

28-7-2021 5 van 21

Project: Tower: Н1 Number:

Mastconstructie

Eigenschappen

Masttype Hoekmast H1 0,5 m 38,5 m 270,0 kN Mastbenaming Voetplaat t.o.v. maaiveld Masthoogte t.o.v. voetplaat Gewicht mast

x-ri. 8,50 0,160 y-ri. 8,50 m 0,160 -Breedte en helling mast bij fundatie Pootsprei Helling van de randstijl Factor spatkracht 1,3 -1,3

Berekening windbelasting

Dynamische invloed G_T 1,00 (Masthoogte < 60 m)

(A1C1sin^2(phi)+A2C2cos^2(phi)) (A1C1sin^2(phi)+A2C2cos^2(phi)) Windbelasting overhoeks op mastlichaam evenredig met: Windbelasting overhoeks op traverse evenredig met:

(1+0,2sin^2(2phi)) (1+0,2sin^2(2phi)) 0,4 Vergroting wind overhoeks mastlichaam Vergroting wind overhoeks traverse

Factor wind evenwijdig t.o.v. haaks op traverse

Eigenschappen mastsecties langsrichting (vooraanzicht, yz-vlak)

		,	, ,						
Omschrijving	h	b_1	b_2	Δh	Δ_{x}	A_0	A_1	$\chi = A_1/A_0$	C_t
	[m]	[m]	[m]	[m]	[m]	[m ²]	[m ²]	[-]	
Broekstuk	5,00	8,50	6,90	5,00	0,160	38,50			3,96
Eerste tussenstuk	11,60	6,90	4,68	6,60	0,168	38,21			3,96
Tweede tussenstuk	18,80	4,68	3,96	7,20	0,050	31,10			3,96
Bovenstuk 1	27,45	3,96	3,07	8,65	0,051	30,40			3,96
Bovenstuk 2	37,05	3,07	2,00	9,60	0,056	24,34	-0,50	-0,02	4,08
Topstuk	38,50	2,00		1,45		1,45	0,50	0,34	2,38
Ondertraverse	23,25	9,85		2,30		11,33			3,96
Boventraverse	34,75	12,35		2,30		14,20			3,96

Eigenschappen mastsecties dwarsrichting (zijaanzicht, xz-vlak)												
Omschrijving	h	b_1	b ₂	∆h	Δ_{X}	A_0	A_1	$\chi = A_1/A_0$	C_{t}			
	[m]	[m]	[m]	[m]	[m]	[m ²]	$[m^2]$	[-]				
Broekstuk	5,00	8,50	6,90	5,00	0,160	38,50			3,96			
Eerste tussenstuk	11,60	6,90	4,68	6,60	0,168	38,21			3,96			
Tweede tussenstuk	18,80	4,68	3,96	7,20	0,050	31,10			3,96			
Bovenstuk 1	27,45	3,96	3,07	8,65	0,051	30,40			3,96			
Bovenstuk 2	37,05	3,07	2,00	9,60	0,056	24,34	-0,50	-0,02	4,08			
Topstuk	38,50	2,00		1,45		1,45	0,50	0,34	2,38			
Ondertraverse	23,25	9,85		2,30		11,33			3,96			
Boventraverse	34,75	12,35		2,30		14,20			3,96			

NB: oppervlakte traverse dwarsrichting wordt in berekening gereduceerd.

28-7-2021 6 van 21

Project: ZWO380 D2.2 OSP Mast 1

Project: ZW Tower: H1 Number: 1

Windoppervlak feeders telecominstallaties

Broekstuk Eerste tussenstuk Tweede tussenstuk Bovenstuk 1 Bovenstuk 2

 $\begin{tabular}{ll} \textbf{Invoer antennes} \\ \textbf{Omschrijving} & A \ (m^2) & h \ (m) \\ \end{tabular}$

Omschrijving
Antenne top
Antenne o.t.

Belastingen mastsectie langsrichting (x-richting) per windrichting

Omschrijving	p_{w}	F_{x1}	F_{x2}	F _{x3}	F_{x4}	h_{ef}	M_{y1}	M_{y2}	M_{y3}	M_{y4}
	[kN/m ²]	[kN]	[kN]	[kN]	[kN]	[m]	[kNm]	[kNm]	[kNm]	[kNm]
Broekstuk	0,70	0,0	0,0	0,0	0,0	2,5	0,0	0,0	0,0	0,0
Eerste tussenstuk	0,70	0,0	0,0	0,0	0,0	8,3	0,0	0,0	0,0	0,0
Tweede tussenstuk	0,81	0,0	0,0	0,0	0,0	15,2	0,0	0,0	0,0	0,0
Bovenstuk 1	0,92	0,0	0,0	0,0	0,0	23,1	0,0	0,0	0,0	0,0
Bovenstuk 2	1,01	-2,1	1,7	-1,7	0,1	32,3	-66,4	56,4	-56,4	3,5
Topstuk	1,05	1,3	-1,1	1,1	-0,1	37,8	47,4	-40,2	40,2	-2,5
Ondertraverse	0,93	0,0	0,0	0,0	0,0	24,0	0,0	0,0	0,0	0,0
Boventraverse	1,04	0,0	0,0	0,0	0,0	35,5	0,0	0,0	0,0	0,0
Totaal		-0,8	0,7	-0,7	0,0		-19,0	16,1	-16,1	1,0

 $C_f(m)$

Belastingen mastsectie dwarsrichting (y-richting) per windrichting

Omschrijving	p_w	F_{y1}	F_{y2}	F_{y3}	F _{x4}	h_{ef}	$M_{\times 1}$	M_{x2}	M_{x3}	M_{x4}
	[kN/m ²]	[kN]	[kN]	[kN]	[kN]	[m]	[kNm]	[kNm]	[kNm]	[kNm]
Broekstuk	0,70	0,0	0,0	0,0	0,0	2,5	0,0	0,0	0,0	0,0
Eerste tussenstuk	0,70	0,0	0,0	0,0	0,0	8,3	0,0	0,0	0,0	0,0
Tweede tussenstuk	0,81	0,0	0,0	0,0	0,0	15,2	0,0	0,0	0,0	0,0
Bovenstuk 1	0,92	0,0	0,0	0,0	0,0	23,1	0,0	0,0	0,0	0,0
Bovenstuk 2	1,01	0,0	-1,7	-1,7	-2,1	32,3	0,0	-56,4	-56,4	-66,1
Topstuk	1,05	0,0	1,1	1,1	1,3	37,8	0,0	40,2	40,2	47,5
Ondertraverse	0,93	0,0	0,0	0,0	0,0	24,0	0,0	0,0	0,0	0,0
Boventraverse	1,04	0,0	0,0	0,0	0,0	35,5	0,0	0,0	0,0	0,0

Resulterende belastingen vanuit mastconstructie incl. antenne zonder geleiders niveau fundatie (kar. waarde)

Belasting / windrichting F _x F _y F _z M _x M _y M _z [kN] [kN] [kN] [kNm] [kNm] [kNm] Permanente belasting 0 0 270 0 0 0 Windrichting 0° -1 0 0 0 -19 0 Windrichting 135° 1 -1 0 -16 16 0 Windrichting 45° -1 -1 0 -16 -16 0 Windrichting 23° 0 -1 0 -10 -10 -10 0								
Permanente belasting 0 0 270 0 0 0 Windrichting 0° -1 0 0 -19 0 Windrichting 135° 1 -1 0 -16 16 0 Windrichting 45° -1 -1 0 -16 -16 0	Belasting / windrichting	F _x	F _y	F _z	M _x	M _y	M _z	
Windrichting 0° -1 0 0 -19 0 Windrichting 135° 1 -1 0 -16 16 0 Windrichting 45° -1 -1 0 -16 -16 0		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	
Windrichting 135° 1 -1 0 -16 16 0 Windrichting 45° -1 -1 0 -16 -16 0	Permanente belasting	0	0	270	0	0	0	
Windrichting 45° -1 -1 0 -16 -16 0	Windrichting 0°	-1	0	0	0	-19	0	
	Windrichting 135°	1	-1	0	-16	16	0	
Windrichting 039 0 -1 0 -10 1 0	Windrichting 45°	-1	-1	0	-16	-16	0	
<u>Wild liciting 95</u>	Windrichting 93°	0	-1	0	-19	1	0	

28-7-2021 7 van 21

Project: Tower: Number:

Tussenresultaten geleiderbelastingen

Gel			

Circuit	Geleider	Diameter	Α	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Circuit 2	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Bliksemdraad 1	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05
Bliksemdraad 2	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05

Geleiders ahead

Circuit	Geleider	Diameter	Α	G	Е	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Circuit 2	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Bliksemdraad 1	Niet aanwezig					
Bliksemdraad 2	Niet aanwezig					

Verticale belasting back

Circuit	Bundel	Toeslag	$W_{z,G}$	IJsgebied	Formule	W _{z,ijs}	W _{z,ijs,bundel}
	[-]	[%]	[N/m]			[N/m]	[N/m]
Circuit 1	4	2	31,0	В	4+0,2d	8,1	32,3
Circuit 2	4	2	31,0	В	4+0,2d	8,1	32,3
Bliksemdraad 1	1	2	3,8	Α	15+0,4d	19,7	19,7
Bliksemdraad 2	1	2	3,8	А	15+0,4d	19,7	19,7

Vertical	e belasting	ahead
. C. C.Cai	e belasting	ancaa

verticale belasting alle	au						
Circuit	Bundel	Toeslag	$W_{z,G}$	IJsgebied	Formule	$W_{z,ijs}$	W _{z,ijs,bundel}
	[-]	[%]	[N/m]			[N/m]	[N/m]
Circuit 1	4	2	31,0	В	4+0,2d	8,1	32,3
Circuit 2	4	2	31,0	В	4+0,2d	8,1	32,3
Bliksemdraad 1	1	2		Α	15+0,4d		
Bliksemdraad 2	1	2		A	15+0,4d		

Iso	lato	ren

G _{isolator}	Aantal	$F_{v,iso}$	Lengte			Stuwdruk	Vormfactor	$F_{h,iso}$
[kN]	-	[kN]	[m]	[m ²]	[m]	[kN/m ²]	[-]	[kN]
2,50	1	2,5	4,5	1,0	24,45	0,93	1,2	1,12
2,50	1	2,5	4,5	1,0	24,45	0,93	1,2	1,12
2,50	1	2,5	4,5	1,0	35,95	1,04	1,2	1,25
2,50	1	2,5	4,5	1,0	24,45	0,93	1,2	1,12
2,50	1	2,5	4,5	1,0	24,45	0,93	1,2	1,12
2,50	1	2,5	4,5	1,0	35,95	1,04	1,2	1,25
0,10	1	0,1	0,2	0,1	38,95	1,06	1,2	0,13
0,10	1	0,1	0,2	0,1	38,95	1,06	1,2	0,13
	[kN] 2,50 2,50 2,50 2,50 2,50 2,50 0,10	[kN] - 2,50 1 2,50 1 2,50 1 2,50 1 2,50 1 2,50 1 2,50 1 0,10 1	[kN] - [kN] 2,50 1 2,5 2,50 1 2,5 2,50 1 2,5 2,50 1 2,5 2,50 1 2,5 2,50 1 2,5 2,50 1 2,5 2,50 1 2,5 0,10 1 0,1	[kN] - [kN] [m] 2,50 1 2,5 4,5 2,50 1 2,5 4,5 2,50 1 2,5 4,5 2,50 1 2,5 4,5 2,50 1 2,5 4,5 2,50 1 2,5 4,5 2,50 1 2,5 4,5 0,10 1 0,1 0,2	[kN] - [kN] [m] [m²] 2,50 1 2,5 4,5 1,0 2,50 1 2,5 4,5 1,0 2,50 1 2,5 4,5 1,0 2,50 1 2,5 4,5 1,0 2,50 1 2,5 4,5 1,0 2,50 1 2,5 4,5 1,0 2,50 1 2,5 4,5 1,0 0,10 1 0,1 0,2 0,1	[kN] - [kN] [m] [m²] [m] 2,50 1 2,5 4,5 1,0 24,45 2,50 1 2,5 4,5 1,0 24,45 2,50 1 2,5 4,5 1,0 35,95 2,50 1 2,5 4,5 1,0 24,45 2,50 1 2,5 4,5 1,0 24,45 2,50 1 2,5 4,5 1,0 35,95 0,10 1 0,1 0,2 0,1 38,95	[kN] - [kN] [m] [m²] [m] [kN/m²] 2,50 1 2,5 4,5 1,0 24,45 0,93 2,50 1 2,5 4,5 1,0 24,45 0,93 2,50 1 2,5 4,5 1,0 35,95 1,04 2,50 1 2,5 4,5 1,0 24,45 0,93 2,50 1 2,5 4,5 1,0 24,45 0,93 2,50 1 2,5 4,5 1,0 24,45 0,93 2,50 1 2,5 4,5 1,0 24,45 0,93 2,50 1 2,5 4,5 1,0 24,45 0,93 2,50 1 2,5 4,5 1,0 35,95 1,04 0,10 1 0,1 0,2 0,1 38,95 1,06	[kN] - [kN] [m] [m²] [m] [kN/m²] [-] 2,50 1 2,5 4,5 1,0 24,45 0,93 1,2 2,50 1 2,5 4,5 1,0 24,45 0,93 1,2 2,50 1 2,5 4,5 1,0 35,95 1,04 1,2 2,50 1 2,5 4,5 1,0 24,45 0,93 1,2 2,50 1 2,5 4,5 1,0 24,45 0,93 1,2 2,50 1 2,5 4,5 1,0 24,45 0,93 1,2 2,50 1 2,5 4,5 1,0 24,45 0,93 1,2 2,50 1 2,5 4,5 1,0 24,45 0,93 1,2 2,50 1 2,5 4,5 1,0 35,95 1,04 1,2 0,10 1 0,1 0,2 0,1 38,95 1,0

28-7-2021 8 van 21

Project: ZWO380 D2.2 OSP Mast 1 Tower: H1 Number: 1

Windbelasting back

9 244										
hoogte										
wind	Stuwdruk	G_{c_dwars}	G_{c_trek}	C_c	$d_{toeslag}$	w_y	$W_{y,vak}$	$D_{ijs,toeslag}$	$W_{y,ijs}$	$W_{y,ijs,vak}$
[m]	[kN/m ²]	[-]	[-]	[-]	[mm]	[N/m]	[N/m]	[mm]	[N/m]	[N/m]
19,2	0,87	0,64	0,49	1,20	20,75	54,9	42,7	40,2	106,3	82,8
19,2	0,87	0,64	0,49	1,20	20,75	54,9	42,7	40,2	106,3	82,8
30,7	1,00	0,68	0,53	1,20	20,75	67,1	52,3	40,2	130,1	101,4
19,2	0,87	0,64	0,49	1,20	20,75	54,9	42,7	40,2	106,3	82,8
19,2	0,87	0,64	0,49	1,20	20,75	54,9	42,7	40,2	106,3	82,8
30,7	1,00	0,68	0,53	1,20	20,75	67,1	52,3	40,2	130,1	101,4
35,9	1,04	0,69	0,54	1,20	11,99	10,3	8,1	55,2	47,6	37,1
35,9	1,04	0,69	0,54	1,20	11,99	10,3	8,1	55,2	47,6	37,1
	hoogte wind [m] 19,2 19,2 30,7 19,2 19,2 30,7 35,9	hoogte wind Stuwdruk [m] [kN/m²] 19,2 0,87 19,2 0,87 30,7 1,00 19,2 0,87 19,2 0,87 30,7 1,00 35,9 1,04	hoogte wind Stuwdruk G _{e_dwars} [m] [kN/m²] [-] 19,2 0,87 0,64 19,2 0,87 0,64 30,7 1,00 0,68 19,2 0,87 0,64 19,2 0,87 0,64 19,2 0,87 0,64 30,7 1,00 0,68 35,9 1,04 0,69	hoogte wind Stuwdruk G _{c_dwars} G _{c_trek} [m] [kN/m²] [-] [-] 19,2 0,87 0,64 0,49 19,2 0,87 0,64 0,49 30,7 1,00 0,68 0,53 19,2 0,87 0,64 0,49 19,2 0,87 0,64 0,49 30,7 1,00 0,68 0,53 35,9 1,04 0,69 0,54	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Windbelast	ting ahead										
	hoogte										
Geleider	wind	Stuwdruk	G_{c_dwars}	G_{c_trek}	C_c	$d_{toeslag}$	w_y	$W_{y,vak}$	$D_{ijs,toeslag}$	$W_{y,ijs}$	W _{y,ijs,vak}
	[m]	[kN/m²]	[-]	[-]	[-]	[mm]	[N/m]	[N/m]	[mm]	[N/m]	[N/m]
150ct1f1	12,6	0,76	0,60	0,96	1,20	20,75	45,0	72,7	40,2	87,2	141,0
150ct1f2	12,6	0,76	0,60	0,96	1,20	20,75	45,0	72,7	40,2	87,2	141,0
150ct1f3	18,3	0,85	0,63	0,97	1,20	20,75	53,7	82,7	40,2	104,1	160,3
150ct2f1	12,6	0,76	0,60	0,96	1,20	20,75	45,0	72,7	40,2	87,2	141,0
150ct2f2	12,6	0,76	0,60	0,96	1,20	20,75	45,0	72,7	40,2	87,2	141,0
150ct2f3	18,3	0,85	0,63	0,97	1,20	20,75	53,7	82,6	40,2	104,1	160,2
bl1	38,9	1,06	0,70	0,98							
bl2	38,9	1,06	0,70	0,98							

28-7-2021 9 van 21

Project: ZWO380 D2.2 OSP Mast 1 Masttype: H1 Mast: 1

Auteur: Versie: TBR Geleiderbelastingen

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

ULS (bezwijks	terkte)	NEN-EN50	341-2-15:20	19				
Belastingsgeval	omschrijving	Temp	γg	γ _G		γQ		γa
		°C	$G_{k,mast}$	$G_{k,qeleider}$	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,05	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,12	0,00	0,0
ULS 3	Wind+ijs	-5°	1,05	1,05	0,00	0,34	0,97	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,00	0,34	0,97	0,0
ULS 4	Koude+wind	-20°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,00	0,22	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,05	1,05	1,20	0,22	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 7	Permanent	10°	1,15	1,15	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijks	ers)	γ _G	γQ					
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,05	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,05	1,05	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,05	1,05	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,05	1,05	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,0	0,24	0,0	0,0
SLS (controle	van de vervormingen, vermoeiir	ng, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	0,94	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,28	0,88	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen Aantal belastingcombinaties ULS Aantal belastingcombinaties SPLS Aantal belastingcombinaties SLS Aantal knooplasten 6 52 210 15 4432

28-7-2021 10 van 21

Project: ZW Masttype: H1 Mast:

- Samenvattingstabellen geleiderbelastingen
 In de onderstaande vier tabellen is weergegeven:
 De maximale geleiderbelasting in het globale assenstelsel, gesplitst in aandeel van back en ahead span
- De alledaagse (EDS) waarden van de gecombineerde geleiderbelasting (ba+Ah) in het globale assenstelsel met in het lokale assenstelsel de maximaal optredende trekkracht.

 Componenten Fx en Fy als absolute waarde

 De alledaagse (EDS) waarden van de gecombineerde geleiderbelastingen (Ba+Ah) met bijbehorende trekkrachten
- Controle op uplift, waar een negatieve waarde duidt op uplift

Maximale waarden voor back en ahead span

	Fx_ba	Fx_ah	Fy_ba	Fy_ah	Fz_ba	Fz_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	-26,4	0,0	1,0	0,1	3,8	1,1
bl2	-26,4	0,0	1,0	0,1	3,8	1,1
150ct1f1	-73,3	13,5	6,3	0,8	11,2	71,6
150ct1f2	-73,3	14,2	6,3	0,8	11,2	71,5
150ct1f3	-75,8	13,9	7,6	0,8	11,2	105,2
150ct2f1	-73,3	13,7	6,3	4,7	11,2	71,3
150ct2f2	-73,3	12,6	6,3	7,2	11,2	71,3
150ct2f3	-75,8	13,3	7,6	5,9	11,2	104,8

Min. Weigh	t span (m)	Max. Weight span (m)		
Weight spar (Combinatie1			Weight spar Combinatie1
Geleider	SLS 1a	SLS 4	SLS 7	Geleider ULS 1a ULS 3
bl1	117,7	123,0	124,2	bl1 124,3 126,6
bl2	117,7	123,0	124,2	bl2 124,3 126,6
150ct1f1	382,0	2347,3	370,5	150ct1f1 732,0 579,5
150ct1f2	371,8	2345,4	370,5	150ct1f2 739,8 581,5
150ct1f3	494,8	3424,6	485,5	150ct1f3 1133,0 825,3
150ct2f1	376,3	2341,2	370,5	150ct2f1 738,6 581,2
150ct2f2	373,3	2341,0	370,5	150ct2f2 709,8 573,9
150ct2f3	504,0	3419,0	486,0	150ct2f3 1116,6 821,4

Omhullende weight span over alle combinaties (incl. 0,9 combinaties)

Voor alle geleiders

Max. weight span 3424,6 m Min. weight span 114,7 m Wind / Weight span verhouding

25,557 -0,856 -

28-7-2021 11 van 21

Project: ZWO380 D2.2 OSP Mast 1 Masttype: H1 Mast: 1

Maximale waarden back+ahead span Maximale waarden trekkracht geleider

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	26,4	1,3	3,8	-26,4	0,0
bl2	26,4	1,3	3,8	-26,4	0,0
150ct1f1	67,8	6,7	71,6	-73,1	14,6
150ct1f2	67,4	6,7	71,5	-73,1	14,5
150ct1f3	69,9	7,5	105,2	-75,6	14,6
150ct2f1	67,8	8,7	71,3	-73,1	14,5
150ct2f2	68,5	9,0	71,3	-73,1	14,5
150ct2f3	70,4	10,4	104,8	-75,6	14,5

EDS-belastingen geleiders

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	0,0	0,0	0,6	-6,1	0,0
bl2	0,0	0,0	0,6	-6,1	0,0
150ct1f1	1,4	-0,6	9,9	-34,1	1,6
150ct1f2	1,5	-0,3	9,9	-34,1	1,6
150ct1f3	1,5	-0,5	13,5	-34,1	1,6
150ct2f1	1,5	0,5	9,9	-34,1	1,6
150ct2f2	1,3	0,8	9,9	-34,1	1,6
150ct2f3	1.4	0.6	13.5	-34.1	1.6

Controle uplift SLS-wind

		Fz_ba	Fz_ah
Combinat	ie:Geleider	[kN]	[kN]
SLS 4	bl1	0,0	0,0
	bl2	0,0	0,0
	150ct1f1	0,0	0,0
	150ct1f2	0,0	0,0
	150ct1f3	0,0	0,0
	150ct2f1	0,0	0,0
	150ct2f2	0,0	0,0
	150ct2f3	0,0	0,0

28-7-2021 12 van 21

Project: ZWO380 D2.2 OSP Mast 1 Masttype: H1 Mast: 1

Auteur: Versie: TBR Geleiderbelastingen

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

()		341-2-15:20	19					
Belastingsgeval	omschrijving	Temp	γg	γ _G		γQ		γ _a
		°C	$G_{k,mast}$	$G_{k,qeleider}$	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,15	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,40	0,00	0,0
ULS 3	Wind+ijs	-5°	1,15	1,15	0,00	0,42	1,30	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,00	0,42	1,30	0,0
ULS 4	Koude+wind	-20°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,00	0,28	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,15	1,15	1,30	0,28	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 7	Permanent	10°	1,30	1,30	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijks	sterkte, enkel voor hoekmasten:	afwezigheid geleid	ers)	γ _G	γQ			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,15	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,15	1,15	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,15	1,15	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,15	1,15	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,0	0,24	0,0	0,0
SLS (controle	van de vervormingen, vermoeii	ng, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	1,00	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00		0,30	1,00	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen Aantal belastingcombinaties ULS Aantal belastingcombinaties SPLS Aantal belastingcombinaties SLS Aantal knooplasten 6 52 210 15 4432

28-7-2021 16 van 21

Project: ZW Masttype: H1 Mast:

- Samenvattingstabellen geleiderbelastingen
 In de onderstaande vier tabellen is weergegeven:
 De maximale geleiderbelasting in het globale assenstelsel, gesplitst in aandeel van back en ahead span
- De alledaagse (EDS) waarden van de gecombineerde geleiderbelasting (ba+Ah) in het globale assenstelsel met in het lokale assenstelsel de maximaal optredende trekkracht.

 Componenten Fx en Fy als absolute waarde

 De alledaagse (EDS) waarden van de gecombineerde geleiderbelastingen (Ba+Ah) met bijbehorende trekkrachten
- Controle op uplift, waar een negatieve waarde duidt op uplift

Maximale waarden voor back en ahead span

	Fx_ba	Fx_ah	Fy_ba	Fy_ah	Fz_ba	Fz_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	-32,1	0,0	1,3	0,2	4,1	1,1
bl2	-32,1	0,0	1,3	0,2	4,1	1,1
150ct1f1	-87,0	13,6	8,1	0,8	13,1	72,3
150ct1f2	-87,0	14,3	8,1	0,8	13,1	72,1
150ct1f3	-90,1	14,0	9,8	0,8	13,1	106,0
150ct2f1	-87,0	13,8	8,1	4,7	13,1	71,9
150ct2f2	-87,0	12,7	8,1	7,2	13,1	71,8
150ct2f3	-90,1	13,3	9,8	5,9	13,1	105,5

Min. Weight s	pan (m)	Max. Weight	Max. Weight span (m)			
Weight spar Co	mbinatie1	Weight spar Co	par Combinatie1			
Geleider	SLS 1a	SLS 4	SLS 7	Geleider	ULS 1a	ULS 3
bl1	117,2	123,0	124,2	bl1	124,4	127,0
bl2	117,2	123,0	124,2	bl2	124,4	127,0
150ct1f1	383,4	2348,1	370,5	150ct1f1	797,0	564,8
150ct1f2	371,9	2345,9	370,5	150ct1f2	805,8	566,7
150ct1f3	495,9	3425,9	485,5	150ct1f3	1243,9	803,1
150ct2f1	377,0	2341,3	370,5	150ct2f1	804,5	566,4
150ct2f2	373,6	2341,0	370,5	150ct2f2	771,7	559,2
150ct2f3	506,1	3419,0	486,0	150ct2f3	1225,4	799,2

Omhullende weight span over alle combinaties (incl. 0,9 combinaties) Voor alle geleiders

Wind / Weight span verhouding

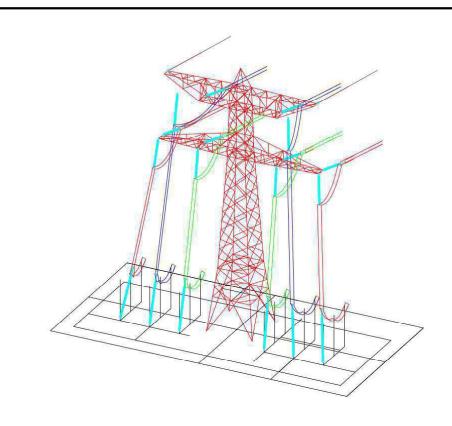
Max. weight span 3425,9 m 25,566 -Min. weight span 0,835 -111,9 m

28-7-2021 17 van 21

Project: ZWO380 D2.2 OSP Mast 1 Masttype: H1 Mast: 1

Maximale waarden back+ahead span Maximale waarden trekkracht geleider

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	32,1	1,5	4,1	-32,0	0,0
bl2	32,1	1,5	4,1	-32,0	0,0
150ct1f1	80,6	7,8	72,3	-86,8	14,7
150ct1f2	80,1	8,7	72,1	-86,8	14,6
150ct1f3	83,2	9,8	106,0	-89,8	14,7
150ct2f1	80,6	11,1	71,9	-86,8	14,6
150ct2f2	81,4	11,5	71,8	-86,8	14,6
150ct2f3	83,8	13,2	105,5	-89,8	14,6


EDS-belastingen geleiders

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	0,0	0,0	0,6	-6,1	0,0
bl2	0,0	0,0	0,6	-6,1	0,0
150ct1f1	1,4	-0,6	9,9	-34,1	1,6
150ct1f2	1,5	-0,3	9,9	-34,1	1,6
150ct1f3	1,5	-0,5	13,5	-34,1	1,6
150ct2f1	1,5	0,5	9,9	-34,1	1,6
150ct2f2	1,3	0,8	9,9	-34,1	1,6
150ct2f3	1.4	0.6	13.5	-34.1	1.6

Controle uplift SLS-wind

		Fz_ba	Fz_ah
Combinat	ie:Geleider	[kN]	[kN]
SLS 4	bl1	0,0	0,0
	bl2	0,0	0,0
	150ct1f1	0,0	0,0
	150ct1f2	0,0	0,0
	150ct1f3	0,0	0,0
	150ct2f1	0,0	0,0
	150ct2f2	0,0	0,0
	150ct2f3	0,0	0,0

28-7-2021 18 van 21

Inhoud

- Uitgangspunten p. 2
- Mastconstructie p. 6
- Tussenresultaten p. 8
- Belastingen initiëel p. 10
- Belastingen na aanpassing p. 15

Gegevens

Norm NEN-EN50341-2-15:2019

Initieel

Gevolgklasse CC2-0 Betrouwbaarheidsniveau Afkeur Referentieperiode 30 jaar

Na aanpassing

Gevolgklasse CC2
Betrouwbaarheidsniveau Verbouw
Referentieperiode 50 jaar

Windgebied III
Windsnelheid 24,5 m/s
Terreincategorie II
Reductie factor Cdir 1,00
IJsgebied B

Masttype Hoekmast Lijnhoek 180°

		-		
0.0	2021-06-18			
ISSUE	DATE	REVISION	CHK'D	APP'D

Client:

Title:

Verticale geleiders H1

JOB No.	-	DATE	-
DRAWN	_	CHKD	-
DESIGN	-	APPD	-

Document name:

ZWO380 D2.2 OSP Mast 1_H1_1_Report.pdf

Project number:

Project client number:											
-	· · · · y · · · · · · · · · · · · · · · ·										
	ı	ı —	l	ı			1		1		
0.0											
											l

ZWO380 D2.2 OSP Mast 1 Project:

Tower: Н1 Number:

Auteur: Geleiderbelastingen afloper Versie: v1.9

Algemeen

Benaming
Masttype
Aantal circuits
Configuratie
Aantal bliksemgeleiders H1 Hoekmast 2 2-circuit-donau

Uitgangspunten

Norm NEN-E
Gevolgklasse initieel
Betrouwbaarheidsniveau initieel
Referentieperiode initieel
Gevolgklasse na aanpassing
Betrouwbaarheidsniveau na aanpassing
Referentieperiode na aanpassing NEN-EN50341-2-15:2019 CC2-0 Afkeur CC2-0 30 jaar CC2 Verbouw 50 jaar Windgebied III 24,5 m/s Windsnelheid (m/s) Terreincategorie Reductiefactor c_{dir} IJsgebied fasegeleider 1,00 B 0 IJsgebied bliksemgeleider

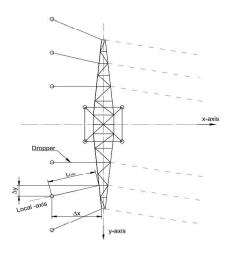
Geleiders

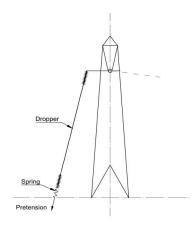
Omschrijving	Spanning	Geleider Back	Bundel Ba	IJsgebied	Toeslag gewicht	Toeslag diameter	
Circuit 1	150 kV	ACSR 20/224	4	В	2 %	2 %	
Circuit 2	150 kV	ACSR 20/224	4	В	2 %	2 %	
Bliksemdraad 1		Niet aanwezig	0	0	0 %	0 %	0
Bliksemdraad 2		Niet aanwezig	0	0	0 %	0 %	0

Isolatoren	(1)			
Omschrijving	Ophanging	Gewicht	Lengte	Windopp.
		[kN]	[m]	[m²]
Circuit 1	Afspanketting	1,50	4,50	1,00
Circuit 2	Afspanketting	1,50	4,50	1,00
Bliksemdraad 1	0	0,00	0,00	0,00
Bliksemdraad 2	0	0,00	0,00	0,00

Eigenschappen gelden voor geheel van de isolatorset 1.

Ophanghoogte en positie in mast


Circuits	Nummer	Aanduiding	Ophanghoogte	Aangrijppunt
Circuit 1	10	150ct1f1	24,0 m	24,0 m
Circuit 1	11	150ct1f2	24,0 m	24,0 m
Circuit 1	12	150ct1f3	35,5 m	35,5 m
Circuit 2	20	150ct2f1	24,0 m	24,0 m
Circuit 2	21	150ct2f2	24,0 m	24,0 m
Circuit 2	22	150ct2f3	34,5 m	34,5 m
Bliksemdraad 1	1	bl1	0,0 m	0,0 m
Bliksemdraad 2	3	bl2	0,0 m	0,0 m


18-6-2021 2 van 13

Project: Tower: Number: Н1

Principe hoekmast met aflopers

Top view tower

Side view tower

Hoogteafwijking mastbeeld naastgelegen masten en richtingsverandering t.o.v. Lijnrichting

		t to a second consisted the	Dr. Lat				
		Hoogteverschil	Richtingsverar	ndering	Lokaal ∆x Ler	ngte overspanning	
Nummer	Aanduiding	∆h	Δy	Δx	Lhor	L	
10	150ct1f1	23,7 m	-2,4	6,0	6,5	24,5 m	
11	150ct1f2	23,7 m	-1,4	5,1	5,3	24,2 m	
12	150ct1f3	35,2 m	-1,9	4,2	4,6	35,4 m	
20	150ct2f1	23,7 m	1,4	5,3	5,4	24,3 m	
21	150ct2f2	23,7 m	2,5	5,7	6,2	24,5 m	
22	150ct2f3	35,2 m	1,9	4,1	4,5	35,5 m	
1	bl1	0,0 m	0,0	0,0	0,0	0,0 m	
3	bl2	0,0 m	0,0	0,0	0,0	0,0 m	
	10 11 12 20 21	10 150ct1f1 11 150ct1f2 12 150ct1f3 20 150ct2f1 21 150ct2f2 22 150ct2f3 1 bl1	10 150ct1f1 23,7 m 11 150ct1f2 23,7 m 12 150ct1f3 35,2 m 20 150ct2f1 23,7 m 21 150ct2f2 23,7 m 22 150ct2f3 35,2 m 1 bl1 0,0 m	10 150ct1f1 23,7 m -2,4 11 150ct1f2 23,7 m -1,4 12 150ct1f3 35,2 m -1,9 20 150ct2f1 23,7 m 1,4 21 150ct2f2 23,7 m 2,5 22 150ct2f3 35,2 m 1,9 1 bl1 0,0 m 0,0	10 150ct1f1 23,7 m -2,4 6,0 11 150ct1f2 23,7 m -1,4 5,1 12 150ct1f3 35,2 m -1,9 4,2 20 150ct2f1 23,7 m 1,4 5,3 21 150ct2f2 23,7 m 2,5 5,7 22 150ct2f3 35,2 m 1,9 4,1 1 bl1 0,0 m 0,0 0,0	10 150ct1f1 23,7 m -2,4 6,0 6,5 11 150ct1f2 23,7 m -1,4 5,1 5,3 12 150ct1f3 35,2 m -1,9 4,2 4,6 20 150ct2f1 23,7 m 1,4 5,3 5,4 21 150ct2f2 23,7 m 2,5 5,7 6,2 22 150ct2f3 35,2 m 1,9 4,1 4,5 1 bl1 0,0 m 0,0 0,0 0,0	10 150ct1f1 23,7 m -2,4 6,0 6,5 24,5 m 11 150ct1f2 23,7 m -1,4 5,1 5,3 24,2 m 12 150ct1f3 35,2 m -1,9 4,2 4,6 35,4 m 20 150ct2f1 23,7 m 1,4 5,3 5,4 24,3 m 21 150ct2f2 23,7 m 2,5 5,7 6,2 24,5 m 22 150ct2f3 35,2 m 1,9 4,1 4,5 35,5 m 1 bl1 0,0 m 0,0 0,0 0,0 0,0 m

Voorspanning en veerstijfheid

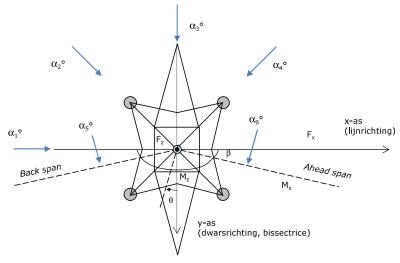
			Voorspanning	Veerstijfheid	Effectieve rekstijfheid
Circuits	Nummer	Aanduiding	F _{pr}	k	EA _{fict}
Circuit 1	10	150ct1f1	6,0 kN	1000 kN/m	11940 kN/m
Circuit 1	11	150ct1f2	6,0 kN	1000 kN/m	11940 kN/m
Circuit 1	12	150ct1f3	6,0 kN	1000 kN/m	18610 kN/m
Circuit 2	20	150ct2f1	6,0 kN	1000 kN/m	11940 kN/m
Circuit 2	21	150ct2f2	6,0 kN	1000 kN/m	11940 kN/m
Circuit 2	22	150ct2f3	6,0 kN	1000 kN/m	18636 kN/m
Bliksemdraad 1	1	bl1	0,0 kN	0 kN/m	kN/m
Bliksemdraad 2	3	bl2	0,0 kN	0 kN/m	kN/m

De effectieve rekstijfheid is bepaald met de invloed van de veerstijfheid Deze is berekend door de optelling van de reciproke waarden van de veerstijfheid van geleider en veer.

18-6-2021 3 van 13

Project: ZWO380 D2.2 OSP Mast 1

Project: ZV Tower: H: Number: 1


Lijn- en mastgegevens

Deze invoer is opgenomen voor beschouwde windrichtingen en komt overeen met invoer geleiderbelastingen voor de mast

Lijnhoek Rotatie mast t.o.v. bissectrice	$_{\theta}^{\beta}$	180 ° -3 °
Hoogte onderkant mast t.o.v. ma	aiveld	0,5 m
Beschouwde windrichtingen	α_1	0 °
Windrichtingen volgens:	α_2	45 °
Geleiderbelastingen	α_3	93 °
_	α_4	135 °
	α_5	75 °
	α_6	105 °

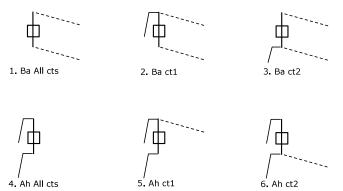
Windrichtingen gelden t.o.v. hoofdrichting mastconstructie, niet t.o.v. bissectrice.

Windrichtingen en positieve richtingen belastingen

Beschouwd aantal windrichtingen	
1a	6
3	6
4	1
6	6
Overig	6

18-6-2021 4 van 13

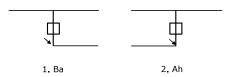
Project: Tower: Number:


Geleiderafval

		SPLS	SPLS - torsie		elzijdige trek	5a - gele	iderbreuk
		Aanw.	Afw.	Aanw.	Afw.	Aanw.	Afw.
Circuit 1	150ct1f1	1	0	1	0	1	0
Circuit 1	150ct1f2	1	0	1	0	1	0
Circuit 1	150ct1f3	1	0	1	0	1	0
Circuit 2	150ct2f1	0	1	1	0	1	0
Circuit 2	150ct2f2	0	1	1	0	1	0
Circuit 2	150ct2f3	0	1	1	0	1	0
Bliksemdraad 1	bl1	1	0	1	0		0
Bliksemdraad 2	bl2	0	1	1	0		0

Belastingsituaties SPLS

Beschouwde situaties SPLS: 1 t/m 6, alle mogelijke situaties. Geleiderbelastingen naar volgende mast geen onderdeel van deze berekening.


Principe belastingssituaties:

Belastingsituaties 5a. Geleiderbreuk

Beschouwde situaties geleiderbreuk 5a: 1 en 2, alle mogelijke situaties.

Principe belastingssituaties:

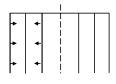
18-6-2021 5 van 13

Project: ZWO380 D2.2 OSP Mast 1

Project: ZW Tower: H1 Number: 1

Belastingsituaties 6. Bouw- en onderhoud

Onder 6a wordt de belasting door aanwezigheid lijnwagen of lijnfiets in combinatie met puntlast op traverse in rekening gebracht. Combinatie 6b bevat geen belastingen in geleider of op traverse. Deze combinatie met 20% wind is geschikt voor controle stijgpunt in combinatie met kortsluitbelastingen.


	Fase	Bliksem
Lijnwagen (nvt.)	0,0 kN	0,0 kN
Puntlast op traverse	1,0 kN	1,0 kN

Belastingsituaties 8. Kortsluiting

Principe belastingssituaties:

Kortsluitkrachten

(Zie separate berekening)

Geleider	W _z c Ko	rtsluitkra	F _×	F _v	F_z
	[N/m]	[kN]	[kNĴ	[kN]	[kN]
10	150ct1f1	17,0	4,2	-1,7	16,4
11	150ct1f2	17,0	3,6	-1,0	16,6
12	150ct1f3	22,5	2,6	-1,2	22,3
20	150ct2f1	17,0	3,7	1,0	16,6
21	150ct2f2	17,0	4,0	1,7	16,4
22	150ct2f3	22,5	2,6	1,2	22,3
1	bl1				
3	hl2				

Belastingcombinaties kortsluiting

Belastingcombinatie
ULS 8 Kortsluiting 10-11
ULS 8 Kortsluiting 10-12
ULS 8 Kortsluiting 11-12
ULS 8 Kortsluiting 20-21
ULS 8 Kortsluiting 20-22
ULS 8 Kortsluiting 21-22

18-6-2021 6 van 13

Project: ZWO380 D2.2 OSP Mast 1

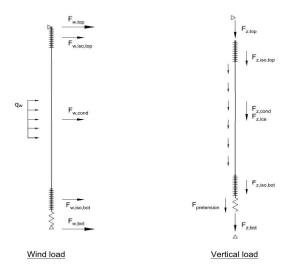
Project: ZV Tower: H: Number: 1

Tussenresultaten geleiderbelastingen

Geleiders

Circuit	Geleider	Diameter	Α	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Circuit 2	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Bliksemdraad 1	Niet aanwezig					
Bliksemdraad 2	Niet aanwezig					

Verticale belasting


Circuit	Bundel	Toeslag	$W_{z,G}$		IJsgebied	Formule	$W_{z,ijs}$	W _{z,ijs,bunde} l	
	[-]	[%]	[N	/m]			[N/m]	[N/m]	
Circuit 1		4	2	31,0	В	4+0,2d		8,1	32,3
Circuit 2		4	2	31,0	В	4+0,2d		8,1	32,3
Bliksemdraad 1		0	0		C	1			
Bliksemdraad 2		0	0		C	1			

Schema voor berekenen horizontale en verticale belasting

Horizontale belasting wordt bepaald voor de wind tegen de geleider en isolatoren boven en onder.

De horizontale component als gevolg van de scheefstand van de afloper wordt per belastingscombinatie apart bepaald De verticale krachten gelden alleen voor de EDS-conditie zonder externe belastingen en temperatuursverandering

De berekeningen zijn weergegeven op het volgende blad.

18-6-2021 7 van 13

Project: Tower: Number: H1 1

Isolatoren					Boven			Onder		
Geleider	G _{isolator}	Lengte	Windopp.	Vormfactor	Windhoogte	Stuwdruk	$F_{h,iso}$	Windhoogte	Stuwdruk	$F_{h,iso}$
	[kN]	[m]	[m ²]	[-]	[m]	[kN/m²]	[kN]	[m]	[kN/m²]	[kN]
150ct1f1	1,50	4,5	1,0	1,2	22,20	0,91	1,09	3,05	0,49	0,59
150ct1f2	1,50	4,5	1,0	1,2	22,20	0,91	1,09	3,05	0,49	0,59
150ct1f3	1,50	4,5	1,0	1,2	33,70	1,02	1,23	3,05	0,49	0,59
150ct2f1	1,50	4,5	1,0	1,2	22,20	0,91	1,09	3,05	0,49	0,59
150ct2f2	1,50	4,5	1,0	1,2	22,20	0,91	1,09	3,05	0,49	0,59
150ct2f3	1,50	4,5	1,0	1,2	32,70	1,01	1,22	2,00	0,49	0,59
bl1	0,00	0,0	0,0	1,2	0,50	0,49	•	0,50	0,49	•
bl2	0,00	0,0	0,0	1,2	0,50	0,49		0,50	0,49	

Horizontale belasting

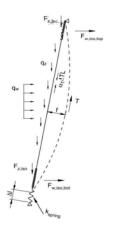
Horizontale	belasting										
	hoogte										
Geleider	wind	Stuwdruk	G_c	C_c	$d_{toeslag}$	W_y	$D_{ijs,toeslag}$	$W_{y,ijs}$	F _{w,geleider}	F _{w,boven}	F _{w,onder}
	[m]	[kN/m²]	[-]	[-]	[mm]	[N/m]	[mm]	[N/m]	[kN]	[kN]	[kN]
150ct1f1	12,6	0,76	0,96	1,20	20,75	72,3	40,2	140,2	0,53	1,6	1,1
150ct1f2	12,6	0,76	0,96	1,20	20,75	72,3	40,2	140,2	0,53	1,6	1,1
150ct1f3	18,4	0,86	0,97	1,20	20,75	82,3	40,2	159,5	1,08	2,3	1,7
150ct2f1	12,6	0,76	0,96	1,20	20,75	72,3	40,2	140,2	0,53	1,6	1,1
150ct2f2	12,6	0,76	0,96	1,20	20,75	72,3	40,2	140,2	0,53	1,6	1,1
150ct2f3	17,4	0,84	0,96	1,20	20,75	80,7	40,2	156,5	1,06	2,3	1,6
bl1	0,5	0,49	0,79								
bl2	0,5	0,49	0,79								

 $\begin{tabular}{ll} \textbf{Verticale belasting} \\ \textbf{Formules:} & F_{z,top} = F_{z,iso,top} + F_{z,cond} + F_{z,iso,bot} + F_{pr} \\ & F_{t,mid} = F_{z,cond}/2 + F_{z,iso,bot} + F_{pr} \\ & F_{z,bot} = -F_{pr} \end{tabular}$ $\begin{aligned} & L_{geleider} = \Delta h - 2 L_{iso} \\ & F_{z,cond} = L_{cond} \times w_z \end{aligned}$

Geleider	$W_{z,G}$	W _{z,ijs}	L _{geleider}	$F_{z,iso}$	F _{z,gel}	$F_{z,ijs}$	Pretension	F _{z,boven}	$F_{t,mid}$	F _{z,onder}
	[N/m]	[N/m]	[m]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
150ct1f1	31,0	32,3	14,7	1,5	0,5	0,5	6,0	9,5	7,7	-6,0
150ct1f2	31,0	32,3	14,7	1,5	0,5	0,5	6,0	9,5	7,7	-6,0
150ct1f3	31,0	32,3	26,2	1,5	0,8	0,8	6,0	9,8	7,9	- 6,0
150ct2f1	31,0	32,3	14,7	1,5	0,5	0,5	6,0	9,5	7,7	- 6,0
150ct2f2	31,0	32,3	14,7	1,5	0,5	0,5	6,0	9,5	7,7	-6,0
150ct2f3	31,0	32,3	26,2	1,5	0,8	0,8	6,0	9,8	7,9	-6,0
bl1			0,0				0,0			
b l 2			0,0				0,0			

18-6-2021 8 van 13

Project: Masttype: Mast:


Auteur: Versie: TBR Geleiderbelastingen v1.9

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

ULS (bezwijksterkte)		NEN-EN5	NEN-EN50341-2-15:2019					
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γο		γa
		°C	G _{k,mast}	G _{k,geleider}	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,05	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,12	0,00	0,0
ULS 3	Wind+ijs	-5°	1,05	1,05	0,00	0,34	0,97	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,00	0,34	0,97	0,0
ULS 4	Koude+wind	-20°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,00	0,22	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,05	1,05	1,20	0,22	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 7	Permanent	10°	1,15	1,15	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Be	ezwijksterkte, enkel voor hoekmasten: a	fwezigheid gelei	ders)	γ _G	γQ			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,05	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,05	1,05	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,05	1,05	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,05	1,05	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,0	0,24	0,0	0,0
SLS (cc	ontrole van de vervormingen, vermoeiin	g, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	0,94	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,28	0,88	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen	6
Aantal belastingcombinaties ULS	57
Aantal belastingcombinaties SPLS	210
Aantal belastingcombinaties SLS	15
Aantal knooplasten	4512

SchematisationDe trekkracht in de afloper wordt bepaald met de toestandsvergelijking voor een gekromde kabel. In de rekstijfheid van de kabel is de invloed van de veer verdisconteerd.

18-6-2021 9 van 13

Project: Masttype: Mast:

- Tabellen met geleiderbelastingen

 In de onderstaande drie tabellen is weergegeven:

 De trekkracht per belastingcombinatie en de bijbehorende zeeg en veerverlenging

 De geleiderbelastingen in het lokale assenstelsel voor het onderste bevestigingspunt

 De maximale waarden voor de reacties onder en boven in het globale assenstelsel

Trekkracht, zeeg en veerverlenging

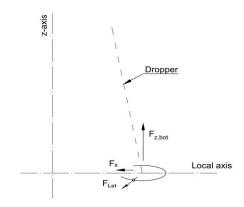
Geleider	Combinatie	Zeeg [m]	Veer- verlengin g [m	veer- verlengin g [m]	rek- kracht initieel [kN]	Trek- kracht [kN]
150ct1f1	SLS 1a	0,47	0,009	0,017	7,7	17,0
	SLS 3	0,35	0,008	0,016	7,9	15,6
	SLS 4	0,17	0,007	0,014	7,7	14,4
	SLS 6	0,24	0,002	0,010	7,7	9,9
	SLS 7	0,20	0,000	0,008	7,7	7,7
	ULS 1a	0,49	0,011	0,019	8,2	18,5
	ULS 3	0,37	0,009	0,016	8,4	16,5
	ULS 4	0,18	0,007	0,015	8,2	14,6
	ULS 6b	0,28	0,003	0,011	8,2	10,9
150ct1f2	SLS 1a	0,44	0,009	0,017	7.7	16,9
15000112	SLS 1a	0,44	0,009	0,017	7,7 7,9	15,4
	SLS 3 SLS 4	0,32	0,008	0,015	7,9 7,7	14,6
	SLS 4	0,14	0,007	0,013	7,7 7,7	9,8
	SLS 7	0,21	0,002	0,010	7,7	7,7
	ULS 1a	0,17	0,000	0,008	8,2	18,4
	ULS 3	0,34	0,009	0,016	8,4	16,3
	ULS 4	0,15	0,007	0,015	8,2	14,8
	ULS 6b	0,25	0,003	0,011	8,2	10,9
150ct1f3	SLS 1a	0,63	0,015	0,023	7,9	23,0
13000113	SLS 3	0,03	0,013	0,023	8,3	20,6
	SLS 4	0,17	0,013	0,021	7,9	19,7
	SLS 6	0,17	0,012	0,020	7,9	12,1
	SLS 7	0,14	0,000	0,008	7,9	7,9
	ULS 1a	0,68	0,000	0,005	8,4	25,3
	ULS 3	0,48	0,017	0,023	8,8	22,0
	ULS 4	0,19	0,014	0,022	8,4	20,0
	ULS 6b	0,32	0,005	0,013	8,4	13,2

Controle iteratieproces

0
n
•
0

18-6-2021 10 van 13

Project: Masttype: Mast:

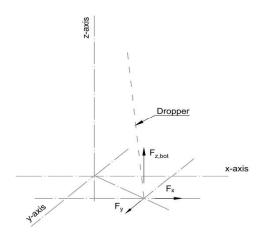

Belastingen in lokale richting geleider

De belastingen op het onderste bevestigingspunt voor het dimensioneren van de ondersteuningsconstructie

De richting van de laterale kracht wordt bepaald door de windrichting en kan in alle richtingen aangrijpen.

De resulterende horizontale kracht kan worden afgeleid uit de vectoriële optelling van de kracht in x-richting en laterale kracht.

Combinatie1	Fx,lok,bot [kN]	Flat,bot [kN]	Fz_bot [kN]
SLS 1a	4,7	1,1	-15,3
SLS 3	4,3	0,5	-13,6
SLS 4	3,9	0,2	-12,6
SLS 6	2,7	0,2	-8,2
SLS 7	2,1	0,0	-6,0
ULS 1a	5,1	1,3	-16,7
ULS 3	4,5	0,5	-14,4
ULS 4	4,0	0,3	-12,8
ULS 6b	3,0	0,3	-9,1
SLS 1a	3,8	1,1	-15,2
SLS 3	3,5	0,5	-13,5
SLS 4	3,3	0,2	-12,9
SLS 6	2,2	0,2	-8,1
SLS 7	1,7	0,0	-6,0
ULS 1a	4,1	1,3	-16,5
ULS 3	3,7	0,5	-14,2
ULS 4	3,3	0,3	-13,0
ULS 6b	2,4	0,3	-9,0
SLS 1a	3,0	1,6	-21,1
SLS 3	2,7	0,8	-18,3
SLS 4	2,6	0,3	-17,8
SLS 6	1,6	0,3	-10,2
SLS 7	1,0	0,0	-6,0
ULS 1a	3,3	1,9	-23,3
ULS 3	2,9	0,9	-19,6
ULS 4	2,6	0,4	-18,0
ULS 6b	1,7	0,4	-11,2


18-6-2021 11 van 13

Project: Masttype: Mast:

Maximale waarden in globale assenstelsel

De maximale waarden van de verticale kracht en de resulterende horizontale kracht per belastingcombinatie Zowel voor het bovenste als het onderste bevestigingspunt

Geleider	Combinatie	Fx_top [kN]	Fy_top [kN	Fz_top [kN]	Fx_bot [kN]	Fy_bot [kN]	Fz_bot [kN]
150ct1f1	SLS 1a	4,9	0,1	18,8	-5,4	0,0	-15,3
	SLS 3	3,4	0,0	17,5	-4,6	0,0	-13,6
	SLS 4	3,3	0,0	16,1	-3,8	0,0	-12,6
	SLS 6	2,2	0,0	11,6	-2,7	0,0	- 8,2
	SLS 7	1,7	0,0	9,5	-2,1	0,0	-6,0
	ULS 1a	5,6	0,3	20,3	-5,9	0,0	-16,7
	ULS 3	3,7	0,0	18,5	-4,9	0,0	-14,4
	ULS 4	3,4	0,0	16,4	-3,9	0,0	-12,8
	ULS 6b	2,3	0,0	12,7	-3,2	0,0	-9,1
	ULS 7	1,7	0,0	9,9	-2,2	0,0	-5,9
150ct1f2	SLS 1a	4,6	0,8	18,6	-4,7	0,0	-15,2
	SLS 3	3,0	0,0	17,3	-4,0	0,0	-13,5
	SLS 4	2,9	0,0	16,4	-3,3	0,0	- 12,9
	SLS 6	1,9	0,0	11,6	-2,3	0,0	-8,1
	SLS 7	1,5	0,0	9,5	-1,8	0,0	-6,0
	ULS 1a	5,2	1,0	20,2	-5,2	0,0	-16,5
	ULS 3	3,3	0,0	18,3	-4,3	0,0	-14,2
	ULS 4	2,9	0,0	16,6	-3,4	0,0	-13,0
	ULS 6b	2,0	0,0	12,7	-2,7	0,0	-9,0
	ULS 7	1,5	0,0	9,8	-1,9	0,0	-5,9
150ct1f3	SIS 1a	4,7	1,1	24,9	-4,1	0,0	-21,1
15001115	SLS 3	3,0	0,0	22,9	-3,2	0,0	-18,3
	SLS 4	2,2	0,0	21,6	-2,4	0,0	-17,8
	SLS 6	1,3	0,0	14,0	-1,5	0,0	-10,2
	SLS 7	0,8	0,0	9,8	-1,0	0,0	-6,0
	ULS 1a	5,4	1,4	27,3	-4,6	0,0	-23,3
	ULS 3	3,3	0,1	24,4	-3,5	0,0	-19,6
	ULS 4	2,2	0,0	22,0	-2,4	0,0	-18,0
	ULS 6b	1,7	0,0	15,2	-1,9	0,0	-11,2
	ULS 7	0,8	0,0	10,2	-1,0	0,0	-5,8
150ct2f1	SLS 1a	4,7	2,5	18,1	-4,8	-0,7	-14,6
	SLS 3	3,0	1,4	16,7	-4,0	-0,6	-12,9
	SLS 4	3,0	1,0	15,9	-3,4	-0,4	-12,5
	SLS 6	1,8	0,8	10,8	-2,3	-0,2	-7,4
	SLS 7	1,5	0,3	9,5	-1,9	-0,4	-6,0
	ULS 1a	5,4	2,9	19,7	-5,3	-0,8	-16,0

Project: Masttype: Mast:	ZWO380 D2.2 (H1 1	OSP Mast 1					
150ct2f1	ULS 3	3,3	1,5	17,7	-4,3	-0,6	-13,6
	ULS 4	3,0	1,1	16,1	-3,4	-0,4	-12,5
	ULS 6b	1,9	0,8	12,2	- 2,8	-0,4	-8,6
	ULS 7	1,5	0,3	9,8	-2,0	-0,4	-5,9
150ct2f2	SLS 1a	4,9	3,1	17,9	-5,1	-1,4	-14,4
	SLS 3	3,1	1,9	16,5	-4,3	-1,1	-12,6
	SLS 4	3,2	1,6	15,4	-3,6	-1,1	-12,0
	SLS 6	1,9	1,1	10,4	-2,4	-0,6	-7,0
	SLS 7	1,7	0,6	9,5	-2,1	-0,8	-6,0
	ULS 1a	5,6	3,6	19,4	-5,7	-1,5	-15,8
	ULS 3	3,4	2,1	17,4	- 4,6	- 1,2	-13,3
	ULS 4	3,2	1,6	15,7	- 3,7	-1,0	-12,0
	ULS 6b	2,0	1,2	12,0	-3,0	-0,8	-8,4
	ULS 7	1,7	0,6	9,9	-2,2	-0,8	-5,9
150ct2f3	SLS 1a	4,8	3,4	24,2	-4,1	-1,1	-20,4
	SLS 3	3,0	1,9	21,9	-3,2	- 0,9	-17,4
	SLS 4	2,2	1,4	21,2	-2,4	- 0,6	-17,4
	SLS 6	1,2	1,0	13,0	-1,4	-0,2	-9,2
	SLS 7	0,8	0,3	9,8	-1,1	-0,4	-6,0
	ULS 1a	5,5	3,9	26,5	- 4,6	-1,2	- 22,5
	ULS 3	3,4	2,2	23,4	-3,4	-1,0	-18,6
	ULS 4	2,2	1,4	21,5	-2,4	- 0,5	-17,5

1,1

0,3

14,5

10,2

-1,9

-1,1

-0,6

-0,4

-10,5

-5,8

ULS 6b

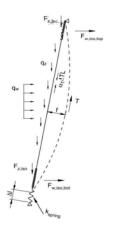
ULS 7

1,7

0,8

18-6-2021 13 van 13

Project: Masttype: Mast:


Auteur: Versie: TBR Geleiderbelastingen v1.9

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

ULS (bez	NEN-EN5	0341-2-15:20	019					
Belastingsgeval	omschrijving	Temp	l γ _G	γ _G		γQ		γa
		°C	G _{k,mast}	$G_{k,ge}$ eider	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,15	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,40	0,00	0,0
ULS 3	Wind+ijs	-5°	1,15	1,15	0,00	0,42	1,30	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,00	0,42	1,30	0,0
ULS 4	Koude+wind	-20°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,00	0,28	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,15	1,15	1,30	0,28	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 7	Permanent	10°	1,30	1,30	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bez	wijksterkte, enkel voor hoekmasten: a	fwezigheid gelei	ders)	γ _G	γ _Q			
				G_{k}	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,15	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,15	1,15	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,15	1,15	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,15	1,15	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,0	0,24	0,0	0,0
SLS (con	trole van de vervormingen, vermoeiing	g, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	1,00	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,30	1,00	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen	6
Aantal belastingcombinaties ULS	57
Aantal belastingcombinaties SPLS	210
Aantal belastingcombinaties SLS	15
Aantal knooplasten	4512

SchematisationDe trekkracht in de afloper wordt bepaald met de toestandsvergelijking voor een gekromde kabel. In de rekstijfheid van de kabel is de invloed van de veer verdisconteerd.

18-6-2021 1 van 5

Project: Masttype: Mast:

- Tabellen met geleiderbelastingen

 In de onderstaande drie tabellen is weergegeven:

 De trekkracht per belastingcombinatie en de bijbehorende zeeg en veerverlenging

 De geleiderbelastingen in het lokale assenstelsel voor het onderste bevestigingspunt

 De maximale waarden voor de reacties onder en boven in het globale assenstelsel

Trekkracht, zeeg en veerverlenging

Geleider	Combinatie	Zeeg [m]	Veer- verlengin g [m	veer- verlengin g [m]	rek- kracht initieel [kN]	Trek- kracht [kN]
150ct1f1	SLS 1a	0,48	0,010	0,018	7,7	17,5
	SLS 3	0,36	0,008	0,016	8,0	15,9
	SLS 4	0,17	0,007	0,014	7,7	14,4
	SLS 6	0,25	0,002	0,010	7,7	10,0
	SLS 7	0,20	0,000	0,008	7,7	7,7
	ULS 1a	0,54	0,013	0,021	9,2	20,8
	ULS 3	0,41	0,010	0,018	9,5	18,0
	ULS 4	0,20	0,007	0,015	9,2	15,0
	ULS 6b	0,30	0,004	0,012	9,2	11,6
150-4162	CI C 1-	0.45	0.010	0.017	77	17.4
150ct1f2	SLS 1a	0,45	0,010	0,017	7,7	17,4
	SLS 3 SLS 4	0,33 0,14	0,008 0,007	0,016 0,015	8,0	15,7
	SLS 4 SLS 6	0,14	0,007	0,013	7,7 7,7	14,7 9,9
	SLS 6 SLS 7	0,21	0,002	0,010	7,7	9,9 7,7
	ULS 1a	0,17	0,000	0,008	7,7 9,2	20,6
	ULS 3	0,32	0,013	0,021	9,2	17,8
	ULS 4	0,38	0,010	0,015	9,2	15,2
	ULS 6b	0,17	0,007	0,013	9,2	11,5
	_					
150ct1f3	SLS 1a	0,65	0,016	0,024	7,9	23,8
	SLS 3	0,46	0,013	0,021	8,3	21,1
	SLS 4	0,18	0,012	0,020	7,9	19,8
	SLS 6	0,29	0,004	0,012	7,9	12,3
	SLS 7	0,14	0,000	0,008	7,9	7,9
	ULS 1a	0,74	0,021	0,029	9,4	28,8
	ULS 3	0,54	0,016	0,024	10,1	24,3
	ULS 4	0,23	0,013	0,021	9,4	20,6
	ULS 6b	0,36	0,006	0,014	9,4	14,2

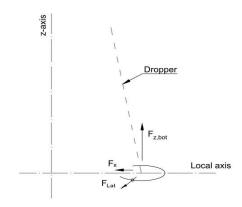
Controle iteratieproces

Geleider	Iteratie
Ы1	0
bl2	0
150ct1f:	ОК
150ct1f	OK
150ct1f:	OK
150ct2f:	ОК
150ct2f	OK
150ct2f	ОК

18-6-2021 2 van 5

ZWO380 D2.2 OSP Mast 1 H1 1

Project: Masttype: Mast:


Belastingen in lokale richting geleider

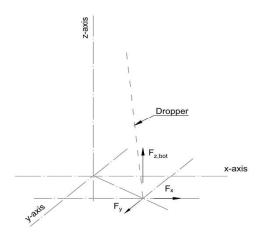
De belastingen op het onderste bevestigingspunt voor het dimensioneren van de ondersteuningsconstructie

De richting van de laterale kracht wordt bepaald door de windrichting en kan in alle richtingen aangrijpen.

De resulterende horizontale kracht kan worden afgeleid uit de vectoriële optelling van de kracht in x-richting en laterale kracht.

	Fx,lok,bot	Flat,bot	_			
Combinatie1	[kN]	[kN]	[kN]			
SLS 1a	4,8	1,1	-15,8			
SLS 3	4,4	0,5	-14,0			
SLS 4	3,9	0,2	-12,7			
SLS 6	2,7	0,2	- 8,3			
SLS 7	2,1	0,0	-6,0			
ULS 1a	5,7	1,6	-18,8			
ULS 3	4,9	0,7	-15,8			
ULS 4	4,1	0,3	-13,0			
ULS 6b	3,2	0,3	- 9,6			
SLS 1a	3,9	1,1	-15,6			
SLS 3	3,5	0,5	-13,8			
SLS 4	3,3	0,2	-13,0			
SLS 6	2,2	0,2	- 8,2			
SLS 7	1,7	0,0	- 6,0			
ULS 1a	4,6	1,6	-18,6			
ULS 3	4,0	0,7	-15,5			
ULS 4	3,4	0,3	-13,2			
ULS 6b	2,6	0,3	- 9,5			
SLS 1a	3,1	1,7	-21,9			
SLS 3	2,7	0,8	-18,8			
SLS 4	2,6	0,3	-17,9			
SLS 6	1,6	0,3	-10,4			
SLS 7	1,0	0,0	- 6,0			
ULS 1a	3,7	2,3	-26,6			
ULS 3	3,2	1,1	-21,6			
ULS 4	2,7	0,5	-18,4			
ULS 6b	1,8	0,5	-12,0			

18-6-2021 3 van 5



ZWO380 D2.2 OSP Mast 1 H1 1

Project: Masttype: Mast:

Maximale waarden in globale assenstelsel

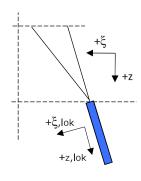
De maximale waarden van de verticale kracht en de resulterende horizontale kracht per belastingcombinatie Zowel voor het bovenste als het onderste bevestigingspunt

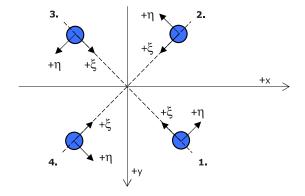
Geleider	Combinatie	Fx_top [kN]	Fy_top [kN	Fz_top [kN]	Fx_bot [kN]	Fy_bot [kN]	Fz_bot [kN]
150ct1f1	SLS 1a	5,1	0,1	19,2	-5,6	0,0	-15,8
	SLS 3	3,5	0,0	17,9	-4,7	0,0	-14,0
	SLS 4	3,3	0,0	16,1	-3,8	0,0	-12,7
	SLS 6	2,2	0,0	11,7	-2,7	0,0	-8,3
	SLS 7	1,7	0,0	9,5	-2,1	0,0	-6,0
	ULS 1a	6,7	0,5	22,8	-6,8	0,0	-18,8
	ULS 3	4,1	0,0	20,3	-5,5	0,0	-15,8
	ULS 4	3,4	0,0	17,0	-4,0	0,0	-13,0
	ULS 6b	2,5	0,0	13,6	-3,4	0,0	-9,6
	ULS 7	1,7	0,0	10,3	- 2,2	0,0	- 5,8
150ct1f2	SLS 1a	4,8	0,8	19,1	-4,9	0,0	-15,6
	SLS 3	3,1	0,0	17,7	-4,1	0,0	-13,8
	SLS 4	2,9	0,0	16,4	-3,3	0,0	-13,0
	SLS 6	1,9	0,0	11,7	-2,3	0,0	-8,2
	SLS 7	1,5	0,0	9,5	-1,8	0,0	-6,0
	ULS 1a	6,3	1,4	22,6	-6,0	0,0	-18,6
	ULS 3	3,6	0,1	20,1	-4,7	0,0	-15,5
	ULS 4	3,0	0,0	17,2	-3,5	0,0	-13,2
	ULS 6b	2,1	0,0	13,5	-2,9	0,0	-9,5
	ULS 7	1,4	0,0	10,2	-1,9	0,0	-5,7
150ct1f3	SLS 1a	5,0	1,2	25,7	- 4,2	0,0	- 21,9
	SLS 3	3,1	0,0	23,4	-3,3	0,0	-18,8
	SLS 4	2,2	0,0	21,7	-2,4	0,0	-17,9
	SLS 6	1,3	0,0	14,2	-1,5	0,0	-10,4
	SLS 7	0,8	0,0	9,8	-1,0	0,0	-6,0
	ULS 1a	6,5	1,9	31,0	-5,4	0,0	-26,6
	ULS 3	3,8	0,3	27,1	-4,0	0,0	-21,6
	ULS 4	2,2	0,0	22,8	-2,5	0,0	-18,4
	ULS 6b	1,9	0,0	16,4	-2,1	0,0	-12,0
	ULS 7	0,8	0,0	10,6	-1,1	0,0	- 5,7
150ct2f1	SLS 1a	4,9	2,6	18,6	-5,0	-0,8	-15,1
	SLS 3	3,1	1,4	17,1	-4,2	-0,6	-13,2
	SLS 4	3,0	1,0	16,0	-3,4	-0,4	-12,5
	SLS 6	1,9	0,8	10,9	- 2,3	-0,2	- 7,5
	SLS 7	1,5	0,3	9,5	-1,9	-0,4	-6,0
	ULS 1a	6,5	3,6	22,1	-6,1	-0,9	-18,1

Project:	ZWO380 D2.2 OSP Mast 1
Masttype:	H1
Mast:	1

Mast:	1						
150ct2f1	ULS 3	3,7	1,8	19,4	-4,8	-0,7	-14,8
	ULS 4	3,0	1,2	16,6	-3,5	-0,3	-12,6
	ULS 6b	2,1	1,0	13,0	-3,0	-0,4	-9,0
	ULS 7	1,5	0,3	10,2	-2,0	-0,4	-5,7
150ct2f2	SLS 1a	5,2	3,3	18,3	- 5,3	-1,4	-14,9
	SLS 3	3,2	2,0	16,8	-4,4	-1,2	-12,9
	SLS 4	3,2	1,6	15,5	-3,6	-1,1	-12,0
	SLS 6	1,9	1,1	10,5	-2,4	-0,6	- 7,0
	SLS 7	1,7	0,6	9,5	-2,1	-0,8	- 6,0
	ULS 1a	6,8	4,3	21,9	- 6,5	-1,8	- 17,9
	ULS 3	3,8	2,4	19,1	- 5,2	-1,3	-14,5
	ULS 4	3,2	1,8	16,1	- 3,7	-1,0	-12,1
	ULS 6b	2,1	1,3	12,8	-3,2	-0,8	-8,8
	ULS 7	1,7	0,6	10,3	-2,2	-0,8	-5,8
150ct2f3	CIC 12	5,0	3,5	24,9	- 4,2	-1,2	-21,1
15001215	SLS 1a	3,1		24,9	- 4,2 - 3,3	-1,2 -1,0	-21,1 -17,8
	SLS 4	2,2	2,0 1,4	21,2	-3,3 -2,4	-1,0 -0,6	-17,6 -17,4
	SLS 6						
		1,2	1,0	13,2	-1,5	-0,2	-9,4
	SLS 7	0,8	0,3	9,8	-1,1	-0,4	-6,0
	ULS 1a	6,6	4,8	30,2	-5,4	-1,4	-25,8
	ULS 3	3,9	2,6	26,0	-3,9	-1,1	-20,5
	ULS 4	2,2	1,6	22,2	-2,5	-0,4	-17,8
	ULS 6b	2,0	1,3	15,7	-2,1	-0,6	-11,3
	ULS 7	0,8	0,3	10,6	-1,1	-0,4	-5,6

18-6-2021 5 van 5




Project: ZW-Oost GT-BD150 Masttype: Hoekmast H1

Mast: 1

Auteur: MKh
Oplegreacties per randstijl Versie: 1.4

Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

Assenstelsels

Maximale	drukbelasting
Maximale	urukbelastilig

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 1a_45 Ba All Cts	- 52	- 52	-292	0	- 73	6	-301
2	SPLS 1a_0 Ba All Cts	-40	37	-222	-2	-55	3	- 229
3	ULS 3_135	138	147	-888	-6	-201	- 5	-910
4	ULS 1a_105	163	- 175	-1019	9	-239	2	-1047

Maximale trekbelasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	100	108	659	6	147	6	675
2	ULS 1a_0,9_105	126	-138	800	- 9	187	-1	822
3	SPLS 1a_0,9_0,9_45 Ba All Cts	- 28	- 29	151	1	40	- 5	156
4	SPLS 1a 0,9 0,9 0 Ba All Cts	-17	14	82	2	21	- 2	84

Maximale torsiebelasting (positief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_93 Ba Ct2 Ba Ct1	-18	86	245	73	48	8	249
2	SPLS 6a_93 Ba Ct2 Ba Ct1	84	9	220	66	53	- 2	226
3	SPLS 6a_93 Ba Ct2 Ba Ct1	119	12	-428	76	-93	- 6	-438
4	SPLS 6a_93 Ba Ct2 Ba Ct1	13	-130	-422	83	-101	2	-434

Maximale torsiebelasting (negatief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_93 Ba Ct1 Ba Ct2	76	-21	166	-69	39	0	170
2	SPLS 6a_93 Ba Ct1 Ba Ct2	- 8	-99	302	- 76	64	6	309
3	SPLS 6a_93 Ba Ct1 Ba Ct2	3	118	-367	-81	- 85	0	- 377
4	SPLS 6a_93 Ba Ct1 Ba Ct2	129	- 24	-483	- 74	-108	-4	- 495

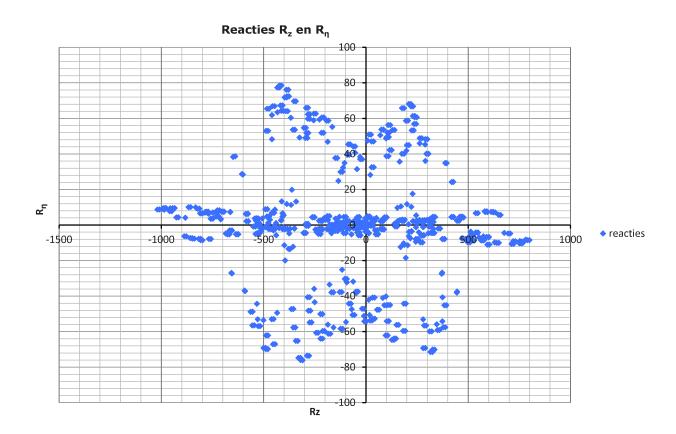
Combinatie Ftrek+Fh

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	100	108	659	6	147	6	675
2	ULS 1a_0,9_105	126	-138	800	-9	187	-1	822
3	SPLS 6a_93 Ba Ct1 Ba Ct2	3	118	-367	-81	- 85	0	- 377
4	SPLS 6a 93 Ba Ct2 Ba Ct1	13	-130	-422	83	-101	2	-434

Permanente belasting

Stijl	Combinatie	R_x	R_{v}	R_z	R_n	R _ξ	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SLS 7	40	43	264	3	59	2	270
2	SLS 7	33	-38	226	-4	50	2	231
3	SLS 7	71	75	-449	-3	-103	-1	- 461
4	SLS 7	65	-69	-411	3	- 94	-1	-422

Omhullenden ongeacht stijl

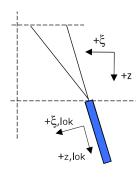

Belasting	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Max. druk	ULS 1a_105	163	-175	-1019	9	-239	2	-1047
Max. trek	ULS 1a_0,9_105	126	-138	800	- 9	187	-1	822
Max. pos. torsie	SPLS 6a_93 Ba Ct2 Ba Ct1	13	-130	-422	83	-101	2	-434
Max. neg. torsie	SPLS 6a_93 Ba Ct1 Ba Ct2	3	118	-367	-81	-85	0	- 377
Comb. trek+torsie	ULS 1a_0,9_105	126	-138	800	-9	187	-1	822

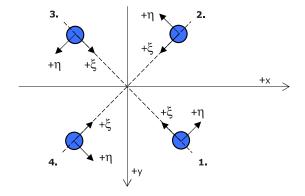
Maximale drukbelasting SLS

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 1a_0,9_0,9_45	- 22	-19	-83	2	-29	9	- 87
2	SLS 1a_0	- 8	0	-4	- 5	- 6	5	- 5
3	ULS 3_135	138	147	-888	-6	-201	- 5	-910
4	ULS 3 135	1.50	-161	-959	8	-220	-3	-984

Maximale trekbelasting SLS

Stijl	Combinatie	R _x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	100	108	659	6	147	6	675
2	ULS 3_0,9_135	111	-124	730	- 9	166	4	749
3	ULS 1a_0,9_0,9_45	12	15	-119	- 2	-19	- 9	-120
4	SLS 1a_0	28	-35	-206	5	-44	-4	-211




Project: ZW-Oost GT-BD150 Masttype: Hoekmast H1

Mast: 1

Auteur: MKh
Oplegreacties per randstijl Versie: 1.4

Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

Assenstelsels

Maximale	drukbelasting
Maximale	urukbelastilig

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 1a_45 Ba All Cts	- 53	- 53	-299	0	- 75	6	-308
2	SPLS 1a_0 Ba All Cts	-42	38	-229	-2	-56	3	-236
3	ULS 3_135	162	173	-1050	-8	-237	- 7	-1077
4	ULS 1a_105	195	-210	-1221	11	-287	3	-1254

Maximale trekbelasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	121	131	801	7	178	8	821
2	ULS 1a_0,9_105	156	-170	985	-10	231	- 2	1011
3	SPLS 1a_0,9_0,9_45 Ba All Cts	-28	- 29	151	1	40	- 5	156
4	SPLS 1a 0.9 0.9 0 Ba All Cts	-17	14	82	2	21	- 2	84

Maximale torsiebelasting (positief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_93 Ba Ct2 Ba Ct1	-19	90	253	76	50	9	258
2	SPLS 6a_93 Ba Ct2 Ba Ct1	87	10	224	69	55	- 2	230
3	SPLS 6a_93 Ba Ct2 Ba Ct1	125	14	-451	79	-98	- 7	-462
4	SPLS 6a_93 Ba Ct2 Ba Ct1	14	-135	-443	86	-105	2	-455

Maximale torsiebelasting (negatief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_93 Ba Ct1 Ba Ct2	79	-22	172	-71	40	0	176
2	SPLS 6a_93 Ba Ct1 Ba Ct2	-10	-102	309	- 79	66	6	316
3	SPLS 6a_93 Ba Ct1 Ba Ct2	4	124	-389	-84	-90	0	-399
4	SPLS 6a_93 Ba Ct1 Ba Ct2	135	- 25	-505	- 77	-113	- 4	-518

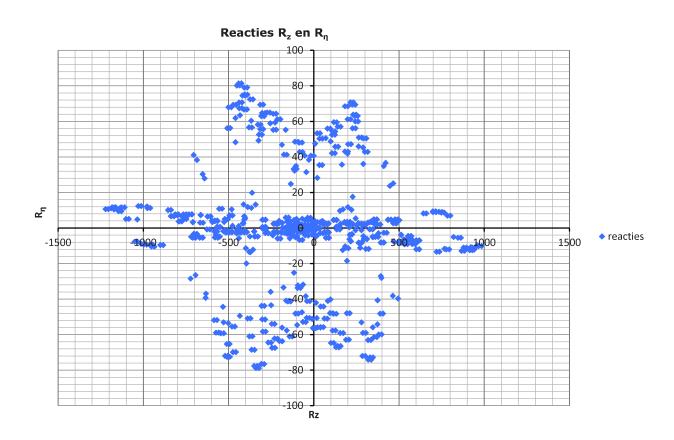
Combinatie Ftrek+Fh

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	121	131	801	7	178	8	821
2	ULS 1a_0,9_105	156	-170	985	-10	231	- 2	1011
3	SPLS 6a_93 Ba Ct1 Ba Ct2	4	124	-389	- 84	- 90	0	-399
4	SPLS 6a 93 Ba Ct2 Ba Ct1	14	-135	-443	86	-105	2	-455

Permanente belasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SLS 7	40	43	264	3	59	2	270
2	SLS 7	33	-38	226	-4	50	2	231
3	SLS 7	71	75	-449	-3	-103	-1	-461
4	SLS 7	65	- 69	-411	3	- 94	-1	-422

Omhullenden ongeacht stijl


Belasting	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Max. druk	ULS 1a_105	195	-210	-1221	11	-287	3	-1254
Max. trek	ULS 1a_0,9_105	156	-170	985	-10	231	- 2	1011
Max. pos. torsie	SPLS 6a_93 Ba Ct2 Ba Ct1	14	-135	- 443	86	-105	2	- 455
Max. neg. torsie	SPLS 6a_93 Ba Ct1 Ba Ct2	4	124	-389	-84	-90	0	-399
Comb. trek+torsie	ULS 1a_0,9_105	156	-170	985	-10	231	- 2	1011

Maximale drukbelasting SLS

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 1a_0,9_0,9_45	-33	-30	-144	2	- 45	11	-151
2	SLS 1a_0	-10	3	-18	- 5	- 9	5	-20
3	ULS 3_135	162	173	-1050	-8	- 237	- 7	-1077
4	ULS 3_135	179	-192	-1145	9	- 263	- 3	-1175

Maximale trekbelasting SLS

Stijl	Combinatie	R _x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	121	131	801	7	178	8	821
2	ULS 3_0,9_135	136	-152	896	-11	204	5	919
3	ULS 1a_0,9_0,9_45	2	5	-65	- 2	- 5	-11	- 65
4	SLS 1a_0	26	- 32	-194	5	-41	- 4	-198

Inhoud

- Uitgangspunten
- Mastconstructie
- Tussenresultaten
- Belastingen initiëel
- Belastingen na aanpassing
- Belastingen na passing

Gegevens

Norm NEN-EN50341-2-15:2019

Initieel

Gevolgklasse CC2-0 Betrouwbaarheidsniveau Afkeur Referentieperiode 30 jaar

Na aanpassing

Gevolgklasse CC2
Betrouwbaarheidsniveau Verbouw
Referentieperiode 50 jaar

Windgebied III
Windsnelheid 24,5 m/s
Terreincategorie II
Reductie factor Cdir 1,00
IJsgebied B

MasttypeHoekmastMasthoogte32 mMax. veldlengte229,1 mLijnhoek152°Trekparameter1100 m

Wind span 116 m EDS Weight span 577 m Min. Weight span 105 m Max. Weight span 9465 m

0.0	2021-07-28			
ISSUE	DATE	REVISION	CHK'D	APP'D
		•		

Client:

Title:

Berekening masttype H150

JOB No.	-	DATE	-
DRAWN	-	CHKD	-
DESIGN	-	APPD	-

Document name:

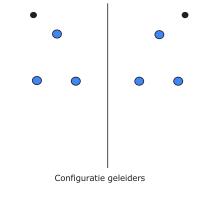
ZWO380 D2.2 OSP Mast 11_H150_11_Report.pdf

Project number:

Project client number:

0.0

ZWO380 D2.2 OSP Mast 11


Project: Tower: Number: H150

Auteur: TBR Geleiderbelastingen Versie: v11.9

Algemeen

Angelieeri Benaming Masttype Aantal circuits Configuratie Aantal bliksemgeleiders H150 Hoekmast 2-circuit-donau

Uitgangspunten NEN-EN50341-2-15:2019 Norm Gevolgklasse initieel CC2-0 Betrouwbaarheidsniveau initieel Afkeur CC2-0 30 jaar CC2 Verbouw 50 jaar III Referentieperiode initieel Gevolgklasse na aanpassing Betrouwbaarheidsniveau na aanpassing Referentieperiode na aanpassing Windgebied Windsnelheid (m/s) 24,5 m/s II Terreincategorie Reductiefactor c_{dir} IJsgebied fasegeleider IJsgebied bliksemgeleider 1,00 В

Geleiders Back

Omschrijving	Spanning	Geleider Back	Bundel Ba	IJsgebied	Toeslag gewicht	Toeslag diameter	Intrekwaarden P _{back}
Circuit 1	150 kV	ACSR 20/224	2	В	2 %	2 %	1100
Circuit 2	150 kV	ACSR 20/224	2	В	2 %	2 %	1100
Bliksemdraad 1		ACSR 30/52 PETREL	1	Α	2 %	2 %	1600
Bliksemdraad 2		ACSR 30/52 PETREL	1	Α	2 %	2 %	1600

Geleiders Ahead							
Omschrijving	Spanning	Geleider Ahead	Bundel Ah	IJsgebied	Toeslag gewicht	Toeslag diameter	Intrekwaarden P _{ahead}
Circuit 1	150 kV	ACSR 20/224	2	В	2 %	2 %	50
Circuit 2	150 kV	ACSR 20/224	2	В	2 %	2 %	50
Bliksemdraad 1		Niet aanwezig	1	Α	2 %	2 %	1600
Bliksemdraad 2		Niet aanwezig	1	Α	2 %	2 %	1600

Isolatoren	(1)			
Omschrijving	Ophanging	Gewicht	Lengte	Windopp.
		[kN]	[m]	[m ²]
Circuit 1	Afspanketting	1,50	4,50	1,00
Circuit 2	Afspanketting	1,50	4,50	1,00
Bliksemdraad 1	Afspanketting	0,10	0,20	0,10
Bliksemdraad 2	Afspanketting	0,10	0,20	0,10

Eigenschappen gelden voor geheel van de isolatorset

Ophanghoogte en positie in mast

	•				Positie in mast	
Circuits	Aandui	ding Nummer	Ophanghoogte	Aangrijppunt	Horizontale afstand	
Circuit 1	10	150ct1f1	21,4 m	21,4 m	9,5 m	
Circuit 1	11	150ct1f2	21,4 m	21,4 m	4,6 m	
Circuit 1	12	150ct1f3	27,3 m	27,3 m	4,4 m	
Circuit 2	20	150ct2f1	21,4 m	21,4 m	-4,6 m	
Circuit 2	21	150ct2f2	21,4 m	21,4 m	-9,5 m	
Circuit 2	22	150ct2f3	27,3 m	27,3 m	-4,4 m	
Bliksemdraad 1	1	bl1	29,5 m	29,5 m	8,8 m	
Bliksemdraad 2	3	bl2	29,5 m	29,5 m	-8,8 m	

28-7-2021 2 van 21

ZWO380 D2.2 OSP Mast 11 H150 11

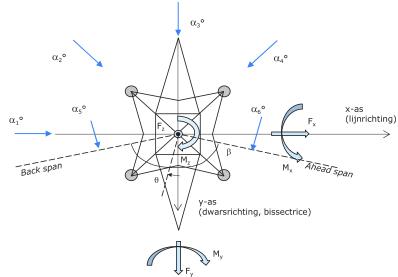
Project: Tower: Number:

Hoogteaanpassing naastgelegen masten (aanpassing wind- en weight span)

	васк	Anead	
Verhoging voor windbelasting	0,0 m	0,0 m	(positief: omhoog)
Verlaging voor verticale belasting	0,0 m	0,0 m	(negatief: omlaag, grotere weight span)

Verlaging: Niet in 0,9EG-combinaties

Hoogteafwijking mastbeeld naastgelegen masten en richtingsverandering t.o.v. Lijnrichting


			Hoogtev	erschil	Richtingsver	andering	
Circuits	Aandui	ding Nummer	Δh_back Δ	\h_ahead	Δy_back Δ	\y_ahead	
Circuit 1	10	150ct1f1	-0,7	-20,9 m	0,0	-2,5 m	
Circuit 1	11	150ct1f2	-0,7	-20,9 m	0,0	-0,4 m	
Circuit 1	12	150ct1f3	0,2	-27,7 m	0,0	-2,0 m	
Circuit 2	20	150ct2f1	-0,7	-20,9 m	0,0	0,4 m	
Circuit 2	21	150ct2f2	-0,7	-20,9 m	0,0	2,5 m	
Circuit 2	22	150ct2f3	0,2	-27,7 m	0,0	2,0 m	
Bliksemdraad 1	1	bl1	0,5	0,0 m	0,0	0,0 m	
Bliksemdraad 2	3	bl2	0,5	0,0 m	0,0	0,0 m	

Lijn- en mastgegevens

		Back	Ahead	
		229,1	3,0 m	
Ruling span $\sqrt{(\Sigma L^3/\Sigma L)}$		285,6	3,0 m	
Lijnhoek	β	152 °		
Rotatie mast t.o.v. bissectrice	θ	0 °		
Vaklengte		549	3 m	
Hoogte onderkant mast t.o.v. ma	aiveld	0,7 m		
Beschouwde windrichtingen	α_1	0 °		
Windrichtingen volgens:	α_2	45 °		
Geleiderbelastingen	α_3	90 °		
	α_4	135 °		
	α_5	76 °		
	α_6	104 °		

Windrichtingen gelden t.o.v. hoofdrichting mastconstructie, niet t.o.v. bissectrice.

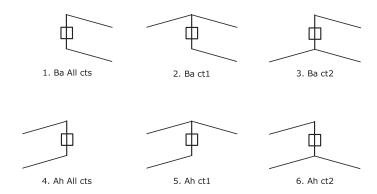
Windrichtingen en positieve richtingen belastingen

Beschouwd aantal windrichtingen	
1a	6
3	6
4	1
6	1
Overig	1

28-7-2021 3 van 21

ZWO380 D2.2 OSP Mast 11 H150 11

Project: Tower: Number:


Geleiderafval

		SPLS	5 - torsie	SPLS - Enl	kelzijdige trek	5a - gele	eiderbreuk
		Aanw.	Afw.	Aanw.	Afw.	Aanw.	Afw.
Circuit 1	150ct1f1	1	0	1	0	1	0
Circuit 1	150ct1f2	1	0	1	0	1	0
Circuit 1	150ct1f3	1	0	1	0	1	0
Circuit 2	150ct2f1	0	1	1	0	1	0
Circuit 2	150ct2f2	0	1	1	0	1	0
Circuit 2	150ct2f3	0	1	1	0	1	0
Bliksemdraad 1	bl1	1	0	1	0	1	0
Bliksemdraad 2	bl2	0	1	1	0	1	0

Belastingsituaties SPLS

Beschouwde situaties SPLS: 1 t/m 6, alle mogelijke situaties.

Principe belastingssituaties:

Belastingsituaties 5a. Geleiderbreuk

Beschouwde situaties geleiderbreuk 5a: 1 en 2, alle mogelijke situaties.

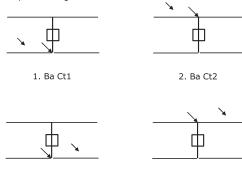
Principe belastingssituaties:

28-7-2021 4 van 21

Project: ZWO380 D2.2 OSP Mast 11

Tower: H150 Number: 11

Belastingsituaties 6. Bouw- en onderhoud


Onder 6a wordt de belasting door aanwezigheid lijnwagen of lijnfiets in combinatie met puntlast op traverse in rekening gebracht. Combinatie 6b bevat geen belastingen in geleider of op traverse. Deze combinatie is toegevoegd om te kunnen combineren met separate controle bordessen etc. De situaties worden in ULS en in iedere SPLS-situatie (in geval van hoekmast) toegepast.

	Fase	Bliksem
Lijnwagen	3,0 kN	2,0 kN
Puntlast op traverse	1,0 kN	1,0 kN

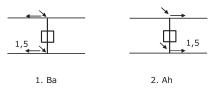
Beschouwde situaties bouw- en onderhoud 6a: 1 en 2, uitgangspunt is symmetrie tussen back / ahead.

Aanwezigheid lijnwagen: Circuit, belasting tegelijk aanwezig in alle geleiders per circuit.

Principe belastingssituaties:

Belastingsituaties 8. Lijndansen als statische belasting

Geleider			
Steunmast fase	0,866 W	1,5 W	
Steunmast bliksem	1,5 EDS	1,5 W	
Hoekmast fase en bliksem	1.5 EDS	1,5 W	


4. Ah Ct2

Beschouwde situaties lijndansen 8: Geen (bestaande constructie)

Belasting tegelijk aanwezig in alle geleiders van het circuit.

Principe belastingssituaties:

3. Ah Ct1

Belastingcombinatie 8. Lijndansen als dynamische belasting

Alleen van toepassing op hoek- en eindmasten

Belasting bestaat uit EDS-trekbelasting in één van de geleiders aan één zijde van de mast Door gebruiker via het belastingsspectrum van tabel 4.11/NL.1 om te zetten naar spanningspectrum

28-7-2021 5 van 21

Project: ZWO380 D2.2 OSP Mast 11

Tower: H150 Number: 11

Mastconstructie

Eigenschappen

Masttype Hoekmast
Mastbenaming H150
Voetplaat t.o.v. maaiveld 0,5 m
Masthoogte t.o.v. voetplaat 32,0 m
Gewicht mast 140,0 kN

Breedte en helling mast bij fundatiex-ri.y-ri.Pootsprei5,405,40 mHelling van de randstijl0,1180,118 -Factor spatkracht1,31,3 -

Berekening windbelasting

Dynamische invloed G_T 1,00 (Masthoogte < 60 m)

Windbelasting overhoeks op mastlichaam evenredig met: $(A1C1sin^2(phi)) + A2C2cos^2(phi))$ Windbelasting overhoeks op traverse evenredig met: $(A1C1sin^2(phi)) + A2C2cos^2(phi))$

Vergroting wind overhoeks mastlichaam (1+0,2sin^2(2phi))
Vergroting wind overhoeks traverse (1+0,2sin^2(2phi))
Factor wind evenwijdig t.o.v. haaks op traverse 0,4

Eigenschappen mastsecties langsrichting (vooraanzicht, yz-vlak)

geeappenaeteetice		,,,	,						
Omschrijving	h	b_1	b_2	∆h	Δ_{x}	A_0	A_1	$\chi = A_1/A_0$	C_{t}
	[m]	[m]	[m]	[m]	[m]	[m ²]	$[m^2]$	[-]	
Broekstuk	7,50	5,40	3,63	7,50	0,118	33,86	6,19	0,18	3,01
Eerste tussenstuk	14,57	3,63	2,86	7,07	0,054	22,94	5,23	0,23	2,81
Tweede tussenstuk	21,41	2,86	2,10	6,84	0,056	16,96	4,26	0,25	2,72
Bovenstuk 1	25,40	2,10	1,91	3,99	0,024	8,00	2,36	0,30	2,55
Bovenstuk 2	29,50	1,91	1,70	4,10	0,026	7,40	2,18	0,29	2,55
Topstuk	32,00	1,70		2,50		2,13	0,29	0,14	3,22
Ondertraverse	21,41	8,42		2,10		8,84	2,73	0,31	2,51
Boventraverse	27,30	7,95		2,20		8,75	2,53	0,29	2,57

Eigenschappen mastsecties dwarsrichting (zijaanzicht, xz-vlak)											
Omschrijving	h	b_1	b ₂	∆h	Δ_{x}	A_0	A_1	$\chi = A_1/A_0$	C_t		
	[m]	[m]	[m]	[m]	[m]	[m²]	[m ²]	[-]			
Broekstuk	7,50	5,40	3,63	7,50	0,118	33,86	6,19	0,18	3,01		
Eerste tussenstuk	14,57	3,63	2,86	7,07	0,054	22,94	5,23	0,23	2,81		
Tweede tussenstuk	21,41	2,86	2,10	6,84	0,056	16,96	4,26	0,25	2,72		
Bovenstuk 1	25,40	2,10	1,91	3,99	0,024	8,00	2,36	0,30	2,55		
Bovenstuk 2	29,50	1,91	1,70	4,10	0,026	7,40	2,18	0,29	2,55		
Topstuk	32,00	1,70		2,50		2,13	0,29	0,14	3,22		
Ondertraverse	21,41	8,42		2,10		8,84	2,73	0,31	2,51		
Boventraverse	27,30	7,95		2,20		8,75	2,53	0,29	2,57		

NB: oppervlakte traverse dwarsrichting wordt in berekening gereduceerd.

28-7-2021 6 van 21

ZWO380 D2.2 OSP Mast 11 H150 Project:

Tower: Number:

Windoppervlak feeders telecominstallaties

Onderdeel Broekstuk Δh A (m²/m)Factor

Eerste tussenstuk Tweede tussenstuk Bovenstuk 1 Bovenstuk 2

Invoer antennes Omschrijving Antenne top h (m) $C_f(m)$ A (m²)

Antenne o.t.

Belastingen mastsectie langsrichting (x-richting) per windrichting

Omschrijving	p_w	F _{x1}	F_{x2}	F _{x3}	F_{x4}	h_{ef}	M_{y1}	M_{y2}	M_{y3}	M_{y4}
	[kN/m ²]	[kN]	[kN]	[kN]	[kN]	[m]	[kNm]	[kNm]	[kNm]	[kNm]
Broekstuk	0,70	13,0	11,1	0,0	-11,1	3,8	48,9	41,5	0,0	-41,5
Eerste tussenstuk	0,73	10,7	9,1	0,0	-9,1	11,0	117,8	99,9	0,0	-99,9
Tweede tussenstuk	0,85	9,8	8,3	0,0	-8,3	18,0	177,0	150,2	0,0	-150,2
Bovenstuk 1	0,93	5,6	4,7	0,0	-4,7	23,4	130,9	111,1	0,0	-111,1
Bovenstuk 2	0,96	5,4	4,6	0,0	-4,6	27,5	147,4	125,1	0,0	-125,1
Topstuk	1,00	0,9	0,8	0,0	-0,8	30,8	28,6	24,3	0,0	-24,3
Ondertraverse	0,90	12,4	7,3	0,0	-7,3	22,1	273,1	162,2	0,0	-162,2
Boventraverse	0,97	12,6	7,5	0,0	-7,5	28,0	354,3	210,4	0,0	-210,4

Totaal 70,4 53,4 0,0 -53,4 1278,0 924,7 0,0 -924,7

Belastingen mastsectie dwarsrichting (y-richting) per windrichting

Omschrijving	p_{w}	F_{y1}	F_{y2}	F_{y3}	F_{x4}	h_{ef}	$M_{\times 1}$	M_{x2}	M_{x3}	M_{x4}
	[kN/m ²]	[kN]	[kN]	[kN]	[kN]	[m]	[kNm]	[kNm]	[kNm]	[kNm]
Broekstuk	0,70	0,0	11,1	13,0	11,1	3,8	0,0	41,5	48,9	41,5
Eerste tussenstuk	0,73	0,0	9,1	10,7	9,1	11,0	0,0	99,9	117,8	99,9
Tweede tussenstuk	0,85	0,0	8,3	9,8	8,3	18,0	0,0	150,2	177,0	150,2
Bovenstuk 1	0,93	0,0	4,7	5,6	4,7	23,4	0,0	111,1	130,9	111,1
Bovenstuk 2	0,96	0,0	4,6	5,4	4,6	27,5	0,0	125,1	147,4	125,1
Topstuk	1,00	0,0	0,8	0,9	0,8	30,8	0,0	24,3	28,6	24,3
Ondertraverse	0,90	0,0	7,3	4,9	7,3	22,1	0,0	162,2	109,3	162,2
Boventraverse	0,97	0,0	7,5	5,1	7,5	28,0	0,0	210,4	141,7	210,4

Totaal 53,4 55,4 53,4 924,7 901,6 Resulterende belastingen vanuit mastconstructie incl. antenne zonder geleiders niveau fundatie (kar. waarde)

Jeraceic mien an	ACCINIC LONG	acı gereraera	mircua ramaacie (iki	arr waarac	,	
F _x	F _y	F _z	M _x	M _y	M_z	
[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	
0	0	140	0	0	0	
70	0	0	0	1278	0	
53	53	0	925	925	0	
0	55	0	902	0	0	
-53	53	0	925	-925	0	
	F _x [kN] 0 70 53 0	F _x F _y [kN] [kN] 0 0 70 0 53 53 0 55	Fx Fy Fz [kN] [kN] [kN] 0 0 140 70 0 0 53 53 0 0 55 0	Fx Fy Fz Mx [kN] [kN] [kNm] 0 0 140 0 70 0 0 0 53 53 0 925 0 55 0 902	[kN] [kN] [kNm] [kNm] 0 0 140 0 0 70 0 0 0 1278 53 53 0 925 925 0 55 0 902 0	Fx Fy Fz Mx My Mz [kN] [kN] [kNm] [kNm] [kNm] 0 0 140 0 0 0 70 0 0 0 1278 0 53 53 0 925 925 0 0 55 0 902 0 0

28-7-2021 7 van 21

ZWO380 D2.2 OSP Mast 11 H150 11

Project: Tower: Number:

Tussenresultaten geleiderbelastingen

Geleiders back	k
----------------	---

Circuit	Geleider	Diameter	A G		E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Circuit 2	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Bliksemdraad 1	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05
Bliksemdraad 2	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05

Geleiders ahead

Circuit	Geleider	Diameter	А	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Circuit 2	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Bliksemdraad 1	Niet aanwezig					
Bliksemdraad 2	Niet aanwezig					

Verticale belasting back

	neare belasting back							
Circu	ıit	Bundel	Toeslag	$W_{z,G}$	IJsgebied	Formule	$W_{z,ijs}$	W _{z,ijs,bundel}
		[-]	[%]	[N/m]			[N/m]	[N/m]
Circu	iit 1	2	2	15,5	В	4+0,2d	8,1	16,1
Circu	ıit 2	2	2	15,5	В	4+0,2d	8,1	16,1
Bliks	emdraad 1	1	2	3,8	Α	15+0,4d	19,7	19,7
Bliks	emdraad 2	1	2	3,8	Α	15+0,4d	19,7	19,7

Verticale belasting ahead													
Circuit	Bundel	Toeslag	$W_{z,G}$	IJsgebied	Formule	$W_{z,ijs}$	W _{z,ijs,bundel}						
	[-]	[%]	[N/m]			[N/m]	[N/m]						
Circuit 1	2	2	15,5	В	4+0,2d	8,1	16,1						
Circuit 2	2	2	15,5	В	4+0,2d	8,1	16,1						
Bliksemdraad 1	1	2		Α	15+0,4d								
Bliksemdraad 2	1	2		Α	15+0,4d								

Isolatoren									
Geleider	G _{isolator}	Aantal	$F_{v,iso}$	Lengte	Windopp. W	indhoogte	Stuwdruk	Vormfactor	$F_{h,iso}$
	[kN]	-	[kN]	[m]	[m ²]	[m]	[kN/m ²]	[-]	[kN]
150ct1f1	1,50	1	1,5	4,5	1,0	22,11	0,90	1,2	1,09
150ct1f2	1,50	1	1,5	4,5	1,0	22,11	0,90	1,2	1,09
150ct1f3	1,50	1	1,5	4,5	1,0	28,00	0,97	1,2	1,16
150ct2f1	1,50	1	1,5	4,5	1,0	22,11	0,90	1,2	1,09
150ct2f2	1,50	1	1,5	4,5	1,0	22,11	0,90	1,2	1,09
150ct2f3	1,50	1	1,5	4,5	1,0	28,00	0,97	1,2	1,16
bl1	0,10	1	0,1	0,2	0,1	30,20	0,99	1,2	0,12
bl2	0,10	1	0,1	0,2	0,1	30,20	0,99	1,2	0,12

28-7-2021 8 van 21

Project: ZWO380 D2.2 OSP Mast 11 Tower: H150 Number: 11

Windbelasting back

willabelastili											
	hoogte										
Geleider	wind	Stuwdruk	G_{c_dwars}	G_{c_trek}	C_c	$d_{toeslag}$	w_y	$W_{y,vak}$	D _{ijs,toeslag}	$W_{y,ijs}$	W _{y,ijs,vak}
	[m]	[kN/m²]	[-]	[-]	[-]	[mm]	[N/m]	[N/m]	[mm]	[N/m]	[N/m]
150ct1f1	17,8	0,85	0,64	0,56	1,20	20,75	27,1	23,8	40,2	52,6	46,1
150ct1f2	17,8	0,85	0,64	0,56	1,20	20,75	27,1	23,8	40,2	52,6	46,1
150ct1f3	24,1	0,93	0,67	0,59	1,20	20,75	31,0	27,2	40,2	60,1	52,8
150ct2f1	17,8	0,85	0,64	0,56	1,20	20,75	27,1	23,8	40,2	52,6	46,1
150ct2f2	17,8	0,85	0,64	0,56	1,20	20,75	27,1	23,8	40,2	52,6	46,1
150ct2f3	24,1	0,93	0,67	0,59	1,20	20,75	31,0	27,2	40,2	60,1	52,8
bl1	27,7	0,97	0,68	0,60	1,20	11,99	9,5	8,3	55,2	43,7	38,4
bl2	27,7	0,97	0,68	0,60	1,20	11,99	9,5	8,3	55,2	43,7	38,4

Windbelast											
	hoogte										
Geleider	wind	Stuwdruk	G_{c_dwars}	G_{c_trek}	C_c	$d_{toeslag}$	W_y	$W_{y,vak}$	$D_{ijs,toeslag}$	$W_{y,ijs}$	$W_{y,ijs,vak}$
	[m]	[kN/m²]	[-]	[-]	[-]	[mm]	[N/m]	[N/m]	[mm]	[N/m]	[N/m]
150ct1f1	11,7	0,74	0,60	0,98	1,20	20,75	22,2	35,9	40,2	43,0	69,7
150ct1f2	11,7	0,74	0,60	0,98	1,20	20,75	22,2	35,9	40,2	43,0	69,7
150ct1f3	14,1	0,79	0,62	0,98	1,20	20,75	24,4	38,4	40,2	47,2	74,4
150ct2f1	11,7	0,74	0,60	0,98	1,20	20,75	22,2	35,9	40,2	43,0	69,7
150ct2f2	11,7	0,74	0,60	0,98	1,20	20,75	22,2	35,9	40,2	43,0	69,7
150ct2f3	14,1	0,79	0,62	0,98	1,20	20,75	24,4	38,4	40,2	47,2	74,4
bl1	30,2	0,99	0,69	0,99							
bl2	30,2	0,99	0,69	0,99							

28-7-2021 9 van 21

Project: ZWO380 D2.2 OSP Mast 11 Masttype: H150 Mast: 11

Auteur: Versie: TBR Geleiderbelastingen

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

ULS (bezwijkst	erkte)	341-2-15:20	19					
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γο		γa
		°C	$G_{k,mast}$	$G_{k,qeleider}$	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,05	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,05	0,00	1,12	0,00	
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,12	0,00	
ULS 3	Wind+ijs	-5°	1,05	1,05	0,00	0,34	0,97	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,00	0,34	0,97	0,0
ULS 4	Koude+wind	-20°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,00	0,22	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,05	1,05	1,20	0,22	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 7	Permanent	10°	1,15	1,15	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijkst	erkte, enkel voor hoekmasten:	afwezigheid geleid	ers)	γ _G	γQ			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,05	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,05	0,0	0,78	0,00	
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	
SPLS 3	Wind+ijs	-5°	1,05	1,05	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,0	0,36	0,34	
SPLS 4	Koude+wind	-20°	1,05	1,05	0,0	0,24	0,00	
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,05	1,05	1,2	0,24	0,0	
SPLS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,0	0,24	0,0	0,0
SLS (controle v	van de vervormingen, vermoeiii	ng, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	0,94	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,28	0,88	
SLS 4	Wind	-20°	1,00	1,00	0,0	0,19	0,0	
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,19	0,0	
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen Aantal belastingcombinaties ULS Aantal belastingcombinaties SPLS Aantal belastingcombinaties SLS Aantal knooplasten 6 52 210 15 4432

28-7-2021 10 van 21

ZWO380 D2.2 OSP Mast 11

Project: Masttype: H150 Mast:

- Samenvattingstabellen geleiderbelastingen
 In de onderstaande vier tabellen is weergegeven:
 De maximale geleiderbelasting in het globale assenstelsel, gesplitst in aandeel van back en ahead span
- De alledaagse (EDS) waarden van de gecombineerde geleiderbelasting (ba+Ah) in het globale assenstelsel met in het lokale assenstelsel de maximaal optredende trekkracht.

 Componenten Fx en Fy als absolute waarde

 De alledaagse (EDS) waarden van de gecombineerde geleiderbelastingen (Ba+Ah) met bijbehorende trekkrachten
- Controle op uplift, waar een negatieve waarde duidt op uplift

Maximale waarden voor back en ahead span

Maximale Waarach voor back en aneaa span										
	Fx_ba	Fx_ah	Fy_ba	Fy_ah	Fz_ba	Fz_ah				
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]				
bl1	-24,7	0,0	7,9	0,1	3,6	1,1				
bl2	-24,7	0,0	7,9	0,1	3,6	1,1				
150ct1f1	-40,0	14,2	12,2	0,7	7,6	110,7				
150ct1f2	-40,0	15,6	12,2	2,2	7,6	110,7				
150ct1f3	-40,0	14,9	13,4	0,8	7,5	146,6				
150ct2f1	-40,0	14,5	12,2	6,0	7,6	110,7				
150ct2f2	-40,0	9,2	12,2	12,7	7,6	110,7				
150ct2f3	-40,0	10,5	13,4	11,7	7,5	146,6				

Min. Weight s	span (m)	Max. Weight span (m)		
Weight spar Co	mbinatie1	Weight spar Combinatie1		
Geleider	SLS 1a	SLS 4	SLS 7	Geleider ULS 1a ULS 3
bl1	107,9	110,3	111,1	bl1 111,1 112,3
bl2	107,9	110,3	111,1	bl2 111,1 112,3
150ct1f1	475,3	7157,1	466,7	150ct1f1 924,5 1487,6
150ct1f2	466,8	7157,4	466,7	150ct1f2 941,9 1489,4
150ct1f3	589,5	9464,6	576,6	150ct1f3 1264,9 1941,4
150ct2f1	480,4	7157,1	466,7	150ct2f1 939,7 1489,1
150ct2f2	468,4	7156,5	466,7	150ct2f2 934,6 1488,6
150ct2f3	576.1	9463.7	576.6	150ct2f3 1270.5 1942.0

Omhullende weight span over alle combinaties (incl. 0,9 combinaties)

Voor alle geleiders

Wind / Weight span verhouding

Min. weight span

9464,6 m 106,4 m 81,556 -0,917 -

28-7-2021 11 van 21

Project: ZWO380 D2.2 OSP Mast 11 Masttype: H150 Mast: 11

Maximale waarden	back+al	head span	Maximale	waard	en	tre	ekkracht geleider

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	24,7	8,0	3,6	-25,9	0,0
bl2	24,7	8,0	3,6	-25,9	0,0
150ct1f1	40,0	12,5	110,7	-41,4	15,7
150ct1f2	40,0	13,5	110,7	-41,4	15,7
150ct1f3	40,0	13,9	146,6	-41,5	15,7
150ct2f1	40,0	13,8	110,7	-41,4	15,7
150ct2f2	40,0	18,7	110,7	-41,4	15,7
150ct2f3	40,0	17,8	146,6	-41,5	15,7

EDS-belastingen geleiders

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	0,0	1,5	0,5	-6,1	0,0
bl2	0,0	1,5	0,5	-6,1	0,0
150ct1f1	0,7	4,1	6,9	-17,1	0,8
150ct1f2	0,8	4,1	6,9	-17,1	0,8
150ct1f3	0,7	4,1	8,7	-17,1	0,8
150ct2f1	0,7	4,1	6,9	-17,1	0,8
150ct2f2	0,5	4,1	6,9	-17,1	0,8
150ct2f3	0.5	4.1	8.7	-17.1	0.8

Controle uplift SLS-wind

		Fz_ba	Fz_ah
Combinat	ie:Geleider	[kN]	[kN]
SLS 4	bl1	0,0	0,0
	bl2	0,0	0,0
	150ct1f1	0,0	0,0
	150ct1f2	0,0	0,0
	150ct1f3	0,0	0,0
	150ct2f1	0,0	0,0
	150ct2f2	0,0	0,0
	150ct2f3	0,0	0,0

28-7-2021 12 van 21

Project: ZWO380 D2.2 OSP Mast 11 Masttype: H150 Mast: 11

Auteur: Versie: TBR Geleiderbelastingen

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

ULS (bezwijks	terkte)	NEN-EN50	341-2-15:20	19				
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γο		γa
		°C	$G_{k,mast}$	$G_{k,qeleider}$	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,15	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,40	0,00	0,0
ULS 3	Wind+ijs	-5°	1,15	1,15	0,00	0,42	1,30	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,00	0,42	1,30	0,0
ULS 4	Koude+wind	-20°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,00	0,28	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,15	1,15	1,30	0,28	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 7	Permanent	10°	1,30	1,30	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijks	terkte, enkel voor hoekmasten:	afwezigheid geleid	ers)	γ _G	γQ			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,15	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,15	1,15	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,15	1,15	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,15	1,15	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,0	0,24	0,0	0,0
SLS (controle	van de vervormingen, vermoeiii	ng, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	1,00	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,30	1,00	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen Aantal belastingcombinaties ULS Aantal belastingcombinaties SPLS Aantal belastingcombinaties SLS Aantal knooplasten 6 52 210 15 4432

28-7-2021 16 van 21

ZWO380 D2.2 OSP Mast 11

Project: Masttype: H150 Mast:

- Samenvattingstabellen geleiderbelastingen
 In de onderstaande vier tabellen is weergegeven:
 De maximale geleiderbelasting in het globale assenstelsel, gesplitst in aandeel van back en ahead span
- De alledaagse (EDS) waarden van de gecombineerde geleiderbelasting (ba+Ah) in het globale assenstelsel met in het lokale assenstelsel de maximaal optredende trekkracht.

 Componenten Fx en Fy als absolute waarde

 De alledaagse (EDS) waarden van de gecombineerde geleiderbelastingen (Ba+Ah) met bijbehorende trekkrachten
- Controle op uplift, waar een negatieve waarde duidt op uplift

Maximale waarden voor back en ahead span

	Fx_ba	Fx_ah	Fy_ba	Fy_ah	Fz_ba	Fz_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	-29,9	0,0	9,7	0,2	3,9	1,1
bl2	-29,9	0,0	9,7	0,2	3,9	1,1
150ct1f1	-42,9	14,2	14,8	0,7	8,3	110,9
150ct1f2	-42,9	15,6	14,8	2,2	8,3	110,9
150ct1f3	-43,0	14,9	16,3	0,8	8,2	146,8
150ct2f1	-42,9	14,5	14,8	6,0	8,3	110,9
150ct2f2	-42,9	9,2	14,8	12,7	8,3	110,9
150ct2f3	-43,0	10,5	16,3	11,7	8,2	146,7

Min. V	Veight span (m))	Max. We	Max. Weight span (m)			
Weigh	t spar Combinatie:	Weight sp	Weight spar Combinatie1				
Geleid	er SLS 1a	SLS 4	SLS 7	Geleider	ULS 1a	ULS 3	
bl1	107,7	110,3	111,1	bl1	111,1	112,5	
bl2	107,7	110,3	111,1	bl2	111,1	112,5	
150ct1	.f1 476,4	7157,2	466,7	150ct1f1	997,7	1278,2	
150ct1	.f2 466,9	7157,5	466,7	150ct1f2	1017,1	1280,3	
150ct1	.f3 591,1	9464,8	576,6	150ct1f3	1370,7	1664,7	
150ct2	ef1 482,1	7157,2	466,7	150ct2f1	1014,6	1280,0	
150ct2	ef2 468,5	7156,6	466,7	150ct2f2	1008,8	1279,4	
150ct2	2f3 576,0	9463,7	576,6	150ct2f3	1377,0	1665,5	

Omhullende weight span over alle combinaties (incl. 0,9 combinaties)

Voor alle geleiders Max. weight span Min. weight span

9464,8 m 105,1 m Wind / Weight span verhouding 81,558 -

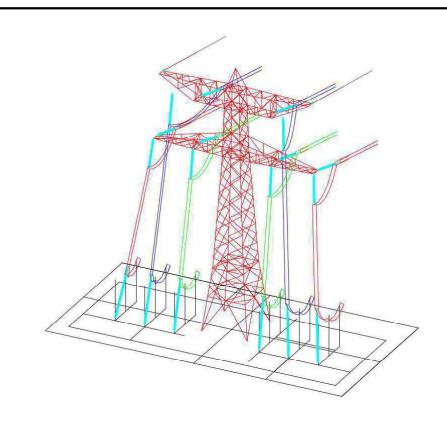
0,906 -

28-7-2021 17 van 21

Project: ZWO380 D2.2 OSP Mast 11 Masttype: H150 Mast: 11

Maximale waarden back+ahead span Maximale waarden trekkracht geleider

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	29,9	9,7	3,9	-31,3	0,0
bl2	29,9	9,7	3,9	-31,3	0,0
150ct1f1	41,5	15,1	110,9	-44,5	15,7
150ct1f2	41,5	16,4	110,9	-44,5	15,7
150ct1f3	41,5	16,9	146,8	-44,9	15,7
150ct2f1	41,7	16,4	110,9	-44,5	15,7
150ct2f2	42,2	19,3	110,9	-44,5	15,7
150ct2f3	42,2	18,8	146,7	-44,9	15,7


EDS-belastingen geleiders

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	0,0	1,5	0,5	-6,1	0,0
bl2	0,0	1,5	0,5	-6,1	0,0
150ct1f1	0,7	4,1	6,9	-17,1	0,8
150ct1f2	0,8	4,1	6,9	-17,1	0,8
150ct1f3	0,7	4,1	8,7	-17,1	0,8
150ct2f1	0,7	4,1	6,9	-17,1	0,8
150ct2f2	0,5	4,1	6,9	-17,1	0,8
150ct2f3	0.5	4.1	8.7	-17.1	0.8

Controle uplift SLS-wind

		Fz_ba	Fz_ah
Combina	tie: Geleider	[kN]	[kN]
SLS 4	bl1	0,0	0,0
	bl2	0,0	0,0
	150ct1f1	0,0	0,0
	150ct1f2	0,0	0,0
	150ct1f3	0,0	0,0
	150ct2f1	0,0	0,0
	150ct2f2	0,0	0,0
	150ct2f3	0,0	0,0

28-7-2021 18 van 21

Inhoud

- Uitgangspunten
- Mastconstructie
- Tussenresultaten
- Belastingen initiëel
- Belastingen na aanpassing
p. 15

Gegevens

Norm NEN-EN50341-2-15:2019

Initieel

Gevolgklasse CC2-0 Betrouwbaarheidsniveau Afkeur Referentieperiode 30 jaar

Na aanpassing

Gevolgklasse CC2
Betrouwbaarheidsniveau Verbouw
Referentieperiode 50 jaar

Windgebied III
Windsnelheid 24,5 m/s
Terreincategorie II
Reductie factor Cdir 1,00
IJsgebied B

Masttype Hoekmast Lijnhoek 152°

0.0	2021-06-18			
ISSUE	DATE	REVISION	CHK'D	APP'D

Client:

Title:

Verticale geleiders H150

JOB No.	-	DATE	-
DRAWN	-	CHKD	-
DESIGN	-	APPD	-

Document name:

D2.3 OSP Mastr 11_H150_11_Report.pdf

Project number:

Project client number:											
-											
	ı	ı —	l	I			1		1		
0.0											
											l

Project: Tower: D2.3 OSP Mastr 11

H150 Number:

Auteur: Geleiderbelastingen afloper v1.9

Algemeen Benaming Masttype Aantal circuits Configuratie Aantal bliksemgeleiders H150 Hoekmast 2 2-circuit-donau

Uitgangspunten

Norm NEN-E
Gevolgklasse initieel
Betrouwbaarheidsniveau initieel
Referentieperiode initieel
Gevolgklasse na aanpassing
Betrouwbaarheidsniveau na aanpassing
Referentieperiode na aanpassing NEN-EN50341-2-15:2019 CC2-0 Afkeur CC2-0 30 jaar CC2 Verbouw 50 jaar Windgebied III Windsnelheid (m/s) 24,5 m/s Terreincategorie Reductiefactor c_{dir} IJsgebied fasegeleider IJsgebied bliksemgeleider 1,00 B 0

Geleiders

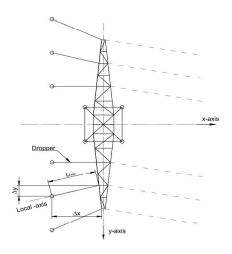
Omschrijving	Spanning	Geleider Back	Bundel Ba	IJsgebied	Toeslag gewicht	Toeslag diameter	
Circuit 1	150 kV	ACSR 20/224	2	В	2 %	2 %	
Circuit 2	150 kV	ACSR 20/224	2	В	2 %	2 %	
Bliksemdraad 1		Niet aanwezig	0	0	0 %	0 %	0
Bliksemdraad 2		Niet aanwezig	0	0	0 %	0 %	0

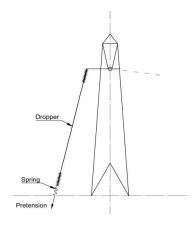
Isolatoren	(1)			
Omschrijving	Ophanging	Gewicht	Lengte	Windopp.
		[kN]	[m]	[m²]
Circuit 1	Afspanketting	1,50	4,50	1,00
Circuit 2	Afspanketting	1,50	4,50	1,00
Bliksemdraad 1	0	0,00	0,00	0,00
Bliksemdraad 2	0	0,00	0,00	0,00

^{1.} Eigenschappen gelden voor geheel van de isolatorset

Ophanghoogte en positie in mast

Circuits	Nummer	Aanduiding	Ophanghoogte	Aangrijppunt
Circuit 1	10	150ct1f1	21,4 m	21,4 m
Circuit 1	11	150ct1f2	21,4 m	21,4 m
Circuit 1	12	150ct1f3	27,3 m	27,3 m
Circuit 2	20	150ct2f1	21,4 m	21,4 m
Circuit 2	21	150ct2f2	21,4 m	21,4 m
Circuit 2	22	150ct2f3	27,3 m	27,3 m
Bliksemdraad 1	1	bl1	0,0 m	0,0 m
Bliksemdraad 2	3	b l 2	0,0 m	0,0 m


18-6-2021 2 van 13



D2.3 OSP Mastr 11 H150

Project: Tower: Number:

Principe hoekmast met aflopers

Top view tower

Side view tower

Hoogteafwijking mastbeeld naastgelegen masten en richtingsverandering t.o.v. Lijnrichting

			Hoogteverschil	Richtingsverar	ndering	Lokaal ∆x Ler	igte overspanning	
Circuits	Nummer	Aanduiding	Δh	Δy	Δx	Lhor	L	
Circuit 1	10	150ct1f1	20,9 m	-2,5	4,0	4,7	21,4 m	
Circuit 1	11	150ct1f2	20,9 m	-0,4	3,7	3,7	21,2 m	
Circuit 1	12	150ct1f3	27,7 m	- 2,0	1,7	2,6	27,8 m	
Circuit 2	20	150ct2f1	20,9 m	0,4	4,0	4,0	21,2 m	
Circuit 2	21	150ct2f2	20,9 m	2,5	3,7	4,5	21,3 m	
Circuit 2	22	150ct2f3	27,7 m	2,0	1,7	2,6	27,8 m	
Bliksemdraad 1	1	bl1	0,0 m	0,0	0,0	0,0	0,0 m	
Bliksemdraad 2	3	bl2	0,0 m	0,0	0,0	0,0	0,0 m	

Voorspanning en veerstijfheid

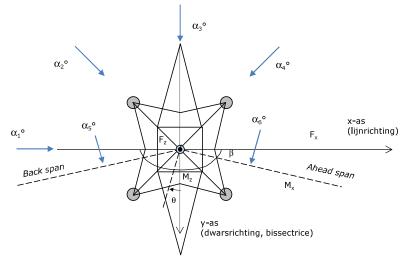
			Voorspanning	Veerstijfheid	Effectieve rekstijfheid
Circuits	Nummer	Aanduiding	F _{pr}	k	EA _{fict}
Circuit 1	10	150ct1f1	3,0 kN	500 kN/m	5006 kN/m
Circuit 1	11	150ct1f2	3,0 kN	500 kN/m	5006 kN/m
Circuit 1	12	150ct1f3	3,0 kN	500 kN/m	7250 kN/m
Circuit 2	20	150ct2f1	3,0 kN	500 kN/m	5006 kN/m
Circuit 2	21	150ct2f2	3,0 kN	500 kN/m	5006 kN/m
Circuit 2	22	150ct2f3	3,0 kN	500 kN/m	7250 kN/m
Bliksemdraad 1	1	b 1	0,0 kN	0 kN/m	kN/m
Bliksemdraad 2	3	bl2	0,0 kN	0 kN/m	kN/m

De effectieve rekstijfheid is bepaald met de invloed van de veerstijfheid Deze is berekend door de optelling van de reciproke waarden van de veerstijfheid van geleider en veer.

18-6-2021 3 van 13

D2.3 OSP Mastr 11 H150

Project: Tower: Number:


Lijn- en mastgegevens

Deze invoer is opgenomen voor beschouwde windrichtingen en komt overeen met invoer geleiderbelastingen voor de mast

Lijnhoek Rotatie mast t.o.v. bissectrice	$_{\theta}^{\beta}$	152 ° 0 °
Hoogte onderkant mast t.o.v. ma	aiveld	0,5 m
Beschouwde windrichtingen	α_1	0 °
Windrichtingen volgens:	α_2	45 °
Geleiderbelastingen	α3	90 °
3	α_4	135 °
	α_5	76 °
	α ₆	104 °

Windrichtingen gelden t.o.v. hoofdrichting mastconstructie, niet t.o.v. bissectrice.

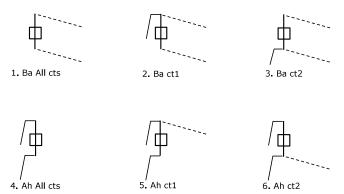
Windrichtingen en positieve richtingen belastingen

Beschouwd aantal windrichtinger	1
1a	_
3	- (
4	
6	
Overig	(

18-6-2021 4 van 13

D2.3 OSP Mastr 11

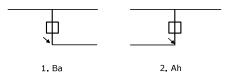
Project: Tower: Number: H150


Geleiderafval

		SPLS -	- torsie	SPLS - Enkel	zijdige trek	5a - geleiderbreuk		
		Aanw.	Afw.	Aanw.	Afw.	Aanw.	Afw.	
Circuit 1	150ct1f1	1	0	1	0	1	0	
Circuit 1	150ct1f2	1	0	1	0	1	0	
Circuit 1	150ct1f3	1	0	1	0	1	0	
Circuit 2	150ct2f1	0	1	1	0	1	0	
Circuit 2	150ct2f2	0	1	1	0	1	0	
Circuit 2	150ct2f3	0	1	1	0	1	0	
Bliksemdraad 1	bl1	1	0	1	0		0	
Bliksemdraad 2	b l 2	0	1	1	0		0	

Belastingsituaties SPLS

Beschouwde situaties SPLS: 1 t/m 6, alle mogelijke situaties. Geleiderbelastingen naar volgende mast geen onderdeel van deze berekening.


Principe belastingssituaties:

Belastingsituaties 5a. Geleiderbreuk

Beschouwde situaties geleiderbreuk 5a: 1 en 2, alle mogelijke situaties.

Principe belastingssituaties:

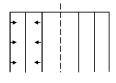
18-6-2021 5 van 13

D2.3 OSP Mastr 11

Project: Tower: H150 Number:

Belastingsituaties 6. Bouw- en onderhoud

Onder 6a wordt de belasting door aanwezigheid lijnwagen of lijnfiets in combinatie met puntlast op traverse in rekening gebracht. Combinatie 6b bevat geen belastingen in geleider of op traverse. Deze combinatie met 20% wind is geschikt voor controle stijgpunt in combinatie met kortsluitbelastingen.


	Fase	Bliksem
Lijnwagen (nvt.)	0,0 kN	0,0 kN
Puntlast op traverse	1,0 kN	1,0 kN

Belastingsituaties 8. Kortsluiting

Principe belastingssituaties:

Kortsluitkrachten

(Zie separate berekening)

Geleider	w _{z,G} Kortsluitkra		F _x	F _v	F_z
	[N/m]	[kN]	[kN]	[kN]	[kN]
10	150ct1f1	16,3	3,0	-1,9	15,9
11	150ct1f2	16,3	2,8	-0,3	16,0
12	150ct1f3	29,0	1,8	-2,0	28,9
20	150ct2f1	16,3	3,1	0,3	16,0
21	150ct2f2	16,3	2,8	1,9	15,9
22	150ct2f3	29,0	1,8	2,1	28,9
1	bl1				
3	hl2				

Belastingcombinaties kortsluiting

Belastingcombinatie
ULS 8 Kortsluiting 10-11
ULS 8 Kortsluiting 10-12
ULS 8 Kortsluiting 11-12
ULS 8 Kortsluiting 20-21
ULS 8 Kortsluiting 20-22
ULS 8 Kortsluiting 21-22

18-6-2021 6 van 13

Project: D2.3 OSP Mastr 11

Tower: H150 Number: 11

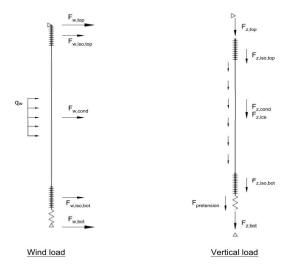
Tussenresultaten geleiderbelastingen

Geleiders

Circuit	Geleider	Diameter	Α	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Circuit 2	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Bliksemdraad 1	Niet aanwezig					
Bliksemdraad 2	Niet aanwezig					

Verticale belasting

Circuit	Bundel	Toeslag	W _{z,}	G	IJsgebied	Formule	W _{z,ijs}	W _{z,ijs,bui}	ndel
	[-]	[%]	[N/	/m]			[N/m]	[N/m]	
Circuit 1		2	2	15,5	В	4+0,2d		8,1	16,1
Circuit 2		2	2	15,5	В	4+0,2d		8,1	16,1
Bliksemdraad 1		0	0		0				
Bliksemdraad 2		0	0		0				


Schema voor berekenen horizontale en verticale belasting

Horizontale belasting wordt bepaald voor de wind tegen de geleider en isolatoren boven en onder.

 $\label{thm:component} \mbox{ De horizontale component als gevolg van de scheefstand van de afloper wordt per belastingscombinatie apart bepaald} \\$

De verticale krachten gelden alleen voor de EDS-conditie zonder externe belastingen en temperatuursverandering De berekeningen zijn weergegeven op het volgende blad.

De berekeningen zijn weergegeven op het volgende blad.

18-6-2021 7 van 13

Project: D2.3 OSP Mastr 11 Tower: H150 Number: 11

Isolatoren					Boven			Onder		
Geleider	G _{isolator}	Lengte	Windopp.	Vormfactor\	Windhoogte	Stuwdruk	F _{h,iso} \	Windhoogte	Stuwdruk	$F_{h,iso}$
	[kN]	[m]	[m ²]	[-]	[m]	[kN/m²]	[kN]	[m]	[kN/m²]	[kN]
150ct1f1	1,50	4,5	1,0	1,2	19,66	0,87	1,05	3,31	0,49	0,59
150ct1f2	1,50	4,5	1,0	1,2	19,66	0,87	1,05	3,31	0,49	0,59
150ct1f3	1,50	4,5	1,0	1,2	25,55	0,94	1,13	2,35	0,49	0,59
150ct2f1	1,50	4,5	1,0	1,2	19,66	0,87	1,05	3,31	0,49	0,59
150ct2f2	1,50	4,5	1,0	1,2	19,66	0,87	1,05	3,31	0,49	0,59
150ct2f3	1,50	4,5	1,0	1,2	25,55	0,94	1,13	2,35	0,49	0,59
bl1	0,00	0,0	0,0	1,2	0,50	0,49		0,50	0,49	
bl2	0,00	0,0	0,0	1,2	0,50	0,49		0,50	0,49	

Horizontale helastii

Horizontale	belasting										
	hoogte										
Geleider	wind	Stuwdruk	G_c	C _c	$d_{toeslag}$	W_y	D _{ijs,toeslag}	$W_{y,ijs}$	F _{w,geleider}	$F_{w,boven}$	$F_{w,onder}$
	[m]	[kN/m²]	[-]	[-]	[mm]	[N/m]	[mm]	[N/m]	[kN]	[kN]	[kN]
150ct1f1	11,5	0,74	0,97	1,20	20,75	35,4	40,2	68,7	0,21	1,3	0,8
150ct1f2	11,5	0,74	0,97	1,20	20,75	35,4	40,2	68,7	0,21	1,3	0,8
150ct1f3	14,0	0,78	0,97	1,20	20,75	37,9	40,2	73,6	0,35	1,5	0,9
150ct2f1	11,5	0,74	0,97	1,20	20,75	35,4	40,2	68,7	0,21	1,3	0,8
150ct2f2	11,5	0,74	0,97	1,20	20,75	35,4	40,2	68,7	0,21	1,3	0,8
150ct2f3	14,0	0,78	0,97	1,20	20,75	37,9	40,2	73,6	0,35	1,5	0,9
bl1	0,5	0,49	0,84								
bl2	0,5	0,49	0,84								

 $\begin{tabular}{ll} \textbf{Verticale belasting} \\ \textbf{Formules:} & F_{z,top} = F_{z,iso,top} + F_{z,cond} + F_{z,iso,bot} + F_{pr} \\ & F_{t,mid} = F_{z,cond}/2 + F_{z,iso,bot} + F_{pr} \\ & F_{z,bot} = -F_{pr} \\ \end{tabular}$ $\begin{aligned} &L_{geleider} = \Delta h - 2L_{iso} \\ &F_{z,cond} = L_{cond} \ x \ w_z \end{aligned}$

Geleider	$W_{z,G}$	$W_{z,ijs}$	L _{geleider}	$F_{z,iso}$	$F_{z,gel}$	$F_{z,ijs}$	Pretension	F _{z,boven}	$F_{t,mid}$	F _{z,onder}
	[N/m]	[N/m]	[m]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
150ct1f1	15,5	16,1	11,9	1,5	0,2	0,2	3,0	6,2	4,6	-3,0
150ct1f2	15,5	16,1	11,9	1,5	0,2	0,2	3,0	6,2	4,6	-3,0
150ct1f3	15,5	16,1	18,7	1,5	0,3	0,3	3,0	6,3	4,6	-3,0
150ct2f1	15,5	16,1	11,9	1,5	0,2	0,2	3,0	6,2	4,6	-3,0
150ct2f2	15,5	16,1	11,9	1,5	0,2	0,2	3,0	6,2	4,6	-3,0
150ct2f3	15,5	16,1	18,7	1,5	0,3	0,3	3,0	6,3	4,6	-3,0
bl1			0,0				0,0			
bl2			0,0				0,0			

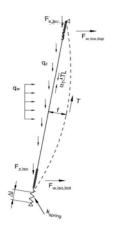
18-6-2021 8 van 13

D2.3 OSP Mastr 11 H150 11

Project: Masttype: Mast:

Auteur: Versie: TBR Geleiderbelastingen v1.9

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar


ULS (bezwijksterkte)		NEN-EN50	341-2-15:20)19				
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γo		γa
		°C	$G_{k,mast}$	G _{k,geleider}	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,05	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,12	0,00	0,0
ULS 3	Wind+ijs	-5°	1,05	1,05	0,00	0,34	0,97	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,00	0,34	0,97	0,0
ULS 4	Koude+wind	-20°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,00	0,22	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,05	1,05	1,20	0,22	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 7	Permanent	10°	1,15	1,15	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwij	ksterkte, enkel voor hoekmasten: a	fwezigheid geleic	lers)	γ _G	γ _Q			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,05	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,05	1,05	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,05	1,05	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,05	1,05	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,0	0,24	0,0	0,0
SLS (contro	le van de vervormingen, vermoeiing	, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	0,94	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,28	0,88	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen	6
Aantal belastingcombinaties ULS	57
Aantal belastingcombinaties SPLS	210
Aantal belastingcombinaties SLS	15
Aantal knooplasten	4512

Schematisation

De trekkracht in de afloper wordt bepaald met de toestandsvergelijking voor een gekromde kabel.

In de rekstijfheid van de kabel is de invloed van de veer verdisconteerd.

18-6-2021 9 van 13

D2.3 OSP Mastr 11

Project: Masttype: Mast: H150

- Tabellen met geleiderbelastingen

 In de onderstaande drie tabellen is weergegeven:
 De trekkracht per belastingcombinatie en de bijbehorende zeeg en veerverlenging
 De geleiderbelastingen in het lokale assenstelsel voor het onderste bevestigingspunt
- De maximale waarden voor de reacties onder en boven in het globale assenstelsel

Trekkracht, zeeg en veerverlenging

Geleider	Combinatie		Veer-	veer- verlengin g [m]	i rek- kracht initieel [kN]	Trek- kracht [kN]
150ct1f1	SLS 1a	0,45	0,009	0,019	4,6	9,3
	SLS 3	0,33	0,007	0,016	4,7	8,0
	SLS 4	0,19	0,006	0,015	4,6	7,4
	SLS 6	0,25	0,002	0,011	4,6	5,6
	SLS 7	0,21	0,000	0,009	4,6	4,6
	ULS 1a	0,48	0,011	0,020	4,9	10,0
	ULS 3	0,35	0,008	0,017	5,0	8,4
	ULS 4	0,20	0,006	0,015	4,9	7,5
	ULS 6b	0,28	0,003	0,012	4,9	6,1
150ct1f2	SLS 1a	0,42	0,009	0,018	4,6	9,0
	SLS 3	0,29	0,006	0,016	4,7	7,8
	SLS 4	0,14	0,006	0,015	4,6	7,4
	SLS 6	0,19	0,002	0,011	4,6	5,4
	SLS 7	0,17	0,000	0,009	4,6	4,6
	ULS 1a	0,45	0,010	0,020	4,9	9,8
	ULS 3	0,31	0,007	0,016	5,0	8,2
	ULS 4	0,15	0,006	0,015	4,9	7,5
	ULS 6b	0,24	0,003	0,012	4,9	6,0
150ct1f3	SLS 1a	0,50	0,012	0,021	4,6	10,6
	SLS 3	0,32	0,009	0,019	4,8	9,3
	SLS 4	0,14	0,009	0,019	4,6	9,3
	SLS 6	0,21	0,003	0,013	4,6	6,3
	SLS 7	0,10	0,000	0,009	4,6	4,6
	ULS 1a	0,53	0,014	0,023	5,0	11,5
	ULS 3	0,36	0,010	0,020	5,1	9,8
	ULS 4	0,16	0,010	0,019	5,0	9,5
	ULS 6b	0,24	0,004	0,013	5,0	6,6

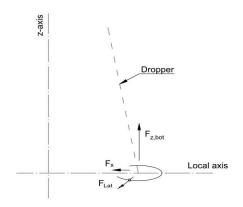
Controle iteratieproces

Geleider	Iteratie
bl1	0
bl2	0
150ct1f:	ОК
150ct1f	OK
150ct1f:	OK
150ct2f:	ОК
150ct2f:	ОК
150ct2f:	ОК
150ct2f	ОК

18-6-2021 10 van 13

D2.3 OSP Mastr 11 H150 11

Project: Masttype: Mast:


Belastingen in lokale richting geleider

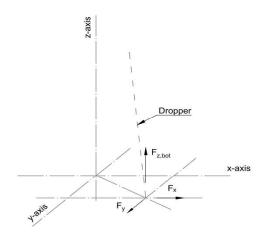
De belastingen op het onderste bevestigingspunt voor het dimensioneren van de ondersteuningsconstructie

De richting van de laterale kracht wordt bepaald door de windrichting en kan in alle richtingen aangrijpen.

De resulterende horizontale kracht kan worden afgeleid uit de vectoriële optelling van de kracht in x-richting en laterale kracht.

Combinatie1	Fx,lok,bot [kN]	Flat,bot [kN]	Fz_bot [kN]
SLS 1a	2,1	0,8	- 7,7
SLS 3	1,8	0,3	- 6,3
SLS 4	1,7	0,2	- 5,8
SLS 6	1,3	0,2	-4,1
SLS 7	1,0	0,0	-3,0
ULS 1a	2,3	0,9	- 8,3
ULS 3	1,9	0,3	-6,6
ULS 4	1,7	0,2	- 5,9
ULS 6b	1,4	0,2	- 4,5
SLS 1a	1,6	0,8	- 7,4
SLS 3	1,4	0,3	-6,1
SLS 4	1,3	0,2	-5,8
SLS 6	1,0	0,2	-3,8
SLS 7	0,8	0,0	- 3,0
ULS 1a	1,7	0,9	-8,1
ULS 3	1,5	0,3	-6,4
ULS 4	1,3	0,2	-5,8
ULS 6b	1,1	0,2	-4,3
SLS 1a	1,0	0,9	- 8,9
SLS 3	0,9	0,4	-7,5
SLS 4	0,9	0,2	-7,7
SLS 6	0,6	0,2	-4,6
SLS 7	0,4	0,0	-3,0
ULS 1a	1,1	1,1	-9,8
ULS 3	0,9	0,4	-7,9
ULS 4	0,9	0,2	-7,7
ULS 6b	0,6	0,2	-4,9

18-6-2021 11 van 13



D2.3 OSP Mastr 11 H150 11

Project: Masttype: Mast:

Maximale waarden in globale assenstelsel

De maximale waarden van de verticale kracht en de resulterende horizontale kracht per belastingcombinatie Zowel voor het bovenste als het onderste bevestigingspunt

Geleider	Combinatie	Fx_top [kN]	Fy_top [kN	Fz_top [kN]	Fx_bot [kN]	Fy_bot [kN]	Fz_bot [kN]
150ct1f1	SLS 1a	2,5	0,4	10,8	-2,6	0,0	-7,7
	SLS 3	1,5	0,0	9,7	-2,0	0,0	-6,3
	SLS 4	1,3	0,0	9,0	-1,6	0,0	-5,8
	SLS 6	0,9	0,0	7,2	-1,2	0,0	-4,1
	SLS 7	0,7	0,0	6,2	-1,0	0,0	-3,0
	ULS 1a	2,9	0,5	11,7	-2,8	0,0	-8,3
	ULS 3	1,6	0,0	10,2	-2,1	0,0	-6,6
	ULS 4	1,3	0,0	9,2	-1,6	0,0	-5,9
	ULS 6b	1,0	0,0	7,8	-1,5	0,0	-4,5
	ULS 7	0,7	0,0	6,5	-1,0	0,0	-2,8
150ct1f2	SLS 1a	2,5	1,2	10,6	-2,4	0,0	-7,4
	SLS 3	1,3	0,4	9,5	-1,8	0,0	-6,1
	SLS 4	1,2	0,2	9,0	-1,5	0,0	-5,8
	SLS 6	0,8	0,2	7,0	-1,1	0,0	- 3,8
	SLS 7	0,7	0,0	6,2	-1,0	0,0	- 3,0
	ULS 1a	2,8	1,4	11,4	-2,6	0,0	-8,1
	ULS 3	1,5	0,5	9,9	-1,9	0,0	-6,4
	ULS 4	1,2	0,2	9,2	-1,5	0,0	- 5,8
	ULS 6b	0,9	0,2	7,7	-1,4	0,0	-4,3
	ULS 7	0,7	0,0	6,5	-1,0	0,0	-2,8
150ct1f3	SLS 1a	2,0	0,8	12,2	-1,4	0,0	-8,9
	SLS 3	1,0	0,0	11,0	-0,9	0,0	-7,5
	SLS 4	0,5	0,0	11,0	-0,6	0,0	-7,7
	SLS 6	0,3	0,0	7,9	-0,4	0,0	-4,6
	SLS 7	0,2	0,0	6,3	-0,3	0,0	-3,0
	ULS 1a	2,4	1,0	13,2	-1,6	0,0	-9,8
	ULS 3	1,2	0,1	11,6	-1,0	0,0	-7,9
	ULS 4	0,5	0,0	11,2	-0,6	0,0	-7,7
	ULS 6b	0,7	0,0	8,3	-0,6	0,0	-4,9
	ULS 7	0,2	0,0	6,6	-0,3	0,0	-2,8
150ct2f1	SLS 1a	2,5	1,5	10,5	-2,5	-0,1	-7,3
	SLS 3	1,4	0,6	9,4	-1,9	-0,1	- 6,0
	SLS 4	1,2	0,4	8,8	-1,5	0,0	-5,7
	SLS 6	0,8	0,4	6,8	-1,2	0,0	-3,6
	SLS 7	0,7	0,1	6,2	-1,0	-0,1	-3,0
	ULS 1a	2,9	1,7	11,3	-2,8	-0,2	-8,0

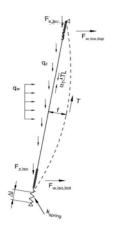
D2.3 OSP Mastr 11 H150 Project: Masttype:

150ct2f1 ULS 3	Mast:	11						
ULS 6b ULS 7 0,7 0,1 6,5 -1,0 -0,1 -4,2 ULS 7 0,7 0,1 6,5 -1,0 -0,1 -2,8 150ct2f2 SLS 1a 2,5 2,1 10,1 -2,3 -0,9 -6,9 SLS 3 1,3 1,2 8,9 -1,7 -0,8 -5,5 SLS 4 1,1 1,0 8,4 -1,4 -0,7 -5,3 SLS 6 0,7 0,7 0,7 6,3 -1,0 -0,5 -3,1 SLS 7 0,7 0,5 6,2 -1,0 -0,6 -3,0 ULS 1a 2,8 2,5 10,9 -2,5 -1,0 -0,6 -3,0 ULS 3 1,5 1,3 9,3 -1,8 -0,8 -5,8 ULS 4 1,1 1,0 8,5 -1,4 -0,7 -5,2 ULS 6b 0,9 0,8 7,2 -1,3 -0,6 -3,9 ULS 7 0,7 0,4 6,5 -1,0 -0,7 -2,8 150ct2f3 SLS 1a 2,0 2,1 11,7 -1,4 -0,8 -8,4 SLS 3 1,0 1,1 10,4 -0,9 -0,7 -6,9 SLS 4 0,5 0,9 10,6 -0,6 -0,5 -7,3 SLS 6 0,3 0,6 7,2 -0,4 -0,2 -3,9 SLS 7 0,2 0,3 6,3 -0,3 -0,4 -3,0 ULS 1a 2,4 2,5 12,7 -1,6 -0,8 -9,3 ULS 3 1,2 1,3 11,0 -1,0 -0,7 -7,2 ULS 4 0,5 1,0 10,8 -0,6 -0,5 -7,3 ULS 3 1,2 1,3 11,0 -1,0 -0,7 -7,2 ULS 4 0,5 1,0 10,8 -0,6 -0,5 -7,3 ULS 6b 0,7 0,7 7,8 -0,6 -0,5 -7,3	150ct2f1	ULS 3	1,5	0,7	9,8	-2,0	-0,1	-6,3
ULS 7 0,7 0,1 6,5 -1,0 -0,1 -2,8 150ct2f2 SLS 1a 2,5 2,1 10,1 -2,3 -0,9 -6,9 SLS 3 1,3 1,2 8,9 -1,7 -0,8 -5,5 SLS 4 1,1 1,0 8,4 -1,4 -0,7 -5,3 SLS 6 0,7 0,7 6,3 -1,0 -0,5 -3,1 SLS 7 0,7 0,5 6,2 -1,0 -0,6 -3,0 ULS 1a 2,8 2,5 10,9 -2,5 -1,0 -7,5 ULS 3 1,5 1,3 9,3 -1,8 -0,8 -5,8 ULS 4 1,1 1,0 8,5 -1,4 -0,7 -5,2 ULS 6b 0,9 0,8 7,2 -1,3 -0,6 -3,9 ULS 7 0,7 0,4 6,5 -1,0 -0,7 -2,8 150ct2f3 SLS 1a 2,0 2,1 11,7 <th></th> <th>ULS 4</th> <th>1,2</th> <th>0,4</th> <th>9,0</th> <th>-1,6</th> <th>0,0</th> <th>-5,7</th>		ULS 4	1,2	0,4	9,0	-1,6	0,0	-5,7
150ct2f2 SLS 1a 2,5 2,1 10,1 -2,3 -0,9 -6,9 SLS 3 1,3 1,2 8,9 -1,7 -0,8 -5,5 SLS 4 1,1 1,0 8,4 -1,4 -0,7 -5,3 SLS 6 0,7 0,7 6,3 -1,0 -0,5 -3,1 SLS 7 0,7 0,5 6,2 -1,0 -0,6 -3,0 ULS 1a 2,8 2,5 10,9 -2,5 -1,0 -7,5 ULS 3 1,5 1,3 9,3 -1,8 -0,8 -5,8 ULS 4 1,1 1,0 8,5 -1,4 -0,7 -5,2 ULS 6b 0,9 0,8 7,2 -1,3 -0,6 -3,9 ULS 7 0,7 0,4 6,5 -1,0 -0,7 -2,8 150ct2f3 SLS 1a 2,0 2,1 11,7 -1,4 -0,8 -8,4 SLS 3 1,0 1,1 10,4 </th <th></th> <th>ULS 6b</th> <th>1,0</th> <th>0,4</th> <th>7,6</th> <th>-1,4</th> <th>-0,1</th> <th>-4,2</th>		ULS 6b	1,0	0,4	7,6	-1,4	-0,1	-4,2
SLS 3 1,3 1,2 8,9 -1,7 -0,8 -5,5 SLS 4 1,1 1,0 8,4 -1,4 -0,7 -5,3 SLS 6 0,7 0,7 6,3 -1,0 -0,5 -3,1 SLS 7 0,7 0,5 6,2 -1,0 -0,6 -3,0 ULS 1a 2,8 2,5 10,9 -2,5 -1,0 -7,5 ULS 3 1,5 1,3 9,3 -1,8 -0,8 -5,8 ULS 4 1,1 1,0 8,5 -1,4 -0,7 -5,2 ULS 6b 0,9 0,8 7,2 -1,3 -0,6 -3,9 ULS 7 0,7 0,4 6,5 -1,0 -0,7 -2,8 150ct2f3 SLS 1a 2,0 2,1 11,7 -1,4 -0,8 -8,4 SLS 3 1,0 1,1 10,4 -0,9 -0,7 -6,9 SLS 4 0,5 0,9 10,6 -0,6		ULS 7	0,7	0,1	6,5	-1,0	-0,1	-2,8
SLS 3 1,3 1,2 8,9 -1,7 -0,8 -5,5 SLS 4 1,1 1,0 8,4 -1,4 -0,7 -5,3 SLS 6 0,7 0,7 6,3 -1,0 -0,5 -3,1 SLS 7 0,7 0,5 6,2 -1,0 -0,6 -3,0 ULS 1a 2,8 2,5 10,9 -2,5 -1,0 -7,5 ULS 3 1,5 1,3 9,3 -1,8 -0,8 -5,8 ULS 4 1,1 1,0 8,5 -1,4 -0,7 -5,2 ULS 6b 0,9 0,8 7,2 -1,3 -0,6 -3,9 ULS 7 0,7 0,4 6,5 -1,0 -0,7 -2,8 150ct2f3 SLS 1a 2,0 2,1 11,7 -1,4 -0,8 -8,4 SLS 3 1,0 1,1 10,4 -0,9 -0,7 -6,9 SLS 4 0,5 0,9 10,6 -0,6								
SLS 4 1,1 1,0 8,4 -1,4 -0,7 -5,3 SLS 6 0,7 0,7 6,3 -1,0 -0,5 -3,1 SLS 7 0,7 0,5 6,2 -1,0 -0,6 -3,0 ULS 1a 2,8 2,5 10,9 -2,5 -1,0 -7,5 ULS 3 1,5 1,3 9,3 -1,8 -0,8 -5,8 ULS 4 1,1 1,0 8,5 -1,4 -0,7 -5,2 ULS 6b 0,9 0,8 7,2 -1,3 -0,6 -3,9 ULS 7 0,7 0,4 6,5 -1,0 -0,7 -2,8 150ct2f3 SLS 1a 2,0 2,1 11,7 -1,4 -0,6 -3,9 ULS 7 0,7 0,4 6,5 -1,0 -0,7 -2,8 150ct2f3 SLS 1a 2,0 2,1 11,7 -1,4 -0,8 -8,4 5 3 1,0	150ct2f2	SLS 1a	2,5	2,1	10,1	- 2,3	- 0,9	- 6,9
SLS 6 0,7 0,7 6,3 -1,0 -0,5 -3,1 SLS 7 0,7 0,5 6,2 -1,0 -0,6 -3,0 ULS 1a 2,8 2,5 10,9 -2,5 -1,0 -7,5 ULS 3 1,5 1,3 9,3 -1,8 -0,8 -5,8 ULS 4 1,1 1,0 8,5 -1,4 -0,7 -5,2 ULS 6b 0,9 0,8 7,2 -1,3 -0,6 -3,9 ULS 7 0,7 0,4 6,5 -1,0 -0,7 -2,8 150ct2f3 SLS 1a 2,0 2,1 11,7 -1,4 -0,6 -3,9 ULS 7 0,7 0,4 6,5 -1,0 -0,7 -2,8 150ct2f3 SLS 1a 2,0 2,1 11,7 -1,4 -0,8 -8,4 SLS 3 1,0 1,1 10,4 -0,9 -0,7 -6,9 SLS 4 0,5 0,9		SLS 3	1,3	1,2	8,9	-1,7	-0,8	-5,5
SLS 7 0,7 0,5 6,2 -1,0 -0,6 -3,0 ULS 1a 2,8 2,5 10,9 -2,5 -1,0 -7,5 ULS 3 1,5 1,3 9,3 -1,8 -0,8 -5,8 ULS 4 1,1 1,0 8,5 -1,4 -0,7 -5,2 ULS 6b 0,9 0,8 7,2 -1,3 -0,6 -3,9 ULS 7 0,7 0,4 6,5 -1,0 -0,7 -2,8 150ct2f3 SLS 1a 2,0 2,1 11,7 -1,4 -0,6 -3,9 ULS 7 0,7 0,4 6,5 -1,0 -0,7 -2,8 150ct2f3 SLS 1a 2,0 2,1 11,7 -1,4 -0,8 -8,4 SLS 3 1,0 1,1 10,4 -0,9 -0,7 -6,9 SLS 4 0,5 0,9 10,6 -0,6 -0,5 -7,3 SLS 6 0,3 0,6		SLS 4	1,1	1,0	8,4	-1,4	-0,7	-5,3
ULS 1a 2,8 2,5 10,9 -2,5 -1,0 -7,5 ULS 3 1,5 1,3 9,3 -1,8 -0,8 -5,8 ULS 4 1,1 1,0 8,5 -1,4 -0,7 -5,2 ULS 6b 0,9 0,8 7,2 -1,3 -0,6 -3,9 ULS 7 0,7 0,4 6,5 -1,0 -0,7 -2,8 150ct2f3 SLS 1a 2,0 2,1 11,7 -1,4 -0,8 -8,4 SLS 3 1,0 1,1 10,4 -0,9 -0,7 -6,9 SLS 4 0,5 0,9 10,6 -0,6 -0,5 -7,3 SLS 6 0,3 0,6 7,2 -0,4 -0,2 -3,9 SLS 7 0,2 0,3 6,3 -0,3 -0,4 -3,0 ULS 1a 2,4 2,5 12,7 -1,6 -0,8 -9,3 ULS 3 1,2 1,3 11,0 -1,0 -0,7 -7,2 ULS 4 0,5 1,0 10,8 -0,6 -0,5 -7,3 ULS 6b 0,7 0,7 7,8 -0,6 -0,5 -7,3		SLS 6	0,7	0,7	6,3	-1,0	-0,5	-3,1
ULS 3 1,5 1,3 9,3 -1,8 -0,8 -5,8 ULS 4 1,1 1,0 8,5 -1,4 -0,7 -5,2 ULS 6b 0,9 0,8 7,2 -1,3 -0,6 -3,9 ULS 7 0,7 0,4 6,5 -1,0 -0,7 -2,8 150ct2f3 SLS 1a 2,0 2,1 11,7 -1,4 -0,8 -8,4 SLS 3 1,0 1,1 10,4 -0,9 -0,7 -6,9 SLS 4 0,5 0,9 10,6 -0,6 -0,5 -7,3 SLS 6 0,3 0,6 7,2 -0,4 -0,2 -3,9 SLS 7 0,2 0,3 6,3 -0,3 -0,4 -3,0 ULS 1a 2,4 2,5 12,7 -1,6 -0,8 -9,3 ULS 3 1,2 1,3 11,0 -1,0 -0,7 -7,2 ULS 4 0,5 1,0 10,8 -0,6 -0,5 -7,3 ULS 6b 0,7 0,7 7,8 -0,6 -0,5 -7,3		SLS 7	0,7	0,5	6,2	-1,0	-0,6	-3,0
ULS 4 1,1 1,0 8,5 -1,4 -0,7 -5,2 ULS 6b 0,9 0,8 7,2 -1,3 -0,6 -3,9 ULS 7 0,7 0,4 6,5 -1,0 -0,7 -2,8 150ct2f3 SLS 1a 2,0 2,1 11,7 -1,4 -0,8 -8,4 SLS 3 1,0 1,1 10,4 -0,9 -0,7 -6,9 SLS 4 0,5 0,9 10,6 -0,6 -0,5 -7,3 SLS 6 0,3 0,6 7,2 -0,4 -0,2 -3,9 SLS 7 0,2 0,3 6,3 -0,3 -0,4 -3,0 ULS 1a 2,4 2,5 12,7 -1,6 -0,8 -9,3 ULS 3 1,2 1,3 11,0 -1,0 -0,7 -7,2 ULS 4 0,5 1,0 10,8 -0,6 -0,5 -7,3 ULS 6b 0,7 0,7 7,8 -0,6 -0,5 -4,4		ULS 1a	2,8	2,5	10,9	-2,5	-1,0	- 7,5
ULS 6b 0,9 0,8 7,2 -1,3 -0,6 -3,9 ULS 7 0,7 0,4 6,5 -1,0 -0,7 -2,8 150ct2f3 SLS 1a 2,0 2,1 11,7 -1,4 -0,8 -8,4 SLS 3 1,0 1,1 10,4 -0,9 -0,7 -6,9 SLS 4 0,5 0,9 10,6 -0,6 -0,5 -7,3 SLS 6 0,3 0,6 7,2 -0,4 -0,2 -3,9 SLS 7 0,2 0,3 6,3 -0,3 -0,4 -3,0 ULS 1a 2,4 2,5 12,7 -1,6 -0,8 -9,3 ULS 3 1,2 1,3 11,0 -1,0 -0,7 -7,2 ULS 4 0,5 1,0 10,8 -0,6 -0,5 -7,3 ULS 6b 0,7 0,7 7,8 -0,6 -0,5 -4,4		ULS 3	1,5	1,3	9,3	-1,8	-0,8	-5,8
ULS 7 0,7 0,4 6,5 -1,0 -0,7 -2,8 150ct2f3 SLS 1a 2,0 2,1 11,7 -1,4 -0,8 -8,4 SLS 3 1,0 1,1 10,4 -0,9 -0,7 -6,9 SLS 4 0,5 0,9 10,6 -0,6 -0,5 -7,3 SLS 6 0,3 0,6 7,2 -0,4 -0,2 -3,9 SLS 7 0,2 0,3 6,3 -0,3 -0,4 -3,0 ULS 1a 2,4 2,5 12,7 -1,6 -0,8 -9,3 ULS 3 1,2 1,3 11,0 -1,0 -0,7 -7,2 ULS 4 0,5 1,0 10,8 -0,6 -0,5 -7,3 ULS 6b 0,7 0,7 7,8 -0,6 -0,5 -4,4		ULS 4	1,1	1,0	8,5	-1,4	-0,7	-5,2
150ct2f3 SLS 1a 2,0 2,1 11,7 -1,4 -0,8 -8,4 SLS 3 1,0 1,1 10,4 -0,9 -0,7 -6,9 SLS 4 0,5 0,9 10,6 -0,6 -0,5 -7,3 SLS 6 0,3 0,6 7,2 -0,4 -0,2 -3,9 SLS 7 0,2 0,3 6,3 -0,3 -0,4 -3,0 ULS 1a 2,4 2,5 12,7 -1,6 -0,8 -9,3 ULS 3 1,2 1,3 11,0 -1,0 -0,7 -7,2 ULS 4 0,5 1,0 10,8 -0,6 -0,5 -7,3 ULS 6b 0,7 0,7 7,8 -0,6 -0,5 -4,4		ULS 6b	0,9	0,8	7,2	-1,3	-0,6	-3,9
SLS 3 1,0 1,1 10,4 -0,9 -0,7 -6,9 SLS 4 0,5 0,9 10,6 -0,6 -0,5 -7,3 SLS 6 0,3 0,6 7,2 -0,4 -0,2 -3,9 SLS 7 0,2 0,3 6,3 -0,3 -0,4 -3,0 ULS 1a 2,4 2,5 12,7 -1,6 -0,8 -9,3 ULS 3 1,2 1,3 11,0 -1,0 -0,7 -7,2 ULS 4 0,5 1,0 10,8 -0,6 -0,5 -7,3 ULS 6b 0,7 0,7 7,8 -0,6 -0,5 -4,4		ULS 7	0,7	0,4	6,5	-1,0	- 0,7	- 2,8
SLS 3 1,0 1,1 10,4 -0,9 -0,7 -6,9 SLS 4 0,5 0,9 10,6 -0,6 -0,5 -7,3 SLS 6 0,3 0,6 7,2 -0,4 -0,2 -3,9 SLS 7 0,2 0,3 6,3 -0,3 -0,4 -3,0 ULS 1a 2,4 2,5 12,7 -1,6 -0,8 -9,3 ULS 3 1,2 1,3 11,0 -1,0 -0,7 -7,2 ULS 4 0,5 1,0 10,8 -0,6 -0,5 -7,3 ULS 6b 0,7 0,7 7,8 -0,6 -0,5 -4,4								
SLS 4 0,5 0,9 10,6 -0,6 -0,5 -7,3 SLS 6 0,3 0,6 7,2 -0,4 -0,2 -3,9 SLS 7 0,2 0,3 6,3 -0,3 -0,4 -3,0 ULS 1a 2,4 2,5 12,7 -1,6 -0,8 -9,3 ULS 3 1,2 1,3 11,0 -1,0 -0,7 -7,2 ULS 4 0,5 1,0 10,8 -0,6 -0,5 -7,3 ULS 6b 0,7 0,7 7,8 -0,6 -0,5 -4,4	150ct2f3	SLS 1a	2,0	2,1	11,7	-1,4	-0,8	-8,4
SLS 6 0,3 0,6 7,2 -0,4 -0,2 -3,9 SLS 7 0,2 0,3 6,3 -0,3 -0,4 -3,0 ULS 1a 2,4 2,5 12,7 -1,6 -0,8 -9,3 ULS 3 1,2 1,3 11,0 -1,0 -0,7 -7,2 ULS 4 0,5 1,0 10,8 -0,6 -0,5 -7,3 ULS 6b 0,7 0,7 7,8 -0,6 -0,5 -4,4		SLS 3	1,0	1,1	10,4	- 0,9	- 0,7	-6,9
SLS 7 0,2 0,3 6,3 -0,3 -0,4 -3,0 ULS 1a 2,4 2,5 12,7 -1,6 -0,8 -9,3 ULS 3 1,2 1,3 11,0 -1,0 -0,7 -7,2 ULS 4 0,5 1,0 10,8 -0,6 -0,5 -7,3 ULS 6b 0,7 0,7 7,8 -0,6 -0,5 -4,4		SLS 4	0,5	0,9	10,6	-0,6	-0,5	-7,3
ULS 1a 2,4 2,5 12,7 -1,6 -0,8 -9,3 ULS 3 1,2 1,3 11,0 -1,0 -0,7 -7,2 ULS 4 0,5 1,0 10,8 -0,6 -0,5 -7,3 ULS 6b 0,7 0,7 7,8 -0,6 -0,5 -4,4		SLS 6	0,3	0,6	7,2	-0,4	-0,2	- 3,9
ULS 3 1,2 1,3 11,0 -1,0 -0,7 -7,2 ULS 4 0,5 1,0 10,8 -0,6 -0,5 -7,3 ULS 6b 0,7 0,7 7,8 -0,6 -0,5 -4,4		SLS 7	0,2	0,3	6,3	-0,3	-0,4	-3,0
ULS 4 0,5 1,0 10,8 -0,6 -0,5 -7,3 ULS 6b 0,7 0,7 7,8 -0,6 -0,5 -4,4		ULS 1a	2,4	2,5	12,7	-1,6	- 0,8	- 9,3
ULS 6b 0,7 0,7 7,8 -0,6 -0,5 -4,4		ULS 3	1,2		11,0	-1,0	- 0,7	- 7,2
		ULS 4	0,5	1,0	10,8	-0,6	- 0,5	- 7,3
ULS 7 0,2 0,3 6,6 -0,3 -0,4 -2,8			0,7	0,7	7,8	-0,6	-0,5	-4,4
		ULS 7	0,2	0,3	6,6	- 0,3	-0,4	-2,8

18-6-2021 13 van 13

D2.3 OSP Mastr 11 H150 11

Project: Masttype: Mast:


Auteur: Versie: TBR Geleiderbelastingen v1.9

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

ULS (bezwijksterkte)		NEN-EN5	NEN-EN50341-2-15:2019					
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γo		γa
		°C	$G_{k,mast}$	G _{k,geleider}	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,15	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,40	0,00	0,0
ULS 3	Wind+ijs	-5°	1,15	1,15	0,00	0,42	1,30	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,00	0,42	1,30	0,0
ULS 4	Koude+wind	-20°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,00	0,28	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,15	1,15	1,30	0,28	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 7	Permanent	10°	1,30	1,30	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijksterkte, enkel voor hoekmasten: afwezigheid geleid		ders)	γ _G	γq				
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,15	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,15	1,15	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,15	1,15	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,15	1,15	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,0	0,24	0,0	0,0
SLS (c	ontrole van de vervormingen, vermoeiing	g, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	1,00	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,30	1,00	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen	6
Aantal belastingcombinaties ULS	57
Aantal belastingcombinaties SPLS	210
Aantal belastingcombinaties SLS	15
Aantal knooplasten	4512

SchematisationDe trekkracht in de afloper wordt bepaald met de toestandsvergelijking voor een gekromde kabel. In de rekstijfheid van de kabel is de invloed van de veer verdisconteerd.

18-6-2021 1 van 5

D2.3 OSP Mastr 11

Project: Masttype: Mast: H150

- Tabellen met geleiderbelastingen

 In de onderstaande drie tabellen is weergegeven:
 De trekkracht per belastingcombinatie en de bijbehorende zeeg en veerverlenging
 De geleiderbelastingen in het lokale assenstelsel voor het onderste bevestigingspunt
- De maximale waarden voor de reacties onder en boven in het globale assenstelsel

Trekkracht, zeeg en veerverlenging

Geleider	Combinatie		Veer-	rotale veer- verlengin g [m]	ı rek- kracht initieel [kN]	Trek- kracht [kN]
150ct1f1	SLS 1a	0,46	0,010	0,019	4,6	9,5
13000111	SLS 3	0,40	0,010	0,019	4,7	8,2
	SLS 4	0,20	0,007	0,015	4,6	7,5
	SLS 6	0,26	0,000	0,013	4,6	7,3 5,7
	SLS 7	0,20	0,002	0,011	4,6	
	ULS 1a		0,000	0,009	4,6 5,6	4,6
	ULS 1a	0,52	0,013	0,022		11,1
		0,38			5,7	9,1
	ULS 4	0,22	0,006 0,004	0,016 0,013	5,6	7,8
	ULS 6b	0,30	0,004	0,013	5,6	6,5
150-4162	CI C 1-	0.42	0.000	0.010	4.6	0.2
150ct1f2	SLS 1a	0,43	0,009	0,019	4,6	9,3
	SLS 3	0,30	0,007	0,016	4,7	7,9
	SLS 4	0,14	0,006	0,015	4,6	7,4
	SLS 6	0,20	0,002	0,011	4,6	5,4
	SLS 7	0,17	0,000	0,009	4,6	4,6
	ULS 1a	0,49	0,013	0,022	5,6	10,9
	ULS 3	0,34	0,008	0,018	5,7	8,8
	ULS 4	0,17	0,006	0,015	5,6	7,7
	ULS 6b	0,26	0,003	0,013	5,6	6,3
150ct1f3	SLS 1a	0,51	0,012	0,022	4,6	10,9
	SLS 3	0,34	0,010	0,019	4,8	9,4
	SLS 4	0,15	0,009	0,019	4,6	9,4
	SLS 6	0,22	0,003	0,013	4,6	6,3
	SLS 7	0,10	0,000	0,009	4,6	4,6
	ULS 1a	0,58	0,017	0,026	5,6	12,9
	ULS 3	0,40	0,012	0,021	5,9	10,6
	ULS 4	0,19	0,010	0,019	5,6	9,7
	ULS 6b	0,27	0,005	0,014	5,6	7,0

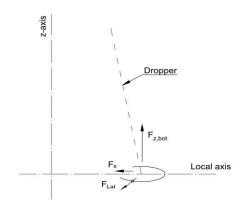
Controle iteratieproces

Iteratie
0
0
ОК

18-6-2021 2 van 5

D2.3 OSP Mastr 11 H150 11

Project: Masttype: Mast:


Belastingen in lokale richting geleider

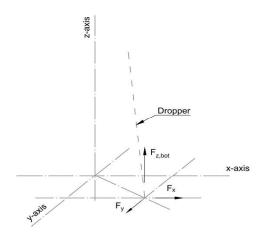
De belastingen op het onderste bevestigingspunt voor het dimensioneren van de ondersteuningsconstructie

De richting van de laterale kracht wordt bepaald door de windrichting en kan in alle richtingen aangrijpen.

De resulterende horizontale kracht kan worden afgeleid uit de vectoriële optelling van de kracht in x-richting en laterale kracht.

	Fx,lok,bot	Flat,bot	Fz_bot
Combinatie1	[kN]	[kN]	[kN]
SLS 1a	2,2	0,8	- 7,9
SLS 3	1,8	0,3	-6,5
SLS 4	1,7	0,2	-5,9
SLS 6	1,3	0,2	-4,1
SLS 7	1,0	0,0	-3,0
ULS 1a	2,5	1,1	-9,3
ULS 3	2,1	0,4	-7,1
ULS 4	1,8	0,2	- 5,9
ULS 6b	1,5	0,2	-4,6
SLS 1a	1,7	0,8	- 7,7
SLS 3	1,4	0,3	-6,2
SLS 4	1,3	0,2	-5,9
SLS 6	1,0	0,2	-3,8
SLS 7	0,8	0,0	- 3,0
ULS 1a	1,9	1,1	-9,1
ULS 3	1,6	0,4	-6,9
ULS 4	1,4	0,2	- 5,8
ULS 6b	1,1	0,2	-4,4
SLS 1a	1,0	1,0	- 9,2
SLS 3	0,9	0,4	- 7,6
SLS 4	0,9	0,2	- 7,7
SLS 6	0,6	0,2	- 4,7
SLS 7	0,4	0,0	- 3,0
ULS 1a	1,2	1,3	-11,1
ULS 3	1,0	0,5	- 8,5
ULS 4	0,9	0,3	- 7,8
ULS 6b	0,7	0,3	-5,1

18-6-2021 3 van 5



D2.3 OSP Mastr 11 H150 11

Project: Masttype: Mast:

Maximale waarden in globale assenstelsel

De maximale waarden van de verticale kracht en de resulterende horizontale kracht per belastingcombinatie Zowel voor het bovenste als het onderste bevestigingspunt

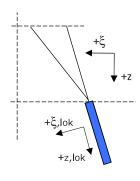
Geleider	Combinatie	Fx_top [kN]	Fy_top [kN	Fz_top [kN]	Fx_bot [kN]	Fy_bot [kN]	Fz_bot [kN]
150ct1f1	SLS 1a	2,6	0,4	11,1	-2,7	0,0	- 7,9
	SLS 3	1,5	0,0	9,8	-2,0	0,0	- 6,5
	SLS 4	1,3	0,0	9,0	-1,6	0,0	-5,9
	SLS 6	0,9	0,0	7,3	-1,2	0,0	-4,1
	SLS 7	0,7	0,0	6,2	-1,0	0,0	-3,0
	ULS 1a	3,5	0,8	13,0	-3,2	0,0	- 9,3
	ULS 3	1,8	0,0	11,0	-2,3	0,0	-7,1
	ULS 4	1,3	0,0	9,6	-1,6	0,0	- 5,9
	ULS 6b	1,1	0,0	8,3	-1,6	0,0	-4,6
	ULS 7	0,7	0,0	6,8	-1,1	0,0	-2,6
150ct1f2	SLS 1a	2,6	1,3	10,9	-2,5	0,0	-7,7
	SLS 3	1,4	0,4	9,6	-1,9	0,0	- 6,2
	SLS 4	1,2	0,2	9,0	-1,5	0,0	- 5,9
	SLS 6	0,8	0,2	7,0	-1,1	0,0	-3,8
	SLS 7	0,7	0,0	6,2	-1,0	0,0	-3,0
	ULS 1a	3,5	1,8	12,7	-3,0	0,0	-9,1
	ULS 3	1,7	0,6	10,8	-2,1	0,0	-6,9
	ULS 4	1,2	0,3	9,5	-1,5	0,0	-5,8
	ULS 6b	1,0	0,3	8,1	-1,5	0,0	-4,4
	ULS 7	0,6	0,0	6,7	-1,0	0,0	- 2,6
150ct1f3	CIC 1a	2,2	0,9	12,5	-1,5	0,0	- 9,2
13000113	SLS 1a	1,1	0,0	11,2	-1,0	0,0	-7,6
	SLS 4	0,5	0,0	11,0	-1,6 -0,6	0,0	-7,0 -7,7
	SLS 6	0,3	0,0	8,0	-0,4	0,0	-4,7
	SLS 7	0,2	0,0	6,3	-0,4	0,0	-3,0
	ULS 1a	2,9	1,4	14,8	-2,0	0,0	-11,1
	ULS 3	1,4	0,2	12,7	-1,2	0,0	-8,5
	ULS 4	0,5	0,0	11,6	-0,6	0,0	-7,8
	ULS 6b	0,8	0,0	8,9	-0,7	0,0	-5,1
	ULS 7	0,2	0,0	6,8	-0,3	0,0	-2,5
150ct2f1	SLS 1a	2,7	1,6	10,7	-2,6	-0,2	- 7,6
	SLS 3	1,4	0,6	9,5	-2,0	-0,1	-6,1
	SLS 4	1,2	0,4	8,9	-1,5	0,0	-5,7
	SLS 6	0,9	0,4	6,8	-1,2	0,0	-3,7
	SLS 7	0,7	0,1	6,2	-1,0	-0,1	-3,0
	ULS 1a	3,5	2,2	12,6	-3,2	- 0,2	-9,0

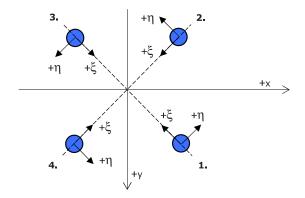
D2.3 OSP Mastr 11 H150 11

Project: Masttype: Mast:

Mast:	11						
150ct2f1	ULS 3	1,7	0,9	10,7	- 2,3	-0,1	- 6,7
	ULS 4	1,3	0,5	9,3	-1,6	0,0	-5,6
	ULS 6b	1,0	0,5	8,0	-1,5	-0,1	-4,4
	ULS 7	0,7	0,1	6,7	-1,1	-0,1	-2,6
150ct2f2	SLS 1a	2,6	2,3	10,3	-2,4	-1,0	-7,1
	SLS 3	1,4	1,2	9,0	-1,8	-0,8	-5,7
	SLS 4	1,1	1,0	8,4	-1,4	- 0,7	-5,3
	SLS 6	0,7	0,8	6,3	-1,0	- 0,5	-3,1
	SLS 7	0,7	0,5	6,2	-1,0	-0,6	-3,0
	ULS 1a	3,4	3,0	12,2	-2,9	-1,2	-8,5
	ULS 3	1,7	1,5	10,1	-2,0	-0,9	-6,2
	ULS 4	1,1	1,1	8,8	-1,4	- 0,7	-5,1
	ULS 6b	1,0	0,9	7,6	-1,4	-0,6	-4,0
	ULS 7	0,6	0,4	6,8	-1,0	- 0,7	-2,6
150ct2f3	SLS 1a	2,2	2,3	12,0	- 1,5	-0,8	- 8,7
	SLS 3	1,1	1,2	10,6	-0,9	- 0,7	- 7,0
	SLS 4	0,5	0,9	10,6	-0,6	- 0,5	-7,4
	SLS 6	0,3	0,7	7,2	-0,4	- 0,2	-3,9
	SLS 7	0,2	0,3	6,3	-0,3	-0,4	-3,0
	ULS 1a	2,9	3,0	14,3	- 1,9	- 0,9	-10,6
	ULS 3	1,4	1,5	12,0	- 1,2	-0,8	- 7,8
	ULS 4	0,5	1,0	11,1	- 0,6	-0,4	- 7,3
	ULS 6b	0,8	0,8	8,3	- 0,7	- 0,5	-4,5
	ULS 7	0,2	0,3	6,8	-0,3	-0,4	-2,5

18-6-2021 5 van 5




Project: ZW-Oost RSB-RSD150 Masttype: Hoekmast 150°

Mast: 11

Auteur: MKh
Oplegreacties per randstijl Versie: 1.4

Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

Assenstelsels

Maximale	drukbelasting
riaxiiiaje	urukbelastilig

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 1a_45 Ba All Cts	-28	-26	-185	2	-38	7	-189
2	SPLS 1a_0 Ba All Cts	- 20	17	-131	-2	-26	4	-133
3	ULS 3_135	48	58	-454	-7	- 75	-1	-461
4	ULS 3_90	105	-108	-858	2	-151	8	-871

Maximale trekbelasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	26	45	337	13	51	5	341
2	ULS 3_0,9_90	92	- 90	745	2	129	- 5	756
3	SPLS 1a_0,9_0,9_45 Ba All Cts	-17	-16	115	-1	23	-4	117
4	SPLS 1a 0.9 0.9 0 Ba All Cts	-9	7	61	1	11	-1	62

Maximale torsiebelasting (positief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_90 Ba Ct2 Ba Ct1	- 28	64	186	65	25	6	187
2	SPLS 6a_90 Ba Ct2 Ba Ct1	81	-1	331	57	58	- 3	336
3	SPLS 6a_90 Ba Ct2 Ba Ct1	72	-12	-270	59	-43	- 2	- 273
4	SPLS 6a_90 Ba Ct2 Ba Ct1	14	-104	-458	64	-83	7	-466

Maximale torsiebelasting (negatief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_90 Ba Ct1 Ba Ct2	44	-24	109	-48	15	4	110
2	SPLS 6a_90 Ba Ct1 Ba Ct2	9	-89	410	- 56	69	-1	416
3	SPLS 6a_90 Ba Ct1 Ba Ct2	-18	75	-236	-66	-40	1	-239
4	SPLS 6a_90 Ba Ct1 Ba Ct2	104	-18	-492	-61	-86	4	-500

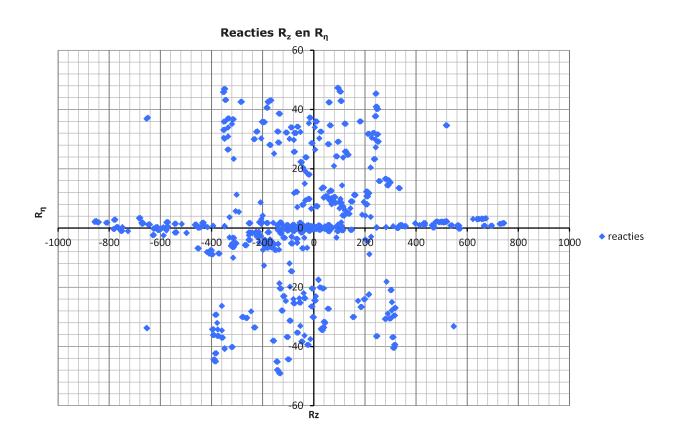
Combinatie Ftrek+Fh

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_90 Ba Ct2 Ba Ct1	-28	64	186	65	25	6	187
2	ULS 3_0,9_90	92	-90	745	2	129	- 5	756
3	SPLS 6a_90 Ba Ct1 Ba Ct2	-18	75	-236	-66	-40	1	-239
4	SPLS 6a 90 Ba Ct2 Ba Ct1	14	-104	-458	64	-83	7	-466

Permanente belasting

Stijl	Combinatie	R _x	R_v	R_z	R_n	Rε	$R_{\xi,lok}$	R _{z,lok}
		[kN]	[kNj	[kN]	[kN]	[kN]	[kN]	[kN]
1	SLS 7	9	17	125	6	18	3	126
2	SLS 7	30	- 29	248	0	42	0	251
3	SLS 7	26	29	-222	- 2	-38	1	- 226
4	SLS 7	43	-44	-346	1	-62	4	-351

Omhullenden ongeacht stijl

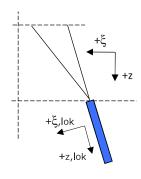

Belasting	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Max. druk	ULS 3_90	105	-108	-858	2	-151	8	-871
Max. trek	ULS 3_0,9_90	92	-90	745	2	129	- 5	756
Max. pos. torsie	SPLS 6a_90 Ba Ct2 Ba Ct1	- 28	64	186	65	25	6	187
Max. neg. torsie	SPLS 6a_90 Ba Ct1 Ba Ct2	-18	75	- 236	-66	-40	1	-239
Comb. trek+torsie	ULS 3_0,9_90	92	-90	745	2	129	- 5	756

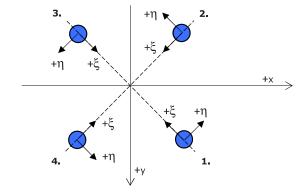
Maximale drukbelasting SLS

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 1a_0,9_0,9_45	- 26	- 9	-77	12	- 25	12	-80
2	SLS 1a_0	10	-11	107	-1	15	3	108
3	ULS 3_135	48	58	-454	- 7	- 75	-1	-461
4	ULS 3_135	100	-103	-812	2	-143	8	-825

Maximale trekbelasting SLS

Stijl	Combinatie	R _x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	26	45	337	13	51	5	341
2	ULS 3_0,9_135	86	- 85	697	1	121	- 5	708
3	ULS 1a_0,9_0,9_45	-8	2	-26	- 7	4	-8	- 25
4	SLS 1a_0	25	-27	-215	2	- 37	1	-218




Project: ZW-Oost RSB-RSD150 Masttype: Hoekmast 150°

Mast: 11

Auteur: MKh
Oplegreacties per randstijl Versie: 1.4

Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

Assenstelsels

Maximale	drukbelasting
Maximale	urukbelastilig

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 1a_45 Ba All Cts	- 29	- 26	-189	2	-39	7	-192
2	SPLS 1a_0 Ba All Cts	-20	17	-134	- 2	- 27	4	-137
3	ULS 3_135	57	68	-539	-8	-88	- 2	- 546
4	ULS 3 <u>9</u> 0	125	-129	-1023	3	-180	9	-1039

Maximale trekbelasting

Stijl	Combinatie	R_x	R_y	R_z	R _n	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	33	56	412	16	62	6	417
2	ULS 3_0,9_90	112	-110	904	2	157	- 6	917
3	SPLS 1a_0,9_0,9_45 Ba All Cts	-17	-16	115	-1	23	-4	117
4	SPLS 1a 0.9 0.9 0 Ba All Cts	- 9	7	61	1	11	-1	62

Maximale torsiebelasting (positief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_90 Ba Ct2 Ba Ct1	-29	66	190	67	26	6	191
2	SPLS 6a_90 Ba Ct2 Ba Ct1	84	0	339	59	59	- 3	345
3	SPLS 6a_90 Ba Ct2 Ba Ct1	74	-12	-279	61	-44	- 2	-283
4	SPLS 6a_90 Ba Ct2 Ba Ct1	15	-108	-475	66	-86	7	-482

Maximale torsiebelasting (negatief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_90 Ba Ct1 Ba Ct2	46	- 25	113	- 50	15	4	114
2	SPLS 6a_90 Ba Ct1 Ba Ct2	9	-91	418	- 58	70	-1	424
3	SPLS 6a_90 Ba Ct1 Ba Ct2	-18	78	-248	-68	-42	1	-251
4	SPLS 6a_90 Ba Ct1 Ba Ct2	107	-18	-506	-63	-89	4	-514

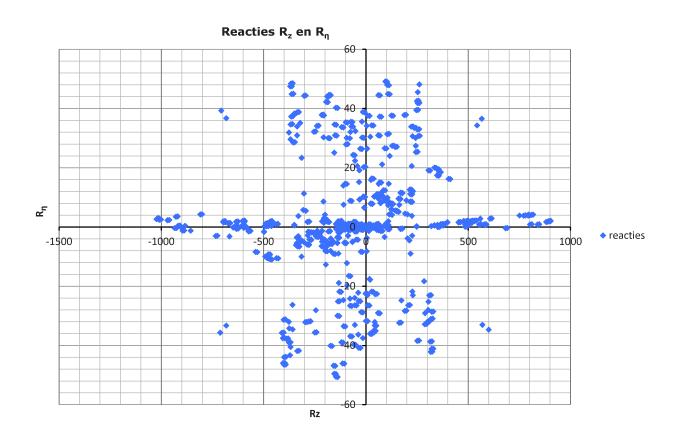
Combinatie Ftrek+Fh

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	33	56	412	16	62	6	417
2	ULS 3_0,9_90	112	-110	904	2	157	- 6	917
3	SPLS 6a_90 Ba Ct1 Ba Ct2	-18	78	-248	-68	- 42	1	-251
4	SPLS 6a 90 Ba Ct2 Ba Ct1	15	-108	-475	66	-86	7	-482

Permanente belasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SLS 7	9	17	127	6	19	3	128
2	SLS 7	30	-30	250	0	42	0	254
3	SLS 7	26	29	-223	- 2	-38	1	- 226
4	SLS 7	43	-44	-347	1	- 62	4	- 352

Omhullenden ongeacht stijl


Belasting	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Max. druk	ULS 3_90	125	-129	-1023	3	-180	9	-1039
Max. trek	ULS 3_0,9_90	112	-110	904	2	157	- 6	917
Max. pos. torsie	SPLS 6a_90 Ba Ct2 Ba Ct1	- 29	66	190	67	26	6	191
Max. neg. torsie	SPLS 6a_90 Ba Ct1 Ba Ct2	-18	78	- 248	-68	-42	1	-251
Comb. trek+torsie	ULS 3_0,9_90	112	-110	904	2	157	-6	917

Maximale drukbelasting SLS

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 1a_0,9_0,9_45	- 33	-14	-110	14	-33	15	-114
2	SLS 1a_0	9	-10	100	-1	14	3	101
3	ULS 3_135	57	68	-539	-8	-88	-2	- 546
4	ULS 3 135	119	-122	-970	2	-171	9	-985

Maximale trekbelasting SLS

Stijl	Combinatie	R _x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	33	56	412	16	62	6	417
2	ULS 3_0,9_135	105	-103	847	1	147	-6	860
3	ULS 1a_0,9_0,9_45	-14	- 2	4	-8	12	-11	6
4	SLS 1a_0	24	- 26	-207	2	-36	1	-210

Inhoud

- Uitgangspunten
- Mastconstructie
- Tussenresultaten
- Belastingen initiëel
- Belastingen na aanpassing
- Belastingen na passing

Gegevens

Norm NEN-EN50341-2-15:2019

Initieel

Gevolgklasse CC2 Betrouwbaarheidsniveau Afkeur Referentieperiode 30 jaar

Na aanpassing

Gevolgklasse CC2
Betrouwbaarheidsniveau Verbouw
Referentieperiode 50 jaar

Windgebied III
Windsnelheid 24,5 m/s
Terreincategorie II
Reductie factor Cdir 1,00
IJsgebied B

MasttypeHoekmastMasthoogte29 mMax. veldlengte110 mLijnhoek143°Trekparameter1000 m

Wind span 56 m
EDS Weight span 291 m
Min. Weight span 72 m
Max. Weight span 6017 m

0.0	2021-07-28			
ISSUE	DATE	REVISION	CHK'D	APP'D

Client:

Title:

Berekening masttype Portaal

JOB No.	-	DATE	-
DRAWN	-	CHKD	-
DESIGN	-	APPD	-

Document name:

ZWO380 D2.2 OSP Mast 19a_Portaal_19a_Report.pdf

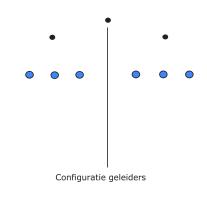
Project number:

Project client number:

0.0

Project: ZWO380 D2.2 OSP Mast 19a

Project: ZWO38 Tower: Portaal Number: 19a


Auteur: TBR
Geleiderbelastingen Versie: v11.9

Algemeen

Benaming Portaal Masttype Hoekmast Aantal circuits 2-Configuratie 2-circuit-vlak Aantal bliksemgeleiders 3

Uitgangspunten

Norm NEN-EN50341-2-15:2019
Gevolgklasse initieel CC2
Betrouwbaarheidsniveau initieel Afkeur CC2-0
Referentieperiode initieel 30 jaar
Gevolgklasse na aanpassing CC2
Betrouwbaarheidsniveau na aanpassing Verbouw
Referentieperiode na aanpassing 50 jaar
Windgebied III
Windsnelheid (m/s) 24,5 m/s
Terreincategorie II
Reductiefactor c_{dir} 1,00
IJsgebied fasegeleider B
IJsgebied bliksemgeleider A

Geleiders Back

Omschrijving	Spanning	Geleider Back	Bundel Ba	IJsgebied	Toeslag gewicht	Toeslag diameter	Intrekwaarden P _{back}
Circuit 1	150 kV	ACSR Bobolink	2	В	2 %	2 %	1000
Circuit 2	150 kV	ACSR Bobolink	2	В	2 %	2 %	1000
Bliksemdraad 1		ACSR 30/52 PETREL	1	Α	2 %	2 %	1000
Bliksemdraad 2		ACSR 30/52 PETREL	1	Α	2 %	2 %	1000
Bliksemdraad 3		OPGW 96 Fibral	1	Α	2 %	2 %	1000

Geleiders Ahead							
Omschrijving	Spanning	Geleider Ahead	Bundel Ah	IJsgebied	Toeslag gewicht	Toeslag diameter	Intrekwaarden P _{ahead}
Circuit 1	150 kV	ACSR Bobolink	2	В	2 %	2 %	25
Circuit 2	150 kV	ACSR Bobolink	2	В	2 %	2 %	25
Bliksemdraad 1		Niet aanwezig	1	Α	2 %	2 %	0
Bliksemdraad 2		Niet aanwezig	1	Α	2 %	2 %	0
Bliksemdraad 3		Niet aanwezig	1	Α	2 %	2 %	0

Isolatoren	(1)			
Omschrijving	Ophanging	Gewicht	Lengte	Windopp.
		[kN]	[m]	[m ²]
Circuit 1	Afspanketting	2,50	4,50	1,00
Circuit 2	Afspanketting	2,50	4,50	1,00
Bliksemdraad 1	Afspanketting	0,10	0,20	0,10
Bliksemdraad 2	Afspanketting	0,10	0,20	0,10
Bliksemdraad 3	Afspanketting	0,10	0,20	0,10

1. Eigenschappen gelden voor geheel van de isolatorset

Ophanghoogte en positie in mast

					Positie in mast	
Circuits	Aandui	ding Nummer	Ophanghoogte	Aangrijppunt	Horizontale afstand	
Circuit 1	10	150ct1f1	16,0 m	16,0 m	11,8 m	
Circuit 1	11	150ct1f2	16,0 m	16,0 m	8,3 m	
Circuit 1	12	150ct1f3	16,0 m	16,0 m	4,8 m	
Circuit 2	20	150ct2f1	16,0 m	16,0 m	-4,8 m	
Circuit 2	21	150ct2f2	16,0 m	16,0 m	-8,3 m	
Circuit 2	22	150ct2f3	16,0 m	16,0 m	-11,8 m	
Bliksemdraad 1	1	bl1	18,2 m	18,2 m	12,1 m	
Bliksemdraad 2	3	bl2	18,2 m	18,2 m	-12,1 m	
Bliksemdraad 3	5	bl3	29,5 m	29,5 m	0,0 m	

28-7-2021 2 van 21

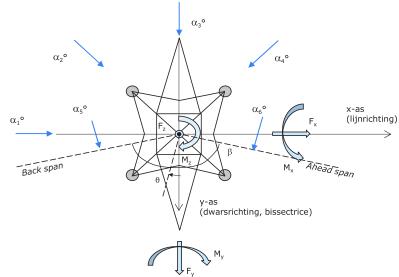
ZWO380 D2.2 OSP Mast 19a Portaal 19a

Project: Tower: Number:

Hoogteaanpassing naastgelegen masten (aanpassing wind- en weight span)

	Back	Ahead	
Verhoging voor windbelasting	0,0 m	0,0 m	(positief: omhoog)
Verlaging voor verticale belasting	0,0 m	0,0 m	(negatief: omlaag, grotere weight span)
Verlaging: Niet in 0,9EG-combinaties			

Hoogteafwijking mastbeeld naastgelegen masten en richtingsverandering t.o.v. Lijnrichting


noogtearwijking mastbeeld naastgelegen masten en richtingsverandering t.o.v. Lijinichting										
			Hoogte	verschil	Richtingsve	erandering				
Circuits	Aandui	ding Nummer	∆h_back	∆h_ahead	∆y_back	∆y_ahead				
Circuit 1	10	150ct1f1	-4,3	-15,7 m	0,0	-2,2 m				
Circuit 1	11	150ct1f2	-4,3	-15,7 m	0,0	-2,2 m				
Circuit 1	12	150ct1f3	-4,3	-15,7 m	0,0	-2,2 m				
Circuit 2	20	150ct2f1	-4,3	-15,7 m	0,0	2,2 m				
Circuit 2	21	150ct2f2	-4,3	-15,7 m	0,0	2,2 m				
Circuit 2	22	150ct2f3	-4,3	-15,7 m	0,0	2,2 m				
Bliksemdraad 1	1	bl1	-3,5	0,0 m	0,0	0,0 m				
Bliksemdraad 2	3	bl2	-3,5	0,0 m	0,0	0,0 m				
Bliksemdraad 3	5	bl3	-14,8	0,0 m	0,0	0,0 m				

Lijn- en mastgegevens

		Pack	Aboad	
		Back	Ahead	
		110,0	2,0 m	
Ruling span $\sqrt{(\Sigma L^3/\Sigma L)}$		110,0	2,0 m	
Lijnhoek	β	143 °		
Rotatie mast t.o.v. bissectrice	θ	18 °		
Vaklengte		110	2 m	
Hoogte onderkant mast t.o.v. m	aaiveld	0,5 m		
Beschouwde windrichtingen	α_1	0 °		
Windrichtingen volgens:	α_2	45 °		
Geleiderbelastingen	α_3	90 °		
	α_4	135 °		
	α_5	53,5 °		
	α_6	90,5 °		

Windrichtingen gelden t.o.v. hoofdrichting mastconstructie, niet t.o.v. bissectrice.

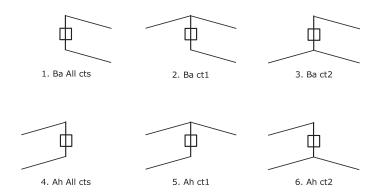
Windrichtingen en positieve richtingen belastingen

Beschouwd aantal windrichtingen	
1a	6
3	6
4	1
6	1
Overig	1

28-7-2021 3 van 21

ZWO380 D2.2 OSP Mast 19a Portaal 19a

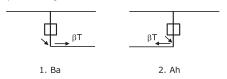
Project: Tower: Number:


Geleiderafval

		SPLS	SPLS - torsie		elzijdige trek	5a - gele	iderbreuk
		Aanw.	Afw.	Aanw.	Afw.	Aanw.	Afw.
Circuit 1	150ct1f1	1	0	1	0	1	0
Circuit 1	150ct1f2	1	0	1	0	1	0
Circuit 1	150ct1f3	1	0	1	0	1	0
Circuit 2	150ct2f1	0	1	1	0	1	0
Circuit 2	150ct2f2	0	1	1	0	1	0
Circuit 2	150ct2f3	0	1	1	0	1	0
Bliksemdraad 1	bl1	1	0	1	0	1	0
Bliksemdraad 2	bl2	0	1	1	0	1	0
Bliksemdraad 3	bl3	0	1	1	0	1	0

Belastingsituaties SPLS

Beschouwde situaties SPLS: 1 t/m 6, alle mogelijke situaties.


Principe belastingssituaties:

Belastingsituaties 5a. Geleiderbreuk

Beschouwde situaties geleiderbreuk 5a: 1 en 2, alle mogelijke situaties.

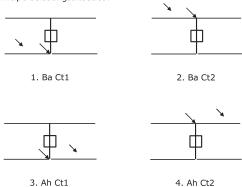
Principe belastingssituaties:

28-7-2021 4 van 21

Project: ZWO380 D2.2 OSP Mast 19a

Tower: Portaal Number: 19a

Belastingsituaties 6. Bouw- en onderhoud

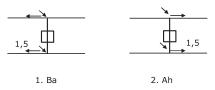

Onder 6a wordt de belasting door aanwezigheid lijnwagen of lijnfiets in combinatie met puntlast op traverse in rekening gebracht. Combinatie 6b bevat geen belastingen in geleider of op traverse. Deze combinatie is toegevoegd om te kunnen combineren met separate controle bordessen etc. De situaties worden in ULS en in iedere SPLS-situatie (in geval van hoekmast) toegepast.

	Fase	Bliksem	
Lijnwagen	0,0 kN	0,0 kN	
Puntlast op traverse	1,0 kN	1,0 kN	

Beschouwde situaties bouw- en onderhoud 6a: 1 en 2, uitgangspunt is symmetrie tussen back / ahead.

Aanwezigheid lijnwagen: Circuit, belasting tegelijk aanwezig in alle geleiders per circuit.

Principe belastingssituaties:


Belastingsituaties 8. Lijndansen als statische belasting

Geleider			
Steunmast fase	0,866 W	1,5 W	
Steunmast bliksem	1,5 EDS	1,5 W	
Hoekmast fase en bliksem	1,5 EDS	1,5 W	

Beschouwde situaties lijndansen 8: Geen (bestaande constructie)

Belasting tegelijk aanwezig in alle geleiders van het circuit.

Principe belastingssituaties:

Belastingcombinatie 8. Lijndansen als dynamische belasting

Alleen van toepassing op hoek- en eindmasten

Belasting bestaat uit EDS-trekbelasting in één van de geleiders aan één zijde van de mast Door gebruiker via het belastingsspectrum van tabel 4.11/NL.1 om te zetten naar spanningspectrum

28-7-2021 5 van 21

ZWO380 D2.2 OSP Mast 19a Project:

Portaal Tower: Number: 19a

Mastconstructie

Eigenschappen

Masttype Hoekmast Portaal 0,5 m 29,0 m 180,0 kN Mastbenaming Voetplaat t.o.v. maaiveld Masthoogte t.o.v. voetplaat Gewicht mast

x-ri. 7,00 0,208 y-ri. 7,00 m 0,208 -Breedte en helling mast bij fundatie Pootsprei Helling van de randstijl Factor spatkracht 1,3 -1,3

Berekening windbelasting

Dynamische invloed G_T 1,00 (Masthoogte < 60 m)

(A1C1sin^2(phi)+A2C2cos^2(phi)) (A1C1sin^2(phi)+A2C2cos^2(phi)) Windbelasting overhoeks op mastlichaam evenredig met: Windbelasting overhoeks op traverse evenredig met:

(1+0,2sin^2(2phi)) (1+0,2sin^2(2phi)) 0,4 Vergroting wind overhoeks mastlichaam Vergroting wind overhoeks traverse

Factor wind evenwijdig t.o.v. haaks op traverse

Eigenschappen mastsecties langsrichting (vooraanzicht, yz-vlak)

Omschrijving	h	b_1	b ₂	Δh	Δ_{x}	A_0	A_1	$\chi = A_1/A_0$	C_{t}
	[m]	[m]	[m]	[m]	[m]	[m ²]	$[m^2]$	[-]	
Broekstuk	4,80	7,00	5,00	4,80	0,208	28,80	5,30	0,18	3,00
Eerste tussenstuk	9,75	5,00	3,89	4,95	0,112	22,00	4,60	0,21	2,89
Tweede tussenstuk	15,50	3,89	2,60	5,75	0,112	18,66	4,60	0,25	2,74
Bovenstuk 1	22,50	2,60	2,00	7,00	0,043	16,10	4,90	0,30	2,52
Bovenstuk 2	27,50	2,00	2,00	5,00		10,00	2,90	0,29	2,57
Topstuk	29,00	2,00		1,50		1,50	0,30	0,20	2,93
Ondertraverse	15,50	10,80		2,50		13,50	6,20	0,46	2,07

Eigenschappen mastsecties dwarsrichting (zijaanzicht, xz-vlak)											
Omschrijving	h	b_1	b_2	∆h	Δ_{x}	A_0	A_1	$\chi = A_1/A_0$	C_{t}		
	[m]	[m]	[m]	[m]	[m]	[m²]	[m ²]	[-]			
Broekstuk	4,80	7,00	5,00	4,80	0,208	28,80	5,30	0,18	3,00		
Eerste tussenstuk	9,75	5,00	3,89	4,95	0,112	22,00	4,60	0,21	2,89		
Tweede tussenstuk	15,50	3,89	2,60	5,75	0,112	18,66	4,60	0,25	2,74		
Bovenstuk 1	22,50	2,60	2,00	7,00	0,043	16,10	4,90	0,30	2,52		
Bovenstuk 2	27,50	2,00	2,00	5,00		10,00	2,90	0,29	2,57		
Topstuk	29,00	2,00		1,50		1,50	0,30	0,20	2,93		
Ondertraverse	15,50	10,80		2,50		13,50	6,20	0,46	2,07		

NB: oppervlakte traverse dwarsrichting wordt in berekening gereduceerd.

28-7-2021 6 van 21

ZWO380 D2.2 OSP Mast 19a Portaal

Project: Tower: Number: 19a

Windoppervlak feeders telecominstallaties

Onderdeel Broekstuk A (m²/m)Δh Factor

Eerste tussenstuk Tweede tussenstuk Bovenstuk 1 Bovenstuk 2

Invoer antennes A (m²) h (m) $C_f(m)$

Omschrijving Antenne top Antenne o.t.

Belastingen mastsectie langsrichting (x-richting) per windrichting

Omschrijving	p_w	F_{x1}	F_{x2}	F_{x3}	F_{x4}	h_{ef}	M_{y1}	M_{y2}	M_{y3}	M_{y4}
	[kN/m ²]	[kN]	[kN]	[kN]	[kN]	[m]	[kNm]	[kNm]	[kNm]	[kNm]
Broekstuk	0,70	11,2	9,5	0,0	-9,5	2,4	26,8	22,7	0,0	-22,7
Eerste tussenstuk	0,70	9,3	7,9	0,0	-7,9	7,3	67,8	57,6	0,0	-57,6
Tweede tussenstuk	0,76	9,6	8,1	0,0	-8,1	12,6	120,6	102,3	0,0	-102,3
Bovenstuk 1	0,87	10,8	9,1	0,0	-9,1	19,0	204,3	173,3	0,0	-173,3
Bovenstuk 2	0,94	7,0	5,9	0,0	-5,9	25,0	174,8	148,3	0,0	-148,3
Topstuk	0,97	0,9	0,7	0,0	-0,7	28,3	24,1	20,5	0,0	-20,5
Ondertraverse	0,82	21,1	12,6	0,0	-12,6	16,3	345,2	205,1	0,0	-205,1

Totaal	69.8	53.8	0.0	-53,8	963,7	729,8	0.0	-729.8

Belastingen mastsectie dwarsrichting (y-richting) per windrichting

M_{x1} M_{x2} M_{x3} [kNm] [kNm] [kNm]	M _{x4}
[kNm] [kNm] [kNm] [kl	Alma I
	MILLI
0,0 22,7 26,8 2	22,7
0,0 57,6 67,8 5	57,6
0,0 102,3 120,6 10	02,3
0,0 173,3 204,3 17	73,3
0,0 148,3 174,8 14	48,3
0,0 20,5 24,1 2	20,5
0,0 205,1 138,1 20	05,1
	0,0 22,7 26,8 2 0,0 57,6 67,8 5 0,0 102,3 120,6 10 0,0 173,3 204,3 17 0,0 148,3 174,8 17 0,0 20,5 24,1 2

Totaal	0,0	53,8	57,1	53,8	0,0	729,8	756,5	729,8

Resulterende belastingen vanuit mastconstructie incl. antenne zonder geleiders niveau fundatie (kar. waarde)

Belasting / windrichting	F _x	F _y	F _z	M _x	M _y	M_z	
	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	
Permanente belasting	0	0	180	0	0	0	
Windrichting 0°	70	0	0	0	964	0	
Windrichting 45°	54	54	0	730	730	0	
Windrichting 90°	0	57	0	757	0	0	
Windrichting 135°	-54	54	0	730	-730	0	

28-7-2021 7 van 21

ZWO380 D2.2 OSP Mast 19a Portaal 19a

Project: Tower: Number:

Tussenresultaten geleiderbelastingen

Ge	اما	ы	^	-	ha	

Circuit	Geleider	Diameter	Α	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR Bobolink	36,2	775,5	24,11	65500	2,06E-05
Circuit 2	ACSR Bobolink	36,2	775,5	24,11	65500	2,06E-05
Bliksemdraad 1	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05
Bliksemdraad 2	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05
Bliksemdraad 3	OPGW 96 Fibral	15,8	116,0	4,85	85366	1,72E-05

Geleiders ahead

Circuit	Geleider	Diameter	А	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR Bobolink	36,2	775,5	24,11	65500	2,06E-05
Circuit 2	ACSR Bobolink	36,2	775,5	24,11	65500	2,06E-05
Bliksemdraad 1	Niet aanwezig					
Bliksemdraad 2	Niet aanwezig					
Bliksemdraad 3	Niet aanwezig					

Verticale belasting back

Tol troute belasting by							
Circuit	Bundel	Toeslag	$W_{z,G}$	IJsgebied	Formule	$W_{z,ijs}$	W _{z,ijs,bundel}
	[-]	[%]	[N/m]			[N/m]	[N/m]
Circuit 1	2	2	49,2	В	4+0,2d	11,2	22,5
Circuit 2	2	2	49,2	В	4+0,2d	11,2	22,5
Bliksemdraad 1	1	2	3,8	Α	15+0,4d	19,7	19,7
Bliksemdraad 2	1	2	3,8	Α	15+0,4d	19,7	19,7
Bliksemdraad 3	1	2	4,9	A	15+0,4d	21,3	21,3

Verticale belasting ahead

verticale belas	oung ancau						
Circuit	Bundel	Toeslag	$W_{z,G}$	IJsgebied	Formule	$W_{z,ijs}$	W _{z,ijs,bundel}
	[-]	[%]	[N/m]			[N/m]	[N/m]
Circuit 1	2	2	49,2	В	4+0,2d	11,2	22,5
Circuit 2	2	2	49,2	В	4+0,2d	11,2	22,5
Bliksemdraad 1	1	2		Α	15+0,4d		
Bliksemdraad 2	1	2		A	15+0,4d		
Bliksemdraad 3	1	2		A	15+0,4d		

Isolatoren

200101011									
Geleider	G _{isolator}	Aantal	$F_{v,iso}$	Lengte	Windopp. W	indhoogte	Stuwdruk	Vormfactor	$F_{h,iso}$
	[kN]	-	[kN]	[m]	[m ²]	[m]	[kN/m ²]	[-]	[kN]
150ct1f1	2,50	1	2,5	4,5	1,0	16,50	0,83	1,2	0,99
150ct1f2	2,50	1	2,5	4,5	1,0	16,50	0,83	1,2	0,99
150ct1f3	2,50	1	2,5	4,5	1,0	16,50	0,83	1,2	0,99
150ct2f1	2,50	1	2,5	4,5	1,0	16,50	0,83	1,2	0,99
150ct2f2	2,50	1	2,5	4,5	1,0	16,50	0,83	1,2	0,99
150ct2f3	2,50	1	2,5	4,5	1,0	16,50	0,83	1,2	0,99
bl1	0,10	1	0,1	0,2	0,1	18,70	0,86	1,2	0,10
bl2	0,10	1	0,1	0,2	0,1	18,70	0,86	1,2	0,10
bl3	0,10	1	0,1	0,2	0,1	30,00	0,99	1,2	0,12

28-7-2021 8 van 21

ZWO380 D2.2 OSP Mast 19a Portaal 19a

Project: Tower: Number:

Windbelasting back

Williabelasting											
	hoogte										
Geleider	wind	Stuwdruk	G_{c_dwars}	G_{c_trek}	C_c	$d_{toeslag}$	W_y	$W_{y,vak}$	$D_{ijs,toeslag}$	$W_{y,ijs}$	W _{y,ijs,vak}
	[m]	[kN/m²]	[-]	[-]	[-]	[mm]	[N/m]	[N/m]	[mm]	[N/m]	[N/m]
150ct1f1	13,4	0,77	0,70	0,70	1,01	36,96	40,4	40,5	55,0	71,1	71,4
150ct1f2	13,4	0,77	0,70	0,70	1,01	36,96	40,4	40,5	55,0	71,1	71,4
150ct1f3	13,4	0,77	0,70	0,70	1,01	36,96	40,4	40,5	55,0	71,1	71,4
150ct2f1	13,4	0,77	0,70	0,70	1,01	36,96	40,4	40,5	55,0	71,1	71,4
150ct2f2	13,4	0,77	0,70	0,70	1,01	36,96	40,4	40,5	55,0	71,1	71,4
150ct2f3	13,4	0,77	0,70	0,70	1,01	36,96	40,4	40,5	55,0	71,1	71,4
bl1	16,0	0,82	0,71	0,72	1,20	11,99	8,4	8,4	55,2	38,7	38,8
bl2	16,0	0,82	0,71	0,72	1,20	11,99	8,4	8,4	55,2	38,7	38,8
bl3	21,6	0,90	0,74	0,74	1,20	16,08	12,9	12,9	58,3	46,6	46,8

Windbelast											
	hoogte										
Geleider	wind	Stuwdruk	G_{c_dwars}	G_{c_trek}	C_c	$d_{toeslag}$	W_y	$W_{y,vak}$	D _{ijs,toeslag}	$W_{y,ijs}$	$W_{y,ijs,vak}$
	[m]	[kN/m²]	[-]	[-]	[-]	[mm]	[N/m]	[N/m]	[mm]	[N/m]	[N/m]
150ct1f1	8,6	0,67	0,65	0,98	1,06	36,96	34,1	51,1	55,0	57,4	86,1
150ct1f2	8,6	0,67	0,65	0,98	1,06	36,96	34,1	51,1	55,0	57,4	86,1
150ct1f3	8,6	0,67	0,65	0,98	1,06	36,96	34,1	51,1	55,0	57,4	86,1
150ct2f1	8,6	0,67	0,65	0,98	1,06	36,96	34,1	51,1	55,0	57,4	86,1
150ct2f2	8,6	0,67	0,65	0,98	1,06	36,96	34,1	51,1	55,0	57,4	86,1
150ct2f3 bl1 bl2	8,6	0,67	0,65	0,98	1,06	36,96	34,1	51,1	55,0	57,4	86,1
bl3											

28-7-2021 9 van 21

Project: ZWO380 D2.2 OSP Mast 19a Masttype: Portaal Mast: 19a

Auteur: Versie: TBR Geleiderbelastingen

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

ULS (bezwijkst	erkte)	NEN-EN50	341-2-15:20	19				
Belastingsgeval	omschrijving	Temp	γg	γ _G		γο		γa
		°C	$G_{k,mast}$	$G_{k,geleider}$	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,05	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,12	0,00	0,0
ULS 3	Wind+ijs	-5°	1,05	1,05	0,00	0,34	0,97	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,00	0,34	0,97	0,0
ULS 4	Koude+wind	-20°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,00	0,22	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,05	1,05	1,20	0,22	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 7	Permanent	10°	1,15	1,15	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijkst	terkte, enkel voor hoekmasten: a	afwezigheid geleid	ers)	γg	γQ			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,05	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,05	1,05	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,05	1,05	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,05	1,05	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,0	0,24	0,0	0,0
SLS (controle v	van de vervormingen, vermoeiin	g, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	0,94	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,28	0,88	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen Aantal belastingcombinaties ULS Aantal belastingcombinaties SPLS Aantal belastingcombinaties SLS Aantal knooplasten 6 54 210 15 5301

28-7-2021 10 van 21

Project: Masttype: Portaal Mast: 19a

- Samenvattingstabellen geleiderbelastingen
 In de onderstaande vier tabellen is weergegeven:
 De maximale geleiderbelasting in het globale assenstelsel, gesplitst in aandeel van back en ahead span
- De flaximale geleiderbelasting in net globale assenstelsel, gespiltst in adnoel van back en anead span
 De gecombineerde geleiderbelasting (Ba+Ah) in het globale assenstelsel met in het lokale assenstelsel de maximaal optredende trekkracht.
 Componenten Fx en Fy als absolute waarde
 De alledaagse (EDS) waarden van de gecombineerde geleiderbelastingen (Ba+Ah) met bijbehorende trekkrachten
 Controle op uplift, waar een negatieve waarde duidt op uplift

Maximale waarden voor back en ahead span

Maximale we	aaruen vooi	Dack ell al	icau spaii			
	Fx_ba	Fx_ah	Fy_ba	Fy_ah	Fz_ba	Fz_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	-11,4	0,0	9,4	0,1	1,8	1,1
bl2	-11,4	0,0	9,4	0,1	1,8	1,1
150ct1f1	-65,3	25,2	48,9	0,5	9,7	292,8
150ct1f2	-65,3	25,2	48,9	0,5	9,7	292,8
150ct1f3	-65,3	25,2	48,9	0,5	9,7	292,8
150ct2f1	-65,3	24,6	48,9	27,6	9,7	292,8
150ct2f2	-65,3	24,6	48,9	27,6	9,7	292,8
150ct2f3	-65,3	24,6	48,9	27,6	9,7	292,8
bl3	-13,3	0,0	11,0	0,1	3,8	1,1
Post	0,0	0,0	0,0	0,0	0,0	

Min. Weight	span (m)			Max. Weight span (m)		
Weight spar (Combinatie1	Weight spar Combinatie1	Weight spar Combinatie1			
Geleider	SLS 1a	SLS 4	SLS 7	Geleider ULS 1a U	JLS 3	
bl1	86,4	101,1	86,4	bl1 114,3	75,8	
bl2	86,4	101,1	86,4	bl2 114,3	75,8	
150ct1f1	290,9	6016,7	290,9	150ct1f1 390,4 8	392,6	
150ct1f2	290,9	6016,7	290,9	150ct1f2 390,4 8	392,6	
150ct1f3	290,9	6016,7	290,9	150ct1f3 390,4 8	392,6	
150ct2f1	297,3	6016,7	290,9	150ct2f1 382,4 8	391,5	
150ct2f2	297,3	6016,7	290,9	150ct2f2 382,4 8	391,5	
150ct2f3	297,3	6016,7	290,9	150ct2f3 382,4 8	391,5	
bl3	189,2	257,6	189,1	bl3 326,7 1	47,1	
Post				Post		

Omhullende weight span over alle combinaties (incl. 0,9 combinaties)

Voor alle geleiders

Max. weight span 6016,7 m Min. weight span 73,9 m Wind / Weight span verhouding

107,440 -1,320 -

28-7-2021 11 van 21

Project: ZWO380 D2.2 OSP Mast 19a Masttype: Portaal Mast: 19a

Maximale waarden	back+ah	ead span	Maximale	waarde	n t	rekkracht geleider

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	11,4	9,4	1,8	-14,8	0,0
bl2	11,4	9,4	1,8	-14,8	0,0
150ct1f1	65,3	49,0	292,8	-81,6	37,0
150ct1f2	65,3	49,0	292,8	-81,6	37,0
150ct1f3	65,3	49,0	292,8	-81,6	37,0
150ct2f1	65,3	76,6	292,8	-81,6	37,0
150ct2f2	65,3	76,6	292,8	-81,6	37,0
150ct2f3	65,3	76,6	292,8	-81,6	37,0
bl3	13,3	11,0	3,8	-17,2	0,0
Post	1,1	1,1	0,6	0,0	

EDS-belastingen geleiders

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	0,0	2,3	0,4	-3,8	0,0
bl2	0,0	2,3	0,4	-3,8	0,0
150ct1f1	0,8	29,3	12,2	-49,2	1,2
150ct1f2	0,8	29,3	12,2	-49,2	1,2
150ct1f3	0,8	29,3	12,2	-49,2	1,2
150ct2f1	0,8	29,3	12,2	-49,2	1,2
150ct2f2	0,8	29,3	12,2	-49,2	1,2
150ct2f3	0,8	29,3	12,2	-49,2	1,2
bl3	0,0	2,9	1,0	-4,9	0,0
Post	0,0	0,0	0,5	0,0	

Controle uplift SLS-wind

	Fz_ba	Fz_ah
atie: Geleider	[kN]	[kN]
bl1	0,0	0,0
bl2	0,0	0,0
150ct1f1	0,0	0,0
150ct1f2	0,0	0,0
150ct1f3	0,0	0,0
150ct2f1	0,0	0,0
150ct2f2	0,0	0,0
150ct2f3	0,0	0,0
bl3	0,0	0,0
Post	0,0	
	bl2 150ct1f1 150ct1f2 150ct1f3 150ct2f1 150ct2f2 150ct2f3 bl3	htie: Geleider [kN] bl1 0,0 bl2 0,0 150ct1f1 0,0 150ct1f2 0,0 150ct1f3 0,0 150ct2f1 0,0 150ct2f1 0,0 150ct2f2 0,0 150ct2f2 0,0 bl3 0,0

28-7-2021 12 van 21

Project: ZWO380 D2.2 OSP Mast 19a Masttype: Portaal Mast: 19a

Auteur: Versie: TBR Geleiderbelastingen

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

ULS (bezwijk	(sterkte)	NEN-EN50	341-2-15:20	19				
Belastingsgeval	omschrijving	Temp	γg	γ _G		γQ		γa
		°C	$G_{k,mast}$	$G_{k,qeleider}$	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,15	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,40	0,00	0,0
ULS 3	Wind+ijs	-5°	1,15	1,15	0,00	0,42	1,30	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,00	0,42	1,30	0,0
ULS 4	Koude+wind	-20°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,00	0,28	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,15	1,15	1,30	0,28	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 7	Permanent	10°	1,30	1,30	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijk	sterkte, enkel voor hoekmasten:	afwezigheid geleid	ers)	γ _G	γQ			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,15	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,15	1,15	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,15	1,15	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,15	1,15	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,0	0,24	0,0	0,0
SLS (control	e van de vervormingen, vermoeiin	g, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	1,00	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,30	1,00	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen Aantal belastingcombinaties ULS Aantal belastingcombinaties SPLS Aantal belastingcombinaties SLS Aantal knooplasten 6 54 210 15 5301

28-7-2021 16 van 21

Project: Masttype: Portaal Mast: 19a

- Samenvattingstabellen geleiderbelastingen
 In de onderstaande vier tabellen is weergegeven:
 De maximale geleiderbelasting in het globale assenstelsel, gesplitst in aandeel van back en ahead span
- De flaximale geleiderbelasting in net globale assenstelsel, gespiltst in adnoel van back en anead span
 De gecombineerde geleiderbelasting (Ba+Ah) in het globale assenstelsel met in het lokale assenstelsel de maximaal optredende trekkracht.
 Componenten Fx en Fy als absolute waarde
 De alledaagse (EDS) waarden van de gecombineerde geleiderbelastingen (Ba+Ah) met bijbehorende trekkrachten
 Controle op uplift, waar een negatieve waarde duidt op uplift

Maximale waarden voor back en ahead span

Maximale we	iai ueii vooi	Dack ell al	icau spaii			
	Fx_ba	Fx_ah	Fy_ba	Fy_ah	Fz_ba	Fz_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	-13,7	0,0	11,3	0,1	2,3	1,1
bl2	-13,7	0,0	11,3	0,1	2,3	1,1
150ct1f1	-68,1	25,2	53,0	0,5	10,9	293,1
150ct1f2	-68,1	25,2	53,0	0,5	10,9	293,1
150ct1f3	-68,1	25,2	53,0	0,5	10,9	293,1
150ct2f1	-68,1	24,5	53,0	27,7	10,9	293,1
150ct2f2	-68,1	24,5	53,0	27,7	10,9	293,1
150ct2f3	-68,1	24,5	53,0	27,7	10,9	293,1
bl3	-15,8	0,0	13,1	0,2	4,7	1,1
Post	0,0	0,0	0,0	0,0	0,0	

Min. Weight	span (m)			Max. Weight span (m)
Weight spar (Combinatie1			Weight spar Combinatie1
Geleider	SLS 1a	SLS 4	SLS 7	Geleider ULS 1a ULS 3
bl1	86,4	101,2	86,4	bl1 117,4 73,5
bl2	86,4	101,2	86,4	bl2 117,4 73,5
150ct1f1	290,9	6016,7	290,9	150ct1f1 412,7 816,5
150ct1f2	290,9	6016,7	290,9	150ct1f2 412,7 816,5
150ct1f3	290,9	6016,7	290,9	150ct1f3 412,7 816,5
150ct2f1	298,0	6016,7	290,9	150ct2f1 403,0 815,2
150ct2f2	298,0	6016,7	290,9	150ct2f2 403,0 815,2
150ct2f3	298,0	6016,7	290,9	150ct2f3 403,0 815,2
bl3	189,2	258,0	189,1	bl3 340,9 137,1
Post				Post

Omhullende weight span over alle combinaties (incl. 0,9 combinaties)

Voor alle geleiders

Max. weight span 6016,7 m Min. weight span 72,0 m Wind / Weight span verhouding

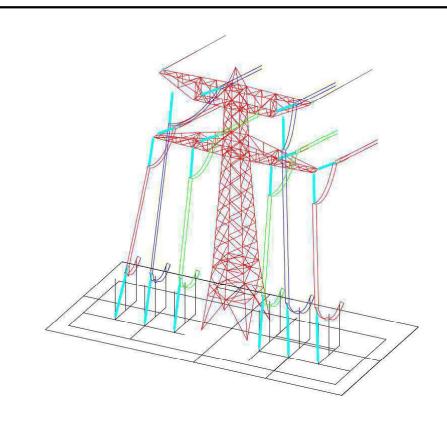
1,286 -

28-7-2021 17 van 21

Project: ZWO380 D2.2 OSP Mast 19a Masttype: Portaal Mast: 19a

Maximale waarden back+ahead span Maximale waarden trekkracht geleider

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	13,7	11,3	2,3	-17,7	0,0
bl2	13,7	11,3	2,3	-17,7	0,0
150ct1f1	67,4	50,5	293,1	-86,2	37,0
150ct1f2	67,4	50,5	293,1	-86,2	37,0
150ct1f3	67,4	50,5	293,1	-86,2	37,0
150ct2f1	67,4	78,2	293,1	-86,2	37,0
150ct2f2	67,4	78,2	293,1	-86,2	37,0
150ct2f3	67,4	78,2	293,1	-86,2	37,0
bl3	15,8	13,1	4,7	-20,4	0,0
Post	1,4	1,4	0,7	0,0	


EDS-belastingen geleiders

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	0,0	2,3	0,4	-3,8	0,0
bl2	0,0	2,3	0,4	-3,8	0,0
150ct1f1	0,8	29,3	12,2	-49,2	1,2
150ct1f2	0,8	29,3	12,2	-49,2	1,2
150ct1f3	0,8	29,3	12,2	-49,2	1,2
150ct2f1	0,8	29,3	12,2	-49,2	1,2
150ct2f2	0,8	29,3	12,2	-49,2	1,2
150ct2f3	0,8	29,3	12,2	-49,2	1,2
bl3	0,0	2,9	1,0	-4,9	0,0
Post	0,0	0,0	0,5	0,0	

Controle uplift SLS-wind

	Fz_ba	Fz_ah
atie: Geleider	[kN]	[kN]
bl1	0,0	0,0
bl2	0,0	0,0
150ct1f1	0,0	0,0
150ct1f2	0,0	0,0
150ct1f3	0,0	0,0
150ct2f1	0,0	0,0
150ct2f2	0,0	0,0
150ct2f3	0,0	0,0
bl3	0,0	0,0
Post	0,0	
	bl2 150ct1f1 150ct1f2 150ct1f3 150ct2f1 150ct2f2 150ct2f3 bl3	htie: Geleider [kN] bl1 0,0 bl2 0,0 150ct1f1 0,0 150ct1f2 0,0 150ct1f3 0,0 150ct2f1 0,0 150ct2f1 0,0 150ct2f2 0,0 150ct2f2 0,0 bl3 0,0

28-7-2021 18 van 21

Inhoud

- Uitgangspunten p. 2
- Mastconstructie p. 6
- Tussenresultaten p. 8
- Belastingen initiëel p. 10
- Belastingen na aanpassing p. 15

Gegevens

Norm NEN-EN50341-2-15:2019

Initieel

Gevolgklasse CC2 Betrouwbaarheidsniveau Afkeur Referentieperiode 30 jaar

Na aanpassing

Gevolgklasse CC2
Betrouwbaarheidsniveau Verbouw
Referentieperiode 50 jaar

Windgebied III
Windsnelheid 24,5 m/s
Terreincategorie II
Reductie factor Cdir 1,00
IJsgebied B

Masttype Hoekmast Lijnhoek 143°

		_		
0.0	2021-06-18			
ISSUE	DATE	REVISION	CHK'D	APP'D

Client:

Title:

Verticale geleiders Portaal

JOB No.	-	DATE	-
DRAWN	_	CHKD	-
DESIGN	-	APPD	-

Document name:

ZWO380 D2.2 OSP Mast 19a_Portaal_19a_Report.pdf

Project number:

Proje	ect cl	ient nu	ımbe	r:				
-								
	ı	ı —	l	I		1	1	
0.0								
								l

ZWO380 D2.2 OSP Mast 19a Project:

Tower: Portaal Number: 19a

Auteur: Geleiderbelastingen afloper Versie: v1.9

Algemeen

Benaming Masttype Aantal circuits Configuratie Aantal bliksemgeleiders Portaal Hoekmast 2-circuit-vlak

Uitgangspunten

Norm NEN-E
Gevolgklasse initieel
Betrouwbaarheidsniveau initieel
Referentieperiode initieel
Gevolgklasse na aanpassing
Betrouwbaarheidsniveau na aanpassing
Referentieperiode na aanpassing NEN-EN50341-2-15:2019 CC2 Afkeur CC2-0 30 jaar CC2 Verbouw 50 jaar Windgebied III 24,5 m/s II Windsnelheid (m/s) Terreincategorie Reductiefactor c_{dir} 1,00 IJsgebied fasegeleider В IJsgebied bliksemgeleider

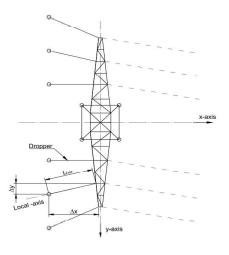
Geleiders

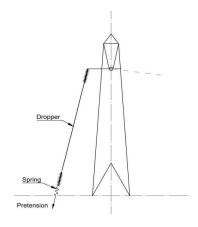
Omschrijving	Spanning	Geleider	Bundel	IJsgebied	Toeslag	Toeslag	
		Back	Ba		gewicht	diameter	
Circuit 1	150 kV	ACSR Bobolink	2	В	2 %	2 %	
Circuit 2	150 kV	ACSR Bobolink	2	В	2 %	2 %	
Bliksemdraad 1		ACSR 30/52 PETREL	1	Α	2 %	2 %	1000
Bliksemdraad 2		ACSR 30/52 PETREL	1	Α	2 %	2 %	1000
Bliksemdraad 3		OPGW 96 Fibral	1	Α	2 %	2 %	1000

Isolatoren	(1)			
Omschrijving	Ophanging	Gewicht	Lengte	Windopp.
		[kN]	[m]	[m ²]
Circuit 1	Afspanketting	2,50	4,50	1,00
Circuit 2	Afspanketting	2,50	4,50	1,00
Bliksemdraad 1	Afspanketting	0,10	0,20	0,10
Bliksemdraad 2	Afspanketting	0,10	0,20	0,10
Bliksemdraad 3	Afspanketting	0,10	0,20	0,10

^{1.} Eigenschappen gelden voor geheel van de isolatorset

Ophanghoogte en positie in mast


Circuits	Nummer	Aanduiding	Ophanghoogte	Aangrijppunt
Circuit 1	10	150ct1f1	16,0 m	16,0 m
Circuit 1	11	150ct1f2	16,0 m	16,0 m
Circuit 1	12	150ct1f3	16,0 m	16,0 m
Circuit 2	20	150ct2f1	16,0 m	16,0 m
Circuit 2	21	150ct2f2	16,0 m	16,0 m
Circuit 2	22	150ct2f3	16,0 m	16,0 m
Bliksemdraad 1	1	bl1	0,0 m	0,0 m
Bliksemdraad 2	3	bl2	0,0 m	0,0 m
Bliksemdraad 3	5	bl3	0,0 m	0,0 m


18-6-2021 2 van 13

Project: Tower: Number: Portaal

Principe hoekmast met aflopers

Top view tower

Side view tower

Hoogteafwijking mastbeeld naastgelegen masten en richtingsverandering t.o.v. Lijnrichting

			Hoogteverschil	Richtingsvera	ndering	Lokaal ∆x Ler	ngte overspanning	
Circuits	Nummer	Aanduiding	Δh	Δy	Δx	Lhor	L	
Circuit 1	10	150ct1f1	15,7 m	-2,2	0,5	2,3	15,9 m	
Circuit 1	11	150ct1f2	15,7 m	- 2,2	0,3	2,2	15,9 m	
Circuit 1	12	150ct1f3	15,7 m	- 2,2	0,3	2,2	15,9 m	
Circuit 2	20	150ct2f1	15,7 m	2,2	0,3	2,2	15,9 m	
Circuit 2	21	150ct2f2	15,7 m	2,2	0,3	2,2	15,9 m	
Circuit 2	22	150ct2f3	15,7 m	2,2	0,5	2,3	15,9 m	
Bliksemdraad 1	1	bl1	0,0 m	0,0	0,0	0,0	0,0 m	
Bliksemdraad 2	3	bl2	0,0 m	0,0	0,0	0,0	0,0 m	
Bliksemdraad 3	5	bl3	0,0 m	0,0	0,0	0,0	0,0 m	

Voorspanning en veerstijfheid

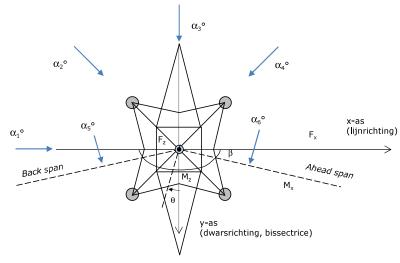
			Voorspanning	Veerstijfheid	Effectieve rekstijfheid
Circuits	Nummer	Aanduiding	F _{pr}	k	EA _{fict}
Circuit 1	10	150ct1f1	3,0 kN	500 kN/m	3243 kN/m
Circuit 1	11	150ct1f2	3,0 kN	500 kN/m	3243 kN/m
Circuit 1	12	150ct1f3	3,0 kN	500 kN/m	3243 kN/m
Circuit 2	20	150ct2f1	3,0 kN	500 kN/m	3243 kN/m
Circuit 2	21	150ct2f2	3,0 kN	500 kN/m	3243 kN/m
Circuit 2	22	150ct2f3	3,0 kN	500 kN/m	3243 kN/m
Bliksemdraad 1	1	bl1	0,0 kN	0 kN/m	kN/m
Bliksemdraad 2	3	bl2	0,0 kN	0 kN/m	kN/m
Bliksemdraad 3	5	bl3	0,0 kN	0 kN/m	kN/m

De effectieve rekstijfheid is bepaald met de invloed van de veerstijfheid Deze is berekend door de optelling van de reciproke waarden van de veerstijfheid van geleider en veer.

18-6-2021 3 van 13

ZWO380 D2.2 OSP Mast 19a Portaal 19a

Project: Tower: Number:


Lijn- en mastgegevens

Deze invoer is opgenomen voor beschouwde windrichtingen en komt overeen met invoer geleiderbelastingen voor de mast

Lijnhoek Rotatie mast t.o.v. bissectrice	$_{\theta}^{\beta}$	143 ° 18 °
Hoogte onderkant mast t.o.v. ma	aaiveld	0,5 m
Beschouwde windrichtingen	α_1	0 °
Windrichtingen volgens:	α_2	45 °
Geleiderbelastingen	α_3	90 °
_	α_4	135 °
	α_5	53,5 °
	α_6	90,5 °

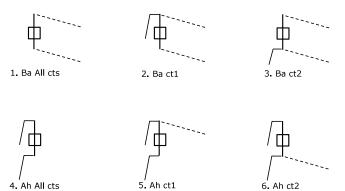
Windrichtingen gelden t.o.v. hoofdrichting mastconstructie, niet t.o.v. bissectrice.

Windrichtingen en positieve richtingen belastingen

Beschouwd aantal windrichting	en
1a	6
3	6
4	1
6	6
Overig	6

18-6-2021 4 van 13

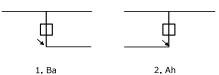
Project: Tower: Number: Portaal


Geleiderafval

		SPLS	SPLS - torsie		elzijdige trek	5a - gele	iderbreuk
		Aanw.	Afw.	Aanw.	Afw.	Aanw.	Afw.
Circuit 1	150ct1f1	1	0	1	0	1	0
Circuit 1	150ct1f2	1	0	1	0	1	0
Circuit 1	150ct1f3	1	0	1	0	1	0
Circuit 2	150ct2f1	0	1	1	0	1	0
Circuit 2	150ct2f2	0	1	1	0	1	0
Circuit 2	150ct2f3	0	1	1	0	1	0
Bliksemdraad 1	bl1	1	0	1	0	1	0
Bliksemdraad 2	bl2	0	1	1	0	1	0
Bliksemdraad 3	bl3	0	1	1	0	1	0

Belastingsituaties SPLS

Beschouwde situaties SPLS: 1 t/m 6, alle mogelijke situaties. Geleiderbelastingen naar volgende mast geen onderdeel van deze berekening.


Principe belastingssituaties:

Belastingsituaties 5a. Geleiderbreuk

Beschouwde situaties geleiderbreuk 5a: 1 en 2, alle mogelijke situaties.

Principe belastingssituaties:

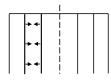
18-6-2021 5 van 13

Project: ZWO380 D2.2 OSP Mast 19a

Project: ZWO38 Tower: Portaal Number: 19a

Belastingsituaties 6. Bouw- en onderhoud

Onder 6a wordt de belasting door aanwezigheid lijnwagen of lijnfiets in combinatie met puntlast op traverse in rekening gebracht. Combinatie 6b bevat geen belastingen in geleider of op traverse. Deze combinatie met 20% wind is geschikt voor controle stijgpunt in combinatie met kortsluitbelastingen.


	Fase	Bliksem
Lijnwagen (nvt.)	0,0 kN	0,0 kN
Puntlast op traverse	1,0 kN	1,0 kN

Belastingsituaties 8. Kortsluiting

Principe belastingssituaties:

2. 11-12

<u>57.20</u> .

Kortsluitkrachten

(Zie separate berekening)

Geleider	w _{z,G} Kortsluitkra		F _x	F _v	F_z
	[N/m]	[kN]	[kN]	[kNj	[kN]
10	150ct1f1	8,9	0,3	-1,2	8,8
11	150ct1f2	8,9	0,1	-1,2	8,8
12	150ct1f3	8,9	0,1	-1,2	8,8
20	150ct2f1	8,9	0,1	1,2	8,8
21	150ct2f2	8,9	0,1	1,2	8,8
22	150ct2f3	8,9	0,3	1,2	8,8
1	bl1				
3	bl2				
5	hl3				

Belastingcombinaties kortsluiting

Belastingcombinatie
ULS 8 Kortsluiting 10-11
ULS 8 Kortsluiting 10-12
ULS 8 Kortsluiting 11-12
ULS 8 Kortsluiting 20-21
ULS 8 Kortsluiting 20-22
ULS 8 Kortsluiting 21-22
•

18-6-2021 6 van 13

Project: ZWO380 D2.2 OSP Mast 19a

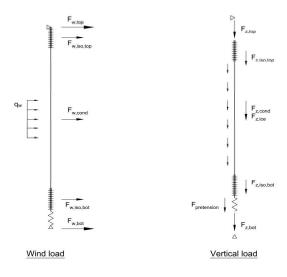
Tower: Portaal Number: 19a

Tussenresultaten geleiderbelastingen

Geleiders

Circuit	Geleider	Diameter	Α	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR Bobolink	36,2	775,5	24,11	65500	2,06E-05
Circuit 2	ACSR Bobolink	36,2	775,5	24,11	65500	2,06E-05
Bliksemdraad 1	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05
Bliksemdraad 2	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05
Bliksemdraad 3	OPGW 96 Fibral	15,8	116,0	4,85	85366	1,72E-05

Verticale belasting


Bundel	Toeslag	Wz	,G	IJsgebied	Formule	$W_{z,ijs}$	W _{z,ijs,bunde} l
[-]	[%]	[N	/m]			[N/m]	[N/m]
	2	2	49,2	E	3 4+0,2d	11,2	22,5
	2	2	49,2	E	3 4+0,2d	11,2	22,5
	1	2	3,8	A	15+0,4d	19,7	19,7
	1	2	3,8	A	15+0,4d	19,7	19,7
	1	2	4,9	A	15+0,4d	21,3	21,3
		[-] [%]	[-] [%] [N	[-] [%] [N/m] 2 2 49,2 2 2 49,2 1 2 3,8 1 2 3,8	[-] [%] [N/m] 2 2 49,2 E 2 2 49,2 E 1 2 3,8 A 1 2 3,8 A	[-] [%] [N/m] 2 2 49,2 B 4+0,2d 2 2 49,2 B 4+0,2d 1 2 3,8 A 15+0,4d 1 2 3,8 A 15+0,4d	[-] [%] [N/m] [N/m] 2 2 49,2 B 4+0,2d 11,2 2 2 49,2 B 4+0,2d 11,2 1 2 3,8 A 15+0,4d 19,7 1 2 3,8 A 15+0,4d 19,7

Schema voor berekenen horizontale en verticale belasting

Horizontale belasting wordt bepaald voor de wind tegen de geleider en isolatoren boven en onder.

De horizontale component als gevolg van de scheefstand van de afloper wordt per belastingscombinatie apart bepaald De verticale krachten gelden alleen voor de EDS-conditie zonder externe belastingen en temperatuursverandering

De berekeningen zijn weergegeven op het volgende blad.

18-6-2021 7 van 13

ZWO380 D2.2 OSP Mast 19a Portaal 19a

Project: Tower: Number:

Isolatoren				1	Boven			Onder		
Geleider	G _{isolator}	Lengte	Windopp.	Vormfactor V	Vindhoogte	Stuwdruk	F _{h,iso} V	Vindhoogte	Stuwdruk	$F_{h,iso}$
	[kN]	[m]	[m ²]	[-]	[m]	[kN/m²]	[kN]	[m]	[kN/m²]	[kN]
150ct1f1	2,50	4,5	1,0	1,2	14,25	0,79	0,95	3,05	0,49	0,59
150ct1f2	2,50	4,5	1,0	1,2	14,25	0,79	0,95	3,05	0,49	0,59
150ct1f3	2,50	4,5	1,0	1,2	14,25	0,79	0,95	3,05	0,49	0,59
150ct2f1	2,50	4,5	1,0	1,2	14,25	0,79	0,95	3,05	0,49	0,59
150ct2f2	2,50	4,5	1,0	1,2	14,25	0,79	0,95	3,05	0,49	0,59
150ct2f3	2,50	4,5	1,0	1,2	14,25	0,79	0,95	3,05	0,49	0,59
bl1	0,10	0,2	0,1	1,2	0,40	0,49	0,06	0,60	0,49	0,06
bl2	0,10	0,2	0,1	1,2	0,40	0,49	0,06	0,60	0,49	0,06
bl3	0,10	0,2	0,1	1,2	0,40	0,49	0,06	0,60	0,49	0,06

ı	Н	or	izc	n	tal	e	bel	as	tin	g

perasting										
hoogte										
wind	Stuwdruk	G_c	C _c	$d_{toeslag}$	W_y	D _{ijs,toeslag}	$W_{y,ijs}$	F _{w,geleider}	$F_{w,boven}$	F _{w,onder}
[m]	[kN/m²]	[-]	[-]	[mm]	[N/m]	[mm]	[N/m]	[kN]	[kN]	[kN]
8,7	0,67	0,99	1,06	36,96	51,9	55,0	87,4	0,17	1,1	0,8
8,7	0,67	0,99	1,06	36,96	51,9	55,0	87,4	0,17	1,1	0,8
8,7	0,67	0,99	1,06	36,96	51,9	55,0	87,4	0,17	1,1	0,8
8,7	0,67	0,99	1,06	36,96	51,9	55,0	87,4	0,17	1,1	0,8
8,7	0,67	0,99	1,06	36,96	51,9	55,0	87,4	0,17	1,1	0,8
8,7	0,67	0,99	1,06	36,96	51,9	55,0	87,4	0,17	1,1	0,8
0,5	0,49	0,97	1,20	11,99	6,9	55,2	31,6	0,00	0,1	0,1
0,5	0,49	0,97	1,20	11,99	6,9	55,2	31,6	0,00	0,1	0,1
0,5	0,49	0,97	1,20	16,08	9,2	58,3	33,4	0,00	0,1	0,1
	wind [m] 8,7 8,7 8,7 8,7 8,7 0,5	hoogte wind Stuwdruk [m] [kN/m²] 8,7 0,67 8,7 0,67 8,7 0,67 8,7 0,67 8,7 0,67 8,7 0,67 8,7 0,67 0,5 0,49 0,5 0,49	wind Stuwdruk Gc [m] [kN/m²] [-] 8,7 0,67 0,99 8,7 0,67 0,99 8,7 0,67 0,99 8,7 0,67 0,99 8,7 0,67 0,99 8,7 0,67 0,99 8,7 0,67 0,99 0,5 0,49 0,97 0,5 0,49 0,97 0,5 0,49 0,97	hoogte wind Stuwdruk Gc Cc [m] [kN/m²] [-] [-] 8,7 0,67 0,99 1,06 8,7 0,67 0,99 1,06 8,7 0,67 0,99 1,06 8,7 0,67 0,99 1,06 8,7 0,67 0,99 1,06 8,7 0,67 0,99 1,06 0,5 0,49 0,97 1,20 0,5 0,49 0,97 1,20 0,5 0,49 0,97 1,20	hoogte wind Stuwdruk G _c C _c d _{toeslag} [m] [kN/m²] [-] [-] [mm] 8,7 0,67 0,99 1,06 36,96 8,7 0,67 0,99 1,06 36,96 8,7 0,67 0,99 1,06 36,96 8,7 0,67 0,99 1,06 36,96 8,7 0,67 0,99 1,06 36,96 8,7 0,67 0,99 1,06 36,96 8,7 0,67 0,99 1,06 36,96 9,7 1,20 11,99 1,96 36,96 9,5 0,49 0,97 1,20 11,99	hoogte wind Stuwdruk G _c C _c d _{toeslag} w _y [m] [kN/m²] [-] [-] [mm] [N/m] 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 9,5 0,49 <td< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>hoogte wind Stuwdruk G_c C_c d_{toeslag} w_y D_{ijs,toeslag} w_{y,ijs} F_{w,geleider} [m] [kN/m²] [-] [-] [mm] [N/m] [mm] [N/m] [kN] 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67<td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></td></td<>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	hoogte wind Stuwdruk G _c C _c d _{toeslag} w _y D _{ijs,toeslag} w _{y,ijs} F _{w,geleider} [m] [kN/m²] [-] [-] [mm] [N/m] [mm] [N/m] [kN] 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

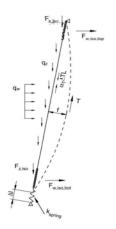
 $\begin{tabular}{ll} \textbf{Verticale belasting} \\ \textbf{Formules:} & F_{z,top} = F_{z,iso,top} + F_{z,cond} + F_{z,iso,bot} + F_{pr} \\ & F_{t,mid} = F_{z,cond}/2 + F_{z,iso,bot} + F_{pr} \\ & F_{z,bot} = -F_{pr} \\ \end{tabular}$ $\begin{aligned} & L_{geleider} = \Delta h - 2 L_{iso} \\ & F_{z,cond} = L_{cond} \times w_z \end{aligned}$

Geleider	$W_{z,G}$	W _{z,ijs}	L _{geleider}	$F_{z,iso}$	$F_{z,gel}$	$F_{z,ijs}$	Pretension	F _{z,boven}	$F_{t,mid}$	$F_{z,onder}$
	[N/m]	[N/m]	[m]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
150ct1f1	49,2	22,5	6,7	2,5	0,3	0,2	3,0	8,3	5,7	-3,0
150ct1f2	49,2	22,5	6,7	2,5	0,3	0,2	3,0	8,3	5,7	- 3,0
150ct1f3	49,2	22,5	6,7	2,5	0,3	0,2	3,0	8,3	5,7	- 3,0
150ct2f1	49,2	22,5	6,7	2,5	0,3	0,2	3,0	8,3	5,7	-3,0
150ct2f2	49,2	22,5	6,7	2,5	0,3	0,2	3,0	8,3	5,7	-3,0
150ct2f3	49,2	22,5	6,7	2,5	0,3	0,2	3,0	8,3	5,7	-3,0
bl1	3,8	19,7	-0,4	0,1	0,0	0,0	0,0	0,2	0,1	0,0
bl2	3,8	19,7	-0,4	0,1	0,0	0,0	0,0	0,2	0,1	0,0
bl3	4,9	21,3	-0,4	0,1	0,0	0,0	0,0	0,2	0,1	0,0

18-6-2021 8 van 13

ZWO380 D2.2 OSP Mast 19a Portaal 19a

Project: Masttype: Mast:


Auteur: Versie: TBR Geleiderbelastingen v1.9

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

ULS (bezwijksterkte)		NEN-EN50	NEN-EN50341-2-15:2019					
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γQ		γ _a
		°C	$G_{k,mast}$	G _{k,geleider}	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,05	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,12	0,00	0,0
ULS 3	Wind+ijs	-5°	1,05	1,05	0,00	0,34	0,97	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,00	0,34	0,97	0,0
ULS 4	Koude+wind	-20°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,00	0,22	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,05	1,05	1,20	0,22	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 7	Permanent	10°	1,15	1,15	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijk	ksterkte, enkel voor hoekmasten: a	fwezigheid geleic	ers)	γ _G	γ _Q			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,05	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,05	1,05	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,05	1,05	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,05	1,05	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,0	0,24	0,0	0,0
SLS (control	e van de vervormingen, vermoeiing	j, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	0,94	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,28	0,88	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen	6
Aantal belastingcombinaties ULS	59
Aantal belastingcombinaties SPLS	210
Aantal belastingcombinaties SLS	15
Aantal knooplasten	5112

SchematisationDe trekkracht in de afloper wordt bepaald met de toestandsvergelijking voor een gekromde kabel. In de rekstijfheid van de kabel is de invloed van de veer verdisconteerd.

18-6-2021 9 van 13

Project: Masttype: Mast: Portaal 19a

- Tabellen met geleiderbelastingen

 In de onderstaande drie tabellen is weergegeven:

 De trekkracht per belastingcombinatie en de bijbehorende zeeg en veerverlenging

 De geleiderbelastingen in het lokale assenstelsel voor het onderste bevestigingspunt

 De maximale waarden voor de reacties onder en boven in het globale assenstelsel

Trekkracht, zeeg en veerverlenging

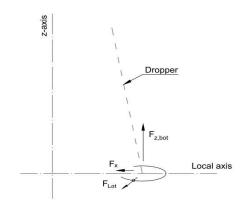
Geleider	Combinatie		Veer-	rotale veer- verlengin g [m]	ı rek- kracht initieel [kN]	Trek- kracht [kN]
150ct1f1	SLS 1a	0,39	0,008	0,020	5,7	9,8
	SLS 3	0,28	0,005	0,016	5,7	8,2
	SLS 4	0,20	0,004	0,016	5,7	7,9
	SLS 6	0,24	0,002	0,014	5,7	6,8
	SLS 7	0,18	0,000	0,011	5,7	5,7
	ULS 1a	0,42	0,010	0,021	6,1	10,5
	ULS 3	0,29	0,006	0,017	6,2	8,5
	ULS 4	0,21	0,005	0,016	6,1	8,1
	ULS 6b	0,25	0,003	0,014	6,1	6,9
150ct1f2	SLS 1a	0,39	0,008	0,020	5,7	9,8
	SLS 3	0,28	0,005	0,016	5,7	8,2
	SLS 4	0,20	0,005	0,016	5,7	7,9
	SLS 6	0,23	0,002	0,014	5,7	6,8
	SLS 7	0,18	0,000	0,011	5,7	5,7
	ULS 1a	0,42	0,010	0,021	6,1	10,5
	ULS 3	0,29	0,006	0,017	6,2	8,5
	ULS 4	0,21	0,005	0,016	6,1	8,1
	ULS 6b	0,24	0,003	0,014	6,1	6,9
150ct1f3	SLS 1a	0,39	0,008	0,020	5,7	9,8
	SLS 3	0,28	0,005	0,016	5,7	8,2
	SLS 4	0,20	0,005	0,016	5,7	7,9
	SLS 6	0,23	0,002	0,014	5,7	6,8
	SLS 7	0,18	0,000	0,011	5,7	5,7
	ULS 1a	0,42	0,010	0,021	6,1	10,5
	ULS 3	0,29	0,006	0,017	6,2	8,5
	ULS 4	0,21	0,005	0,016	6,1	8,1
	ULS 6b	0,24	0,003	0,014	6,1	6,9

Controle iteratieproces

Geleider	Iteratie	
bl1		0
bl2		0
150ct1f	ок	
150ct1f	ок	
150ct1f	ок	
150ct2f	ок	
150ct2f	ок	
150ct2f	ок	
ЫЗ		0

18-6-2021 10 van 13

Project: Masttype: Mast: Portaal 19a

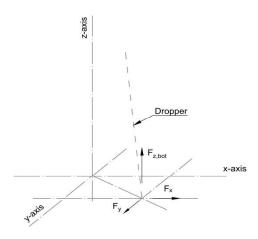

Belastingen in lokale richting geleider

De belastingen op het onderste bevestigingspunt voor het dimensioneren van de ondersteuningsconstructie

De richting van de laterale kracht wordt bepaald door de windrichting en kan in alle richtingen aangrijpen.

De resulterende horizontale kracht kan worden afgeleid uit de vectoriële optelling van de kracht in x-richting en laterale kracht.

	Fx,lok,bot	Flat,bot	Fz_bot
Combinatie1	[kN]	[kN]	[kN]
SLS 1a	1,4	0,7	-7,1
SLS 3	1,2	0,2	-5,4
SLS 4	1,1	0,1	- 5,2
SLS 6	1,0	0,1	-4,1
SLS 7	0,8	0,0	-3,0
ULS 1a	1,5	0,9	- 7,7
ULS 3	1,2	0,3	-5,6
ULS 4	1,2	0,2	-5,3
ULS 6b	1,0	0,2	-4,1
SLS 1a	1,4	0,7	-7,1
SLS 3	1,2	0,3	- 5,5
SLS 4	1,1	0,1	- 5,3
SLS 6	1,0	0,1	-4,1
SLS 7	0,8	0,0	-3,0
ULS 1a	1,5	0,9	-7,7
ULS 3	1,2	0,3	-5,6
ULS 4	1,1	0,2	-5,3
ULS 6b	1,0	0,2	-4,1
SLS 1a	1,4	0,7	-7,1
SLS 3	1,2	0,3	-5,5
SLS 4	1,1	0,1	-5,3
SLS 6	1,0	0,1	-4,1
SLS 7	0,8	0,0	-3,0
ULS 1a	1,5	0,9	-7,7
ULS 3	1,2	0,3	-5,6
ULS 4	1,1	0,2	-5,3
ULS 6b	1,0	0,2	-4,1


18-6-2021 11 van 13

Project: Masttype: Mast: Portaal 19a

Maximale waarden in globale assenstelsel

De maximale waarden van de verticale kracht en de resulterende horizontale kracht per belastingcombinatie Zowel voor het bovenste als het onderste bevestigingspunt

eleider	Combinatie	Fx_top [kN]	Fy_top [kN	Fz_top [kN]	Fx_bot [kN]	Fy_bot [kN]	Fz_bot [kN]
150ct1f1	SLS 1a	1,7	0,3	12,5	-1,6	0,0	-7,1
	SLS 3	0,8	0,0	10,9	-1,0	0,0	-5,4
	SLS 4	0,4	0,0	10,6	-0,7	0,0	-5,2
	SLS 6	0,3	0,0	9,4	-0,7	0,0	-4,1
	SLS 7	0,3	0,0	8,3	-0,5	0,0	-3,0
	ULS 1a	2,0	0,4	13,3	-1,8	0,0	-7,7
	ULS 3	0,9	0,0	11,4	-1,1	0,0	-5,6
	ULS 4	0,4	0,0	10,9	-0,8	0,0	-5,3
	ULS 6b	0,6	0,0	9,7	-0,8	0,0	-4,1
	ULS 7	0,3	0,0	8,8	-0,6	0,0	-2,7
150ct1f2	SLS 1a	1,7	0,2	12,5	-1,4	0,0	-7,1
	SLS 3	0,8	0,0	10,9	-0,9	0,0	-5,5
	SLS 4	0,3	0,0	10,6	-0,6	0,0	- 5,3
	SLS 6	0,3	0,0	9,4	-0,5	0,0	-4,1
	SLS 7	0,2	0,0	8,3	-0,4	0,0	-3,0
	ULS 1a	1,9	0,4	13,3	-1,6	0,0	-7,7
	ULS 3	0,8	0,0	11,4	-0,9	0,0	-5,6
	ULS 4	0,3	0,0	10,9	-0,6	0,0	-5,3
	ULS 6b	0,5	0,0	9,7	-0,7	0,0	-4,1
	ULS 7	0,2	0,0	8,8	-0,4	0,0	-2,7
150ct1f3	SLS 1a	1,7	0,2	12,5	-1,4	0,0	-7,1
	SLS 3	0,8	0,0	10,9	-0,9	0,0	-5,5
	SLS 4	0,3	0,0	10,6	-0,6	0,0	-5,3
	SLS 6	0,3	0,0	9,4	-0,5	0,0	-4,1
	SLS 7	0,2	0,0	8,3	-0,4	0,0	-3,0
	ULS 1a	1,9	0,4	13,3	-1,6	0,0	-7,7
	ULS 3	0,8	0,0	11,4	-0,9	0,0	-5,6
	ULS 4	0,3	0,0	10,9	-0,6	0,0	-5,3
	ULS 6b	0,5	0,0	9,7	-0,7	0,0	-4,1
	ULS 7	0,2	0,0	8,8	-0,4	0,0	-2,7
150ct2f1	SLS 1a	1,1	2,0	11,2	-0,5	-1,3	-5,8
	SLS 3	0,3	1,0	9,8	-0,1	-1,2	-4,4
	SLS 4	0,0	0,9	9,4	0,0	-1,0	-4,1
	SLS 6	0,0	0,7	7,8	0,0	-0,8	-2,5
	SLS 7	0,0	0,5	8,3	0,0	-1,0	-3,0
							,

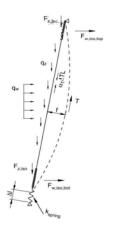
Project: Masttype: Mast:	ZWO380 D2.2 OSP Mast 19a Portaal 19a						
150ct2f1	ULS 3	0,4	1,0	10,2	-(
	ULS 4	0,0	1,0	9,5	(
	ULS 6b	0,2	0,7	8,9	(
	ULS 7	0,0	0,5	8,8	(

Mast.	194						
150ct2f1	ULS 3	0,4	1,0	10,2	-0,1	-1,2	-4,5
	ULS 4	0,0	1,0	9,5	0,0	-1,0	-3,9
	ULS 6b	0,2	0,7	8,9	0,0	-1,1	-3,3
	ULS 7	0,0	0,5	8,8	0,0	-1,0	-2,7
150ct2f2	SLS 1a	1,1	2,0	11,2	-0,5	-1,3	-5,8
	SLS 3	0,3	1,0	9,8	-0,1	-1,2	-4,4
	SLS 4	0,0	0,9	9,4	0,0	-1,0	-4,1
	SLS 6	0,0	0,7	7,8	0,0	-0,8	-2,5
	SLS 7	0,0	0,5	8,3	0,0	-1,0	-3,0
	ULS 1a	1,3	2,3	12,0	-0,6	-1,4	-6,4
	ULS 3	0,4	1,0	10,2	-0,1	-1,2	- 4,5
	ULS 4	0,0	1,0	9,5	0,0	-1,0	-3,9
	ULS 6b	0,2	0,7	8,9	0,0	-1,1	-3,3
	ULS 7	0,0	0,5	8,8	0,0	-1,0	-2,7
150ct2f3	SLS 1a	1,2	2,0	11,0	-0,6	-1,3	-5,7
	SLS 3	0,4	1,0	9,7	-0,2	-1,2	-4,2
	SLS 4	0,0	1,0	9,4	0,0	-1,0	-4,0
	SLS 6	0,0	0,7	7,8	0,0	-0,8	-2,5
	SLS 7	0,0	0,6	8,3	0,0	-1,1	-3,0
	ULS 1a	1,4	2,3	11,8	-0,7	-1,4	-6,2
	ULS 3	0,5	1,1	10,1	-0,2	-1,2	-4,3
	ULS 4	0,0	1,0	9,5	0,0	-1,0	-3,9
	ULS 6b	0,2	0,8	8,8	-0,1	-1,1	- 3,2
	ULS 7	0,0	0,5	8,8	0,0	-1,1	-2,7

18-6-2021 13 van 13

ZWO380 D2.2 OSP Mast 19a Portaal 19a

Project: Masttype: Mast:


Auteur: Versie: TBR Geleiderbelastingen v1.9

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

ULS (bezwij	ksterkte)	NEN-EN50	341-2-15:20)19				
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γQ		γa
		°C	G _{k,mast}	G _{k,geleider}	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,15	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,40	0,00	0,0
ULS 3	Wind+ijs	- 5°	1,15	1,15	0,00	0,42	1,30	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,00	0,42	1,30	0,0
ULS 4	Koude+wind	-20°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,00	0,28	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,15	1,15	1,30	0,28	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 7	Permanent	10°	1,30	1,30	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwij	ksterkte, enkel voor hoekmasten: a	fwezigheid geleid	ders)	γ _G	γq			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,15	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,15	1,15	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,15	1,15	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,15	1,15	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,0	0,24	0,0	0,0
SLS (contro	le van de vervormingen, vermoeiing	g, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	1,00	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,30	1,00	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen	6
Aantal belastingcombinaties ULS	59
Aantal belastingcombinaties SPLS	210
Aantal belastingcombinaties SLS	15
Aantal knoonlasten	5112

SchematisationDe trekkracht in de afloper wordt bepaald met de toestandsvergelijking voor een gekromde kabel. In de rekstijfheid van de kabel is de invloed van de veer verdisconteerd.

18-6-2021 1 van 5

Project: Masttype: Mast: Portaal 19a

- Tabellen met geleiderbelastingen

 In de onderstaande drie tabellen is weergegeven:

 De trekkracht per belastingcombinatie en de bijbehorende zeeg en veerverlenging

 De geleiderbelastingen in het lokale assenstelsel voor het onderste bevestigingspunt

 De maximale waarden voor de reacties onder en boven in het globale assenstelsel

Trekkracht, zeeg en veerverlenging

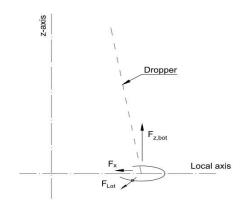
HERRIACH,	zeeg en veerve	rienging		rotare	тек-	
Geleider	Combinatie Z	eeg [m]	Veer- verlengin g [m	veer-	kracht initieel [kN]	Trek- kracht [kN]
150ct1f1	SLS 1a	0,40	0,009	0,020	5,7	10,0
	SLS 3	0,28	0,005	0,017	5,7	8,3
	SLS 4	0,20	0,005	0,016	5,7	8,0
	SLS 6	0,24	0,002	0,014	5,7	6,8
	SLS 7	0,18	0,000	0,011	5,7	5,7
	ULS 1a	0,45	0,012	0,023	7,0	11,6
	ULS 3	0,32	0,007	0,018	7,1	9,1
	ULS 4	0,23	0,005	0,017	7,0	8,3
	ULS 6b	0,26	0,003	0,014	7,0	7,2
150ct1f2	SLS 1a	0,40	0,009	0,020	5,7	10,0
	SLS 3	0,28	0,005	0,017	5,7	8,3
	SLS 4	0,20	0,005	0,016	5,7	8,0
	SLS 6	0,24	0,002	0,014	5,7	6,8
	SLS 7	0,18	0,000	0,011	5,7	5,7
	ULS 1a	0,45	0,012	0,023	7,0	11,6
	ULS 3	0,32	0,007	0,018	7,1	9,1
	ULS 4	0,23	0,005	0,017	7,0	8,3
	ULS 6b	0,26	0,003	0,014	7,0	7,2
150ct1f3	SLS 1a	0,40	0,009	0,020	5,7	10,0
	SLS 3	0,28	0,005	0,017	5,7	8,3
	SLS 4	0,20	0,005	0,016	5,7	8,0
	SLS 6	0,24	0,002	0,014	5,7	6,8
	SLS 7	0,18	0,000	0,011	5,7	5,7
	ULS 1a	0,45	0,012	0,023	7,0	11,6
	ULS 3	0,32	0,007	0,018	7,1	9,1
	ULS 4	0,23	0,005	0,017	7,0	8,3
	ULS 6b	0,26	0,003	0,014	7,0	7,2

Controle iteratieproces

Geleider	Iteratie	
bl1		0
bl2		0
150ct1f	ок	
150ct1f	ок	
150ct1f	ОК	
150ct2f	ок	
150ct2f	ок	
150ct2f	ок	
ЫЗ		0

18-6-2021 2 van 5

Project: Masttype: Mast: Portaal 19a

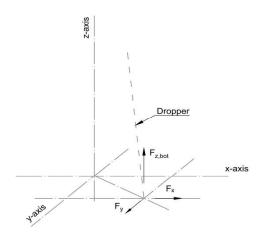

Belastingen in lokale richting geleider

De belastingen op het onderste bevestigingspunt voor het dimensioneren van de ondersteuningsconstructie

De richting van de laterale kracht wordt bepaald door de windrichting en kan in alle richtingen aangrijpen.

De resulterende horizontale kracht kan worden afgeleid uit de vectoriële optelling van de kracht in x-richting en laterale kracht.

	Fx,lok,bot	Flat,bot	Fz_bot
Combinatie1	[kN]	[kN]	[kN]
SLS 1a	1,4	0,8	- 7,3
SLS 3	1,2	0,3	-5,6
SLS 4	1,1	0,2	- 5,3
SLS 6	1,0	0,2	-4,1
SLS 7	0,8	0,0	-3,0
ULS 1a	1,7	1,1	-8,5
ULS 3	1,3	0,4	-5,9
ULS 4	1,2	0,2	- 5,2
ULS 6b	1,0	0,2	- 4,2
SLS 1a	1,4	0,8	-7,4
SLS 3	1,2	0,3	-5,6
SLS 4	1,1	0,2	- 5,3
SLS 6	1,0	0,2	- 4,2
SLS 7	0,8	0,0	-3,0
ULS 1a	1,6	1,1	- 8,5
ULS 3	1,3	0,4	- 5,9
ULS 4	1,2	0,2	- 5,3
ULS 6b	1,0	0,2	- 4,2
SLS 1a	1,4	0,8	-7,4
SLS 3	1,2	0,3	-5,6
SLS 4	1,1	0,2	- 5,3
SLS 6	1,0	0,2	- 4,2
SLS 7	0,8	0,0	-3,0
ULS 1a	1,6	1,1	- 8,5
ULS 3	1,3	0,4	- 5,9
ULS 4	1,2	0,2	-5,3
ULS 6b	1,0	0,2	-4,2


18-6-2021 3 van 5

Project: Masttype: Mast: Portaal 19a

Maximale waarden in globale assenstelsel

De maximale waarden van de verticale kracht en de resulterende horizontale kracht per belastingcombinatie Zowel voor het bovenste als het onderste bevestigingspunt

Geleider	Combinatie	Fx_top [kN]	Fy_top [kN	Fz_top [kN]	Fx_bot [kN]	Fy_bot [kN]	Fz_bot [kN]
150ct1f1	SLS 1a	1,8	0,3	12,7	-1,6	0,0	-7,3
15001111	SLS 3	0,9	0,0	11,0	-1,1	0,0	-5,6
	SLS 4	0,4	0,0	10,6	-0,7	0,0	-5,3
	SLS 6	0,3	0,0	9,5	-0,7	0,0	-4,1
	SLS 7	0,3	0,0	8,3	-0,5	0,0	-3,0
	ULS 1a	2,5	0,7	14,6	-2,1	0,0	-8,5
	ULS 3	1,1	0,0	12,2	-1,2	0,0	-5,9
	ULS 4	0,4	0,0	11,4	-0,8	0,0	-5,2
	ULS 6b	0,7	0,0	10,3	-0,9	0,0	- 4,2
	ULS 7	0,3	0,0	9,2	-0,6	0,0	-2,3
150ct1f2	SLS 1a	1,7	0,3	12,7	-1,5	0,0	-7,4
	SLS 3	0,8	0,0	11,0	-0,9	0,0	- 5,6
	SLS 4	0,3	0,0	10,6	-0,6	0,0	- 5,3
	SLS 6	0,3	0,0	9,5	-0,5	0,0	-4,2
	SLS 7	0,2	0,0	8,3	-0,4	0,0	- 3,0
	ULS 1a	2,3	0,7	14,6	-1,9	0,0	- 8,5
	ULS 3	1,0	0,0	12,2	-1,1	0,0	-5,9
	ULS 4	0,3	0,0	11,4	-0,6	0,0	-5,3
	ULS 6b	0,6	0,0	10,3	-0,7	0,0	-4,2
	ULS 7	0,2	0,0	9,2	-0,4	0,0	- 2,3
150ct1f3	SLS 1a	1,7	0,3	12,7	-1,5	0,0	-7,4
	SLS 3	0,8	0,0	11,0	-0,9	0,0	-5,6
	SLS 4	0,3	0,0	10,6	-0,6	0,0	-5,3
	SLS 6	0,3	0,0	9,5	-0,5	0,0	-4,2
	SLS 7	0,2	0,0	8,3	-0,4	0,0	-3,0
	ULS 1a	2,3	0,7	14,6	-1,9	0,0	-8,5
	ULS 3	1,0	0,0	12,2	-1,1	0,0	-5,9
	ULS 4	0,3	0,0	11,4	-0,6	0,0	-5,3
	ULS 6b	0,6	0,0	10,3	-0,7	0,0	- 4,2
	_ULS 7	0,2	0,0	9,2	-0,4	0,0	-2,3
150ct2f1	SLS 1a	1,1	2,1	11,4	-0,5	-1,3	-6,1
	SLS 3	0,3	1,0	9,9	-0,1	-1,2	- 4,5
	SLS 4	0,0	0,9	9,4	0,0	-1,0	- 4,0
	SLS 6	0,0	0,7	7,8	0,0	-0,8	- 2,5
	SLS 7	0,0	0,5	8,3	0,0	-1,0	- 3,0
	ULS 1a	1,6	2,8	13,3	-0,8	-1,5	- 7,2

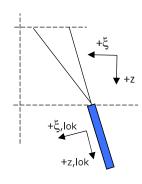
18-6-2021 4 van 5

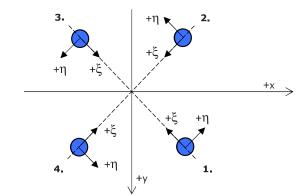
Project: Masttype: Mast:	ZWO380 D2.2 OSP Portaal 19a	Mast 19a					
150ct2f1	ULS 3	0,5	1,2	10,9	-0,2	-1,3	-4,6
	ULS 4	0,0	1,0	9,7	0,0	-0,9	-3,5
	ULS 6b	0,3	0,8	9,4	0,0	-1,1	-3,2
	ULS 7	0,0	0,5	9,2	0,0	-1,1	-2,3
150ct2f2	SLS 1a	1,1	2,1	11,4	-0,5	-1,3	-6,1
	SLS 3	0,3	1,0	9,9	-0,1	-1,2	-4,5
	SLS 4	0,0	0,9	9,4	0,0	-1,0	-4,0
	SLS 6	0,0	0,7	7,8	0,0	-0,8	- 2,5
	SLS 7	0,0	0,5	8,3	0,0	-1,0	-3,0
	ULS 1a	1,6	2,8	13,3	-0,8	-1 ,5	- 7,2
	ULS 3	0,5	1,2	10,9	- 0,2	-1,3	-4,6
	ULS 4	0,0	1,0	9,7	0,0	-0,9	-3,5
	ULS 6b	0,3	0,8	9,4	0,0	-1,1	-3,2
	ULS 7	0,0	0,5	9,2	0,0	-1,1	-2,3
150ct2f3	SLS 1a	1,2	2,1	11,2	-0,7	-1,4	-5,9
	SLS 3	0,4	1,0	9,8	-0,2	-1,2	-4,3
	SLS 4	0,0	1,0	9,4	0,0	-1,0	-4,0
	SLS 6	0,0	0,7	7,8	0,0	-0,8	-2,5
	SLS 7	0,0	0,6	8,3	0,0	-1,1	-3,0
	ULS 1a	1,8	2,8	13,2	- 0,9	-1,5	- 7,0
	ULS 3	0,6	1,2	10,8	-0,3	-1,3	-4,4
	ULS 4	0,0	1,0	9,7	0,0	-0,9	- 3,5
	ULS 6b	0,3	0,8	9,2	-0,1	-1,1	-3,1

0,0 0,5 9,2 0,0 -1,1 -2,3

ULS 7

18-6-2021 5 van 5




Project: ZW-Oost RSD-WDT150

Masttype: Lijnportaal Mast: 19a

Auteur: MKh
Oplegreacties per randstijl Versie: 1.4

Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

Assenstelsels

Maximale drukbelasting

Stijl	Combinatie	R _v	R _v	R _z	R_n	R _F	$R_{\epsilon,lok}$	$R_{z,lok}$
g.		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 1a_45 Ba Ct1	-1	-67	-162	-46	-48	-7	-169
2	SPLS 1a_0 Ba All Cts	-25	23	-101	-1	-34	0	-107
3	ULS 3_135	51	36	-203	10	-62	- 7	-212
4	ULS 3_135	196	-208	-919	9	-286	-26	-963

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	3	18	58	11	15	4	60
2	ULS 3_0,9_135	178	-163	766	11	241	19	802
3	SPLS 1a_0,9_0,9_45 Ba All Cts	-11	-11	42	0	15	-1	45
4	SPLS 1a 0.9 0.9 0 Ba All Cts	-4	1	8	2	4	-1	9

Maximale torsiebelasting (positief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 4_90 Ba Ct2	-57	64	36	85	4	8	36
2	SPLS 4_90 Ba Ct2	132	-7	281	88	98	-3	298
3	SPLS 4_90 Ba Ct2	87	-51	-111	98	-25	-12	-113
4	SPLS 4_0,9_90 Ba Ct2	36	-167	-453	92	-144	-10	- 475

Maximale torsiebelasting (negatief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 4_0,9_90 Ba Ct1	43	-60	-63	-73	-12	-9	-63
2	SPLS 4_90 Ba Ct1	36	-143	417	-75	127	15	436
3	SPLS 4_90 Ba Ct1	-34	82	- 99	-82	-34	0	-104
4	SPLS 4 90 Ba Ct1	163	-49	-499	-81	-150	-19	-520

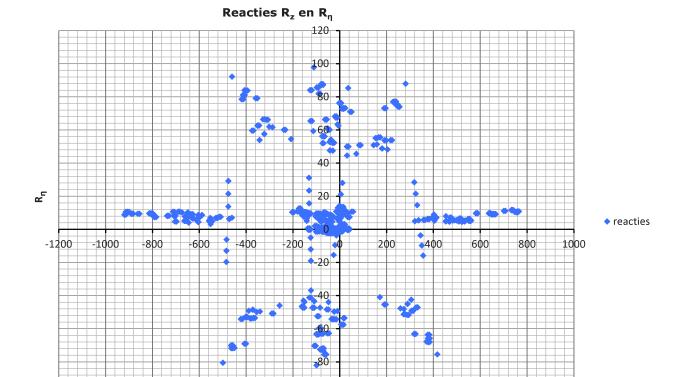
Combinatie Ftrek+Fh

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 4_0,9_90 Ba Ct2	-56	65	43	85	7	8	43
2	ULS 3_0,9_135	178	-163	766	11	241	19	802
3	SPLS 4_90 Ba Ct2	87	-51	-111	98	-25	-12	-113
4	SPLS 4_0,9_90 Ba Ct2	36	-167	-453	92	-144	-10	-475

Permanente belasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SLS 7	- 4	5	5	7	0	1	5
2	SLS 7	97	- 87	415	7	130	11	435
3	SLS 7	35	25	-137	7	-43	-4	-143
4	SLS 7	119	-126	-554	5	-173	-15	-581

Omhullenden ongeacht stijl


Belasting	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Max. druk	ULS 3_135	196	-208	-919	9	-286	-26	-963
Max. trek	ULS 3_0,9_135	178	-163	766	11	241	19	802
Max. pos. torsie	SPLS 4_0,9_90 Ba Ct2	85	-53	-104	98	- 23	-12	-106
Max. neg. torsie	SPLS 4_90 Ba Ct1	-34	82	-99	-82	-34	0	-104
Comb. trek+torsie	ULS 3_0,9_135	178	-163	766	11	241	19	802

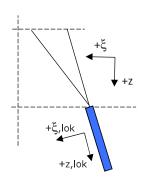
Maximale drukbelasting SLS

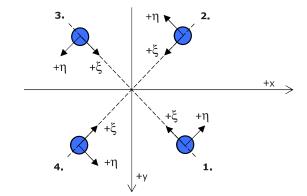
Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 1a_45	- 43	-30	-148	9	-52	2	-157
2	ULS 5a Ba 22	92	-52	319	28	102	6	335
3	ULS 3_135	51	36	-203	10	-62	-7	-212
4	ULS 3_135	196	-208	-919	9	-286	-26	-963

Maximale trekbelasting SLS

Maximale trekbe	lasuing SLS							
Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	3	18	58	11	15	4	60
2	ULS 3_0,9_135	178	-163	766	11	241	19	802
3	ULS 1a_0,9_0,9_45	0	-12	13	8	8	-4	15
4	ULS 5a Ba 22	85	-127	-475	29	-150	-12	-498

-100 **Rz**




Project: ZW-Oost RSD-WDT150

Masttype: Lijnportaal Mast: 19a

Auteur: MKh
Oplegreacties per randstijl Versie: 1.4

Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

Assenstelsels

Maximale drukbelasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 1a_45	-54	-39	-188	11	-66	2	-199
2	SPLS 1a_0 Ba All Cts	-26	24	-106	-1	-36	0	-112
3	ULS 3_135	56	40	-225	11	-68	-8	-235
4	ULS 3 135	217	-231	-1021	10	-317	-30	-1068

Maximale trekbelasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	4	21	69	12	18	5	71
2	ULS 3_0,9_135	199	-182	855	12	269	21	897
3	ULS 1a_0,9_0,9_45	-8	-20	46	9	20	-4	50
4	SPIS 1a 0.9 0.9 0 Ba All Cts	-4	1	R	2	4	-1	9

Maximale torsiebelasting (positief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 4_90 Ba Ct2	-60	65	35	88	4	8	34
2	SPLS 4_0,9_90 Ba Ct2	138	-9	298	91	104	-3	315
3	SPLS 4_90 Ba Ct2	91	-52	-118	101	-27	-13	-121
4	SPLS 4_0,9_90 Ba Ct2	37	-172	-466	95	-148	-10	- 489

Maximale torsiebelasting (negatief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 4_0,9_90 Ba Ct1	45	-62	-63	-76	-12	-10	-64
2	SPLS 4_90 Ba Ct1	36	-147	427	-78	129	15	446
3	SPLS 4_90 Ba Ct1	-34	85	-106	-85	-36	0	-112
4	SPLS 4 90 Ba Ct1	169	-51	-518	-83	-156	-20	-540

Combinatie Ftrek+Fh

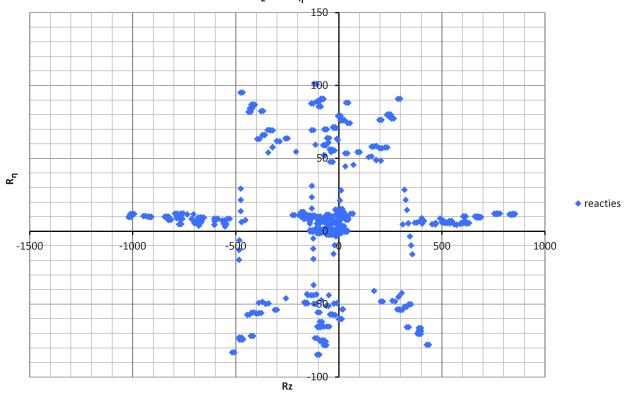
Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R _ξ	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 4_0,9_90 Ba Ct2	-57	68	46	88	7	8	46
2	ULS 3_0,9_135	199	-182	855	12	269	21	897
3	SPLS 4_90 Ba Ct2	91	-52	-118	101	-27	-13	-121
4	SPLS 4_0,9_90 Ba Ct2	37	-172	-466	95	-148	-10	-489

Permanente belasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SLS 7	- 4	5	5	7	0	1	5
2	SLS 7	97	- 87	415	7	130	11	435
3	SLS 7	35	25	-137	7	-43	-4	-143
4	SLS 7	119	-126	-554	5	-173	-15	-581

Omhullenden ongeacht stijl

Belasting	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Max. druk	ULS 3_135	217	-231	-1021	10	-317	-30	-1068
Max.trek	ULS 3_0,9_135	199	-182	855	12	269	21	897
Max. pos. torsie	SPLS 4_0,9_90 Ba Ct2	88	-55	-107	101	-23	-13	-109
Max. neg. torsie	SPLS 4_90 Ba Ct1	-34	85	-106	- 85	-36	0	-112
Comb. trek+torsie	ULS 3_0,9_135	199	-182	855	12	269	21	897


Maximale drukbelasting SLS

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 1a_45	-54	-39	-188	11	-66	2	-199
2	ULS 5a Ba 22	92	-52	319	28	102	6	335
3	ULS 3_135	56	40	-225	11	-68	-8	-235
4	ULS 3_135	217	-231	-1021	10	-317	-30	-1068

Maximale trekbelasting SLS

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	4	21	69	12	18	5	71
2	ULS 3_0,9_135	199	-182	855	12	269	21	897
3	ULS 1a_0,9_0,9_45	-8	-20	46	9	20	-4	50
4	ULS 5a Ba 22	85	-127	-475	29	-150	-12	-498

Inhoud

- Uitgangspunten
- Mastconstructie
- Tussenresultaten
- Belastingen initiëel
- Belastingen na aanpassing
- Belastingen na passing

Gegevens

Norm NEN-EN50341-2-15:2019

Initieel

Gevolgklasse CC2 Betrouwbaarheidsniveau Afkeur Referentieperiode 30 jaar

Na aanpassing

Gevolgklasse CC2
Betrouwbaarheidsniveau Verbouw
Referentieperiode 50 jaar

Windgebied III
Windsnelheid 24,5 m/s
Terreincategorie II
Reductie factor Cdir 1,00
IJsgebied B

MasttypeHoekmastMasthoogte32 mMax. veldlengte323 mLijnhoek169°Trekparameter1100 m

Wind span 163 m EDS Weight span 620 m Min. Weight span 162 m Max. Weight span 9412 m

0.0	2021-07-28			
ISSUE	DATE	REVISION	CHK'D	APP'D
		•		

Client:

Title:

Berekening masttype H150

JOB No.	-	DATE	-
DRAWN	-	CHKD	-
DESIGN	-	APPD	-

Document name:

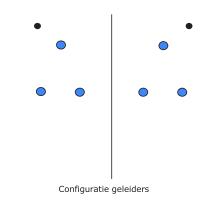
ZWO380 D2.2 OSP Mast 97_H150_97_Report.pdf

Project number:

Project client number:

0.0

Project: Tower: Number: H150


Auteur: TBR Geleiderbelastingen Versie: v11.9

Algemeen

Benaming H150 Masttype
Aantal circuits
Configuratie
Aantal bliksemgeleiders Hoekmast 2-circuit-donau

Uitgangspunten

NEN-EN50341-2-15:2019 Norm Gevolgklasse initieel Betrouwbaarheidsniveau initieel Afkeur CC2-0 30 jaar CC2 Verbouw 50 jaar III Referentieperiode initieel Referentieperiode initieel
Gevolgklasse na aanpassing
Betrouwbaarheidsniveau na aanpassing
Referentieperiode na aanpassing
Windgebied
Windsnelheid (m/s)
Terreincategorie 24,5 m/s II Reductiefactor c_{dir} IJsgebied fasegeleider IJsgebied bliksemgeleider 1,00 В

Geleiders Back

Omschrijving	Spanning	Geleider Back	Bundel Ba	IJsgebied	Toeslag gewicht	Toeslag diameter	Intrekwaarden P _{back}
Circuit 1	150 kV	ACSR 20/224	2	В	2 %	2 %	1100
Circuit 2	150 kV	ACSR 20/224	2	В	2 %	2 %	1100
Bliksemdraad 1		ACSR 30/52 PETREL	1	Α	2 %	2 %	1600
Bliksemdraad 2		ACSR 30/52 PETREL	1	Α	2 %	2 %	1600

Geleiders Ahead							
Omschrijving	Spanning	Geleider Ahead	Bundel Ah	IJsgebied	Toeslag gewicht	Toeslag diameter	Intrekwaarden P _{ahead}
Circuit 1	150 kV	ACSR 20/224	2	В	2 %	2 %	50
Circuit 2	150 kV	ACSR 20/224	2	В	2 %	2 %	50
Bliksemdraad 1		Niet aanwezig	1	Α	2 %	2 %	1600
Bliksemdraad 2		Niet aanwezig	1	Α	2 %	2 %	1600

Isolatoren	(1)			
Omschrijving	Ophanging	Gewicht	Lengte	Windopp.
		[kN]	[m]	[m ²]
Circuit 1	Afspanketting	1,50	4,50	1,00
Circuit 2	Afspanketting	1,50	4,50	1,00
Bliksemdraad 1	Afspanketting	0,10	0,20	0,10
Bliksemdraad 2	Afspanketting	0,10	0,20	0,10

Eigenschappen gelden voor geheel van de isolatorset

Ophanghoogte en positie in mast

	•				Positie in mast	
Circuits	Aandui	ding Nummer	Ophanghoogte	Aangrijppunt	Horizontale afstand	
Circuit 1	10	150ct1f1	20,9 m	20,9 m	9,5 m	
Circuit 1	11	150ct1f2	20,9 m	20,9 m	4,6 m	
Circuit 1	12	150ct1f3	27,6 m	27,6 m	4,4 m	
Circuit 2	20	150ct2f1	20,9 m	20,9 m	-4,6 m	
Circuit 2	21	150ct2f2	20,9 m	20,9 m	-9,5 m	
Circuit 2	22	150ct2f3	27,6 m	27,6 m	-4,4 m	
Bliksemdraad 1	1	bl1	29,5 m	29,5 m	8,8 m	
Bliksemdraad 2	3	bl2	29,5 m	29,5 m	-8,8 m	

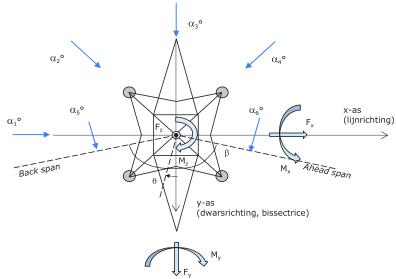
28-7-2021 2 van 21

Project: Tower: Number:

Hoogteaanpassing naastgelegen masten (aanpassing wind- en weight span)

	Back	Ahead	
Verhoging voor windbelasting	0,0 m	0,0 m	(positief: omhoog)
Verlaging voor verticale belasting	0,0 m	0,0 m	(negatief: omlaag, grotere weight span)
Verlaging: Niet in 0,9EG-combinaties			

Hoogteafwijking mastbeeld naastgelegen masten en richtingsverandering t.o.v. Lijnrichting


noogtearwijking mastbeeld naastgelegen masten en richtingsverandering t.o.v. Lijmichting								
			Hoogte	everschil	Richtingsv	erandering		
Circuits	Aanduiding	Nummer	∆h_back	∆h_ahead	∆y_back	∆y_ahead		
Circuit 1	10	150ct1f1	-0,7	-20,6 m	0,0	-2,5 m		
Circuit 1	11	150ct1f2	-0,7	-20,6 m	0,0	-0,4 m		
Circuit 1	12	150ct1f3	-0,1	-27,4 m	0,0	-2,0 m		
Circuit 2	20	150ct2f1	-0,7	-20,6 m	0,0	-0,4 m		
Circuit 2	21	150ct2f2	-0,7	-20,6 m	0,0	2,5 m		
Circuit 2	22	150ct2f3	-0,1	-27,4 m	0,0	2,0 m		
Bliksemdraad 1	1	bl1	0,0	0,0 m	0,0	0,0 m		
Bliksemdraad 2	3	bl2	0,0	0,0 m	0,0	0,0 m		

ī	iin-	en	mastgegevens

		Back	Ahead	
		323,0	3,0 m	
Ruling span $\sqrt{(\Sigma L^3/\Sigma L)}$		316,2	3,0 m	
Lijnhoek	β	169 °		
Rotatie mast t.o.v. bissectrice	θ	0 °		
Vaklengte		632	3 m	
Hoogte onderkant mast t.o.v. m	aaiveld	0,5 m		
Beschouwde windrichtingen	α_1	0 °		
Windrichtingen volgens:	α_2	45 °		
Geleiderbelastingen	α_3	90 °		
	α_4	135 °		
	α_5	84,5 °		
	α_6	95,5 °		

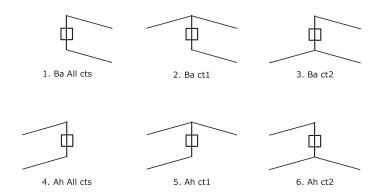
Windrichtingen gelden t.o.v. hoofdrichting mastconstructie, niet t.o.v. bissectrice.

Windrichtingen en positieve richtingen belastingen

Beschouwd aantal windrichtingen	
1a	6
3	6
4	1
6	1
Overig	1

28-7-2021 3 van 21

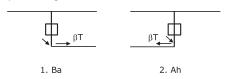
Project: Tower: Number:


Geleiderafval

		SPLS	SPLS - torsie		kelzijdige trek	5a - gele	eiderbreuk
		Aanw.	Afw.	Aanw.	Afw.	Aanw.	Afw.
Circuit 1	150ct1f1	1	0	1	0	1	0
Circuit 1	150ct1f2	1	0	1	0	1	0
Circuit 1	150ct1f3	1	0	1	0	1	0
Circuit 2	150ct2f1	0	1	1	0	1	0
Circuit 2	150ct2f2	0	1	1	0	1	0
Circuit 2	150ct2f3	0	1	1	0	1	0
Bliksemdraad 1	bl1	1	0	1	0	1	0
Bliksemdraad 2	bl2	0	1	1	0	1	0

Belastingsituaties SPLS

Beschouwde situaties SPLS: 1 t/m 6, alle mogelijke situaties.


Principe belastingssituaties:

Belastingsituaties 5a. Geleiderbreuk

Beschouwde situaties geleiderbreuk 5a: 1 en 2, alle mogelijke situaties.

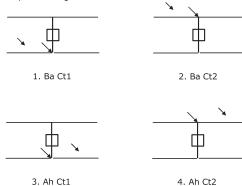
Principe belastingssituaties:

28-7-2021 4 van 21

Project: ZWO380 D2.2 OSP Mast 97

Tower: H150 Number: 97

Belastingsituaties 6. Bouw- en onderhoud

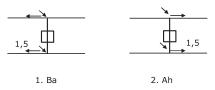

Onder 6a wordt de belasting door aanwezigheid lijnwagen of lijnfiets in combinatie met puntlast op traverse in rekening gebracht. Combinatie 6b bevat geen belastingen in geleider of op traverse. Deze combinatie is toegevoegd om te kunnen combineren met separate controle bordessen etc. De situaties worden in ULS en in iedere SPLS-situatie (in geval van hoekmast) toegepast.

	Fase	Bliksem
Lijnwagen	3,0 kN	2,0 kN
Puntlast op traverse	1,0 kN	1,0 kN

Beschouwde situaties bouw- en onderhoud 6a: 1 en 2, uitgangspunt is symmetrie tussen back / ahead.

Aanwezigheid lijnwagen: Circuit, belasting tegelijk aanwezig in alle geleiders per circuit.

Principe belastingssituaties:


Belastingsituaties 8. Lijndansen als statische belasting

Geleider			
Steunmast fase	0,866 W	1,5 W	
Steunmast bliksem	1,5 EDS	1,5 W	
Hoekmast fase en bliksem	1,5 EDS	1,5 W	

Beschouwde situaties lijndansen 8: Geen (bestaande constructie)

Belasting tegelijk aanwezig in alle geleiders van het circuit.

Principe belastingssituaties:

Belastingcombinatie 8. Lijndansen als dynamische belasting

Alleen van toepassing op hoek- en eindmasten

Belasting bestaat uit EDS-trekbelasting in één van de geleiders aan één zijde van de mast Door gebruiker via het belastingsspectrum van tabel 4.11/NL.1 om te zetten naar spanningspectrum

28-7-2021 5 van 21

Project: Tower: ZWO380 D2.2 OSP Mast 97

H150 Number:

Mastconstructie

Eigenschappen

Hoekmast H150 0,5 m 32,0 m 140,0 kN Masttype Mastbenaming Voetplaat t.o.v. maaiveld Masthoogte t.o.v. voetplaat Gewicht mast

y-ri. 5,40 m 0,118 -Breedte en helling mast bij fundatie x-ri. 5,40 0,118 Pootsprei Helling van de randstijl Factor spatkracht 1,3 -1,3

Berekening windbelasting

Dynamische invloed G_T 1,00 (Masthoogte < 60 m)

(A1C1sin^2(phi)+A2C2cos^2(phi)) (A1C1sin^2(phi)+A2C2cos^2(phi)) Windbelasting overhoeks op mastlichaam evenredig met: Windbelasting overhoeks op traverse evenredig met:

(1+0,2sin^2(2phi)) (1+0,2sin^2(2phi)) 0,4 Vergroting wind overhoeks mastlichaam Vergroting wind overhoeks traverse

Factor wind evenwijdig t.o.v. haaks op traverse

Eigenschappen mastsecties langsrichting (vooraanzicht, yz-vlak)

		,	, ,						
Omschrijving	h	b_1	b_2	∆h	Δ_{x}	A_0	A_1	$\chi = A_1/A_0$	C_{t}
	[m]	[m]	[m]	[m]	[m]	[m²]	[m ²]	[-]	
Broekstuk	7,50	5,40	3,63	7,50	0,118	33,86	6,19	0,18	3,01
Eerste tussenstuk	14,57	3,63	2,86	7,07	0,054	22,94	5,23	0,23	2,81
Tweede tussenstuk	21,41	2,86	2,10	6,84	0,056	16,96	4,26	0,25	2,72
Bovenstuk 1	25,40	2,10	1,91	3,99	0,024	8,00	2,36	0,30	2,55
Bovenstuk 2	29,50	1,91	1,70	4,10	0,026	7,40	2,18	0,29	2,55
Topstuk	32,00	1,70		2,50		2,13	0,29	0,14	3,22
Ondertraverse	21,41	8,42		2,10		8,84	2,73	0,31	2,51
Boventraverse	27,30	7,95		2,20		8,75	2,53	0,29	2,57

Eigenschappen mastsecties dwarsrichting (zijaanzicht, xz-vlak)												
Omschrijving	h	b_1	b_2	∆h	Δ_{x}	A_0	A_1	$\chi = A_1/A_0$	C_t			
	[m]	[m]	[m]	[m]	[m]	[m²]	[m ²]	[-]				
Broekstuk	7,50	5,40	3,63	7,50	0,118	33,86	6,19	0,18	3,01			
Eerste tussenstuk	14,57	3,63	2,86	7,07	0,054	22,94	5,23	0,23	2,81			
Tweede tussenstuk	21,41	2,86	2,10	6,84	0,056	16,96	4,26	0,25	2,72			
Bovenstuk 1	25,40	2,10	1,91	3,99	0,024	8,00	2,36	0,30	2,55			
Bovenstuk 2	29,50	1,91	1,70	4,10	0,026	7,40	2,18	0,29	2,55			
Topstuk	32,00	1,70		2,50		2,13	0,29	0,14	3,22			
Ondertraverse	21,41	8,42		2,10		8,84	2,73	0,31	2,51			
Boventraverse	27,30	7,95		2,20		8,75	2,53	0,29	2,57			

NB: oppervlakte traverse dwarsrichting wordt in berekening gereduceerd.

28-7-2021 6 van 21

Project: ZWO380 D2.2 OSP Mast 97

Tower: H150 Number: 97

Windoppervlak feeders telecominstallaties

Broekstuk Eerste tussenstuk Tweede tussenstuk Bovenstuk 1 Bovenstuk 2

 $\label{eq:constraints} \mbox{Invoer antennes} $$ \mbox{Omschrijving} $$ A \mbox{ (m}^2) $$ h \mbox{ (m)} $$ C_r \mbox{ (m)} $$

Omschrijving
Antenne top
Antenne o.t.

Belastingen mastsectie langsrichting (x-richting) per windrichting

Omschrijving	p_{w}	F_{x1}	F_{x2}	F_{x3}	F_{x4}	h_{ef}	M_{y1}	M_{y2}	M_{y3}	M_{y4}
	[kN/m ²]	[kN]	[kN]	[kN]	[kN]	[m]	[kNm]	[kNm]	[kNm]	[kNm]
Broekstuk	0,70	13,0	11,1	0,0	-11,1	3,8	48,9	41,5	0,0	-41,5
Eerste tussenstuk	0,73	10,7	9,1	0,0	-9,1	11,0	117,8	99,9	0,0	-99,9
Tweede tussenstuk	0,85	9,8	8,3	0,0	-8,3	18,0	177,0	150,2	0,0	-150,2
Bovenstuk 1	0,93	5,6	4,7	0,0	-4,7	23,4	130,6	110,8	0,0	-110,8
Bovenstuk 2	0,96	5,4	4,6	0,0	-4,6	27,5	147,4	125,1	0,0	-125,1
Topstuk	1,00	0,9	0,8	0,0	-0,8	30,8	28,6	24,3	0,0	-24,3
Ondertraverse	0,90	12,4	7,3	0,0	-7,3	22,1	273,1	162,2	0,0	-162,2
Boventraverse	0,97	12,6	7,5	0,0	-7,5	28,0	354,3	210,4	0,0	-210,4

Totaal 70,4 53,4 0,0 -53,4 1277,7 924,4 0,0 -924,4

Belastingen mastsectie dwarsrichting (y-richting) per windrichting

Omschrijving	p_w	F_{y1}	F_{y2}	F_{y3}	F_{x4}	h_{ef}	M_{x1}	M_{x2}	M_{x3}	M_{x4}
	[kN/m ²]	[kN]	[kN]	[kN]	[kN]	[m]	[kNm]	[kNm]	[kNm]	[kNm]
Broekstuk	0,70	0,0	11,1	13,0	11,1	3,8	0,0	41,5	48,9	41,5
Eerste tussenstuk	0,73	0,0	9,1	10,7	9,1	11,0	0,0	99,9	117,8	99,9
Tweede tussenstuk	0,85	0,0	8,3	9,8	8,3	18,0	0,0	150,2	177,0	150,2
Bovenstuk 1	0,93	0,0	4,7	5,6	4,7	23,4	0,0	110,8	130,6	110,8
Bovenstuk 2	0,96	0,0	4,6	5,4	4,6	27,5	0,0	125,1	147,4	125,1
Topstuk	1,00	0,0	0,8	0,9	0,8	30,8	0,0	24,3	28,6	24,3
Ondertraverse	0,90	0,0	7,3	4,9	7,3	22,1	0,0	162,2	109,3	162,2
Boventraverse	0,97	0,0	7,5	5,1	7,5	28,0	0,0	210,4	141,7	210,4

Totaal 0,0 53,4 55,4 53,4 0,0 924,4 901,2 924,4

Resulterende belastingen vanuit mastconstructie incl. antenne zonder geleiders niveau fundatie (kar. waarde)

Belasting / windrichting	F _x	Fy	F _z	M _×	M _y	M _z	
	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	
Permanente belasting	0	0	140	0	0	0	
Windrichting 0°	70	0	0	0	1278	0	
Windrichting 45°	53	53	0	924	924	0	
Windrichting 90°	0	55	0	901	0	0	
Windrichting 135°	-53	53	0	924	-924	0	

28-7-2021 7 van 21

Project: Tower: Number:

Tussenresultaten geleiderbelastingen

Gele	eiders	back
------	--------	------

Circuit	Geleider	Diameter	Α	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Circuit 2	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Bliksemdraad 1	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05
Bliksemdraad 2	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05

Geleiders ahead

Circuit	Geleider	Diameter	Α	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Circuit 2	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Bliksemdraad 1	Niet aanwezig					
Bliksemdraad 2	Niet aanwezig					

Verticale belasting back

Circuit	Bundel	Toeslag	$W_{z,G}$	IJsgebied	Formule	W _{z,ijs}	W _{z,ijs,bundel}
	[-]	[%]	[N/m]			[N/m]	[N/m]
Circuit 1	2	2	15,5	В	4+0,2d	8,1	16,1
Circuit 2	2	2	15,5	В	4+0,2d	8,1	16,1
Bliksemdraad 1	1	2	3,8	Α	15+0,4d	19,7	19,7
Bliksemdraad 2	1	2	3,8	А	15+0,4d	19,7	19,7

Verticale belasting al	nead						
Circuit	Bundel	Toeslag	$W_{z,G}$	IJsgebied	Formule	Wz,ijs	W _{z,ijs,bundel}
	[-]	[%]	[N/m]			[N/m]	[N/m]
Circuit 1	2	2	15,5	В	4+0,2d	8,1	16,1
Circuit 2	2	2	15,5	В	4+0,2d	8,1	16,1
Bliksemdraad 1	1	2		Α	15+0,4d		
Bliksemdraad 2	1	2		A	15+0,4d		

Isolatoren									
Geleider	$G_{isolator}$	Aantal	$F_{v,iso}$	Lengte	Windopp. W	/indhoogte	Stuwdruk	Vormfactor	$F_{h,iso}$
	[kN]	-	[kN]	[m]	[m ²]	[m]	[kN/m ²]	[-]	[kN]
150ct1f1	1,50	1	1,5	4,5	1,0	21,40	0,90	1,2	1,08
150ct1f2	1,50	1	1,5	4,5	1,0	21,40	0,90	1,2	1,08
150ct1f3	1,50	1	1,5	4,5	1,0	28,10	0,97	1,2	1,16
150ct2f1	1,50	1	1,5	4,5	1,0	21,40	0,90	1,2	1,08
150ct2f2	1,50	1	1,5	4,5	1,0	21,40	0,90	1,2	1,08
150ct2f3	1,50	1	1,5	4,5	1,0	28,10	0,97	1,2	1,16
bl1	0,10	1	0,1	0,2	0,1	30,00	0,99	1,2	0,12
bl2	0,10	1	0,1	0,2	0,1	30,00	0,99	1,2	0,12

28-7-2021 8 van 21

Project: ZWO380 D2.2 OSP Mast 97 Tower: H150 Number: 97

Windbelasting back

willapelastili											
	hoogte										
Geleider	wind	Stuwdruk	G_{c_dwars}	G_{c_trek}	C_c	$d_{toeslag}$	w_y	$W_{y,vak}$	D _{ijs,toeslag}	$W_{y,ijs}$	W _{y,ijs,vak}
	[m]	[kN/m²]	[-]	[-]	[-]	[mm]	[N/m]	[N/m]	[mm]	[N/m]	[N/m]
150ct1f1	13,2	0,77	0,58	0,53	1,20	20,75	22,3	20,2	40,2	43,2	39,1
150ct1f2	13,2	0,77	0,58	0,53	1,20	20,75	22,3	20,2	40,2	43,2	39,1
150ct1f3	20,1	0,88	0,62	0,56	1,20	20,75	27,2	24,7	40,2	52,7	47,8
150ct2f1	13,2	0,77	0,58	0,53	1,20	20,75	22,3	20,2	40,2	43,2	39,1
150ct2f2	13,2	0,77	0,58	0,53	1,20	20,75	22,3	20,2	40,2	43,2	39,1
150ct2f3	20,1	0,88	0,62	0,56	1,20	20,75	27,2	24,7	40,2	52,7	47,8
bl1	24,6	0,93	0,64	0,58	1,20	11,99	8,6	7,8	55,2	39,4	35,8
bl2	24,6	0,93	0,64	0,58	1,20	11,99	8,6	7,8	55,2	39,4	35,8

Windbelas	ting ahead										
	hoogte										
Geleider	wind	Stuwdruk	G_{c_dwars}	G_{c_trek}	C_c	$d_{toeslag}$	w_y	$W_{y,vak}$	$D_{ijs,toeslag}$	$W_{y,ijs}$	W _{y,ijs,vak}
	[m]	[kN/m²]	[-]	[-]	[-]	[mm]	[N/m]	[N/m]	[mm]	[N/m]	[N/m]
150ct1f1	11,1	0,73	0,57	0,98	1,20	20,75	20,5	35,3	40,2	39,7	68,4
150ct1f2	11,1	0,73	0,57	0,98	1,20	20,75	20,5	35,3	40,2	39,7	68,4
150ct1f3	14,4	0,79	0,59	0,98	1,20	20,75	23,3	38,6	40,2	45,1	74,8
150ct2f1	11,1	0,73	0,57	0,98	1,20	20,75	20,5	35,3	40,2	39,7	68,4
150ct2f2	11,1	0,73	0,57	0,98	1,20	20,75	20,5	35,3	40,2	39,7	68,4
150ct2f3	14,4	0,79	0,59	0,98	1,20	20,75	23,3	38,6	40,2	45,1	74,8
bl1	30,0	0,99	0,66	0,99							
bl2	30,0	0,99	0,66	0,99							

28-7-2021 9 van 21

Project: ZWO380 D2.2 OSP Mast 97 Masttype: H150 Mast: 97

Auteur: Versie: TBR Geleiderbelastingen

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

ULS (bezwijks	terkte)	NEN-EN50	341-2-15:20	19				
Belastingsgeval	omschrijving	Temp	γg	γ _G		γQ		γa
		°C	$G_{k,mast}$	$G_{k,qeleider}$	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,05	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,12	0,00	0,0
ULS 3	Wind+ijs	-5°	1,05	1,05	0,00	0,34	0,97	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,00	0,34	0,97	0,0
ULS 4	Koude+wind	-20°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,00	0,22	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,05	1,05	1,20	0,22	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 7	Permanent	10°	1,15	1,15	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijks	sterkte, enkel voor hoekmasten:	afwezigheid geleid	ers)	γ _G	γQ			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,05	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,05	1,05	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,05	1,05	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,05	1,05	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,0	0,24	0,0	0,0
SLS (controle	van de vervormingen, vermoeiir	ng, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	0,94	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,28	0,88	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen Aantal belastingcombinaties ULS Aantal belastingcombinaties SPLS Aantal belastingcombinaties SLS Aantal knooplasten 6 52 210 15 4432

28-7-2021 10 van 21

Project: Masttype: H150 Mast:

- Samenvattingstabellen geleiderbelastingen
 In de onderstaande vier tabellen is weergegeven:
 De maximale geleiderbelasting in het globale assenstelsel, gesplitst in aandeel van back en ahead span
- De alledaagse (EDS) waarden van de gecombineerde geleiderbelasting (ba+Ah) in het globale assenstelsel met in het lokale assenstelsel de maximaal optredende trekkracht.

 Componenten Fx en Fy als absolute waarde

 De alledaagse (EDS) waarden van de gecombineerde geleiderbelastingen (Ba+Ah) met bijbehorende trekkrachten
- Controle op uplift, waar een negatieve waarde duidt op uplift

Maximale waarden voor back en ahead span

	Fx_ba	Fx_ah	Fy_ba	Fy_ah	Fz_ba	Fz_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	-26,3	0,0	4,7	0,1	4,4	1,1
bl2	-26,3	0,0	4,7	0,1	4,4	1,1
150ct1f1	-39,6	13,0	8,0	0,7	9,2	109,4
150ct1f2	-39,6	15,7	8,0	1,2	9,2	109,4
150ct1f3	-39,7	13,9	9,2	0,7	9,1	145,0
150ct2f1	-39,6	15,7	8,0	1,2	9,2	109,4
150ct2f2	-39,6	11,0	8,0	11,3	9,2	109,4
150ct2f3	-39,7	12,1	9,2	10,0	9,1	145,0

Min. Weight s	pan (m)			Max. Weight span (m)	
Weight spar Co	mbinatie1			Weight spar Combinatie1	
Geleider	SLS 1a	SLS 4	SLS 7	Geleider ULS 1a ULS	3
bl1	161,5	161,5	161,5	bl1 161,5 161,	,5
bl2	161,5	161,5	161,5	bl2 161,5 161,	,5
150ct1f1	509,7	7118,4	508,6	150ct1f1 954,9 1516,	,8
150ct1f2	508,7	7118,9	508,6	150ct1f2 974,6 1518,	,7
150ct1f3	628,1	9411,7	620,0	150ct1f3 1241,3 1963,	,8
150ct2f1	508,6	7118,9	508,6	150ct2f1 975,2 1518,	,8
150ct2f2	509,2	7118,2	508,6	150ct2f2 974,3 1518,	,7
150ct2f3	620.2	9411.3	620.0	150ct2f3 1304.7 1970	4

Omhullende weight span over alle combinaties (incl. 0,9 combinaties) Voor alle geleiders

Wind / Weight span verhouding

57,740 -0,991 -9411,7 m Min. weight span 161,5 m

28-7-2021 11 van 21

Project: ZWO380 D2.2 OSP Mast 97 Masttype: H150 Mast: 97

Maximale waarden back+ahead span Maximale waarden trekkracht geleider

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	26,3	4,8	4,4	-26,7	0,0
bl2	26,3	4,8	4,4	-26,7	0,0
150ct1f1	39,6	8,5	109,4	-39,9	15,7
150ct1f2	39,6	9,1	109,4	-39,9	15,7
150ct1f3	39,7	9,3	145,0	-40,0	15,7
150ct2f1	39,6	9,2	109,4	-39,9	15,7
150ct2f2	39,6	14,3	109,4	-39,9	15,7
150ct2f3	39,7	13,3	145,0	-40,0	15,7

EDS-belastingen geleiders

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	0,0	0,6	0,7	-6,1	0,0
bl2	0,0	0,6	0,7	-6,1	0,0
150ct1f1	0,6	1,6	6,8	-17,1	0,8
150ct1f2	0,8	1,6	6,8	-17,1	0,8
150ct1f3	0,7	1,6	8,6	-17,1	0,8
150ct2f1	0,8	1,6	6,8	-17,1	0,8
150ct2f2	0,5	1,6	6,8	-17,1	0,8
150ct2f3	0.6	1.6	8.6	-17.1	0.8

Controle uplift SLS-wind

		Fz_ba	Fz_ah
Combinat	ie:Geleider	[kN]	[kN]
SLS 4	bl1	0,0	0,0
	bl2	0,0	0,0
	150ct1f1	0,0	0,0
	150ct1f2	0,0	0,0
	150ct1f3	0,0	0,0
	150ct2f1	0,0	0,0
	150ct2f2	0,0	0,0
	150ct2f3	0,0	0,0

28-7-2021 12 van 21

Project: ZWO380 D2.2 OSP Mast 97 Masttype: H150 Mast: 97

Auteur: Versie: TBR Geleiderbelastingen

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

ULS (bezwijks	terkte)	NEN-EN50	341-2-15:20	19				
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γο		γa
		°C	$G_{k,mast}$	$G_{k,qeleider}$	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,15	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,40	0,00	0,0
ULS 3	Wind+ijs	-5°	1,15	1,15	0,00	0,42	1,30	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,00	0,42	1,30	0,0
ULS 4	Koude+wind	-20°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,00	0,28	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,15	1,15	1,30	0,28	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 7	Permanent	10°	1,30	1,30	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijks	terkte, enkel voor hoekmasten:	afwezigheid geleid	ers)	γ _G	γQ			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,15	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,15	1,15	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,15	1,15	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,15	1,15	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,0	0,24	0,0	0,0
SLS (controle	van de vervormingen, vermoeiii	ng, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	1,00	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,30	1,00	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen Aantal belastingcombinaties ULS Aantal belastingcombinaties SPLS Aantal belastingcombinaties SLS Aantal knooplasten 6 52 210 15 4432

28-7-2021 16 van 21

Project: Masttype: H150 Mast:

- Samenvattingstabellen geleiderbelastingen
 In de onderstaande vier tabellen is weergegeven:
 De maximale geleiderbelasting in het globale assenstelsel, gesplitst in aandeel van back en ahead span
- De alledaagse (EDS) waarden van de gecombineerde geleiderbelasting (ba+Ah) in het globale assenstelsel met in het lokale assenstelsel de maximaal optredende trekkracht.

 Componenten Fx en Fy als absolute waarde

 De alledaagse (EDS) waarden van de gecombineerde geleiderbelastingen (Ba+Ah) met bijbehorende trekkrachten
- Controle op uplift, waar een negatieve waarde duidt op uplift

Maximale waarden voor back en ahead span

	Fx_ba	Fx_ah	Fy_ba	Fy_ah	Fz_ba	Fz_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	-32,1	0,0	5,8	0,2	5,0	1,1
bl2	-32,1	0,0	5,8	0,2	5,0	1,1
150ct1f1	-42,8	13,1	9,8	0,7	10,0	109,6
150ct1f2	-42,8	15,7	9,8	1,5	10,0	109,6
150ct1f3	-44,0	14,0	11,4	0,7	9,9	145,2
150ct2f1	-42,8	15,7	9,8	1,5	10,0	109,6
150ct2f2	-42,8	11,0	9,8	11,3	10,0	109,6
150ct2f3	-44,0	12,1	11,4	10,1	9,9	145,2

Min. Weight s	span (m)			Max. Weigl	ht span (m)	
Weight spar Co	mbinatie1			Weight spar	Combinatie1	
Geleider	SLS 1a	SLS 4	SLS 7	Geleider	ULS 1a	ULS 3
bl1	161,5	161,5	161,5	bl1	161,5	161,5
bl2	161,5	161,5	161,5	bl2	161,5	161,5
150ct1f1	509,8	7118,5	508,6	150ct1f1	1026,5	1309,9
150ct1f2	508,7	7119,1	508,6	150ct1f2	1048,5	1312,1
150ct1f3	629,1	9411,8	620,0	150ct1f3	1339,6	1689,1
150ct2f1	508,6	7119,1	508,6	150ct2f1	1049,1	1312,2
150ct2f2	509,2	7118,2	508,6	150ct2f2	1048,0	1312,1
150ct2f3	620,3	9411,4	620,0	150ct2f3	1409,9	1696,7

Omhullende weight span over alle combinaties (incl. 0,9 combinaties)

Voor alle geleiders Wind / Weight span verhouding

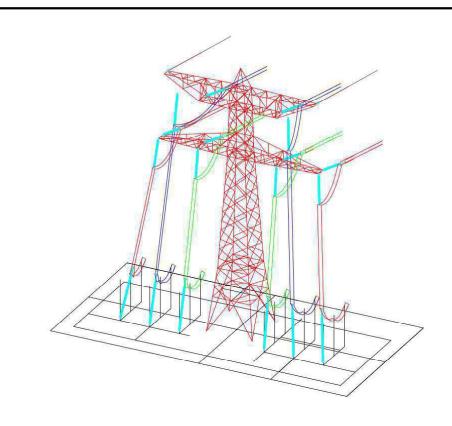
57,741 -0,991 -Max. weight span 9411,8 m Min. weight span 161,5 m

28-7-2021 17 van 21

Project: ZWO380 D2.2 OSP Mast 97 Masttype: H150 Mast: 97

Maximale waarden back+ahead span Maximale waarden trekkracht geleider

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	32,1	5,9	5,0	-32,5	0,0
bl2	32,1	5,9	5,0	-32,5	0,0
150ct1f1	41,4	9,7	109,6	-43,3	15,7
150ct1f2	41,2	11,2	109,6	-43,3	15,7
150ct1f3	41,4	11,5	145,2	-44,6	15,7
150ct2f1	41,2	11,3	109,6	-43,3	15,7
150ct2f2	41,8	14,7	109,6	-43,3	15,7
150ct2f3	41,8	13,7	145,2	-44,6	15,7


EDS-belastingen geleiders

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	0,0	0,6	0,7	-6,1	0,0
bl2	0,0	0,6	0,7	-6,1	0,0
150ct1f1	0,6	1,6	6,8	-17,1	0,8
150ct1f2	0,8	1,6	6,8	-17,1	0,8
150ct1f3	0,7	1,6	8,6	-17,1	0,8
150ct2f1	0,8	1,6	6,8	-17,1	0,8
150ct2f2	0,5	1,6	6,8	-17,1	0,8
150ct2f3	0.6	1.6	8.6	-17.1	0.8

Controle uplift SLS-wind

		Fz_ba	Fz_ah
Combinat	ie:Geleider	[kN]	[kN]
SLS 4	bl1	0,0	0,0
	bl2	0,0	0,0
	150ct1f1	0,0	0,0
	150ct1f2	0,0	0,0
	150ct1f3	0,0	0,0
	150ct2f1	0,0	0,0
	150ct2f2	0,0	0,0
	150ct2f3	0,0	0,0

28-7-2021 18 van 21

Inhoud

- Uitgangspunten
- Mastconstructie
- Tussenresultaten
- Belastingen initiëel
- Belastingen na aanpassing
p. 15

Gegevens

Norm NEN-EN50341-2-15:2019

Initieel

Gevolgklasse CC2 Betrouwbaarheidsniveau Afkeur Referentieperiode 30 jaar

Na aanpassing

Gevolgklasse CC2
Betrouwbaarheidsniveau Verbouw
Referentieperiode 50 jaar

Windgebied III
Windsnelheid 24,5 m/s
Terreincategorie II
Reductie factor Cdir 1,00
IJsgebied B

Masttype Hoekmast Lijnhoek 169°

0.0	2021-06-18			
ISSUE	DATE	REVISION	CHK'D	APP'D

Client:

Title:

Verticale geleiders H150

JOB No.	-	DATE	-
DRAWN	_	CHKD	-
DESIGN	-	APPD	-

Document name:

ZWO380 D2.2 OSP Mast 97_H150_97_Report.pdf

Project number:

L									
F	roje	ect cli	ient nι	ımbe	r:				
Γ,	<u>م</u>								
Ľ	J.U								

Project: Tower: H150 Number:

Auteur: Versie: Geleiderbelastingen afloper v1.9

Algemeen

Benaming Masttype Aantal circuits Configuratie Aantal bliksemgeleiders H150 Hoekmast 2 2-circuit-donau

Uitgangspunten

Norm NEN-E
Gevolgklasse initieel
Betrouwbaarheidsniveau initieel
Referentieperiode initieel
Gevolgklasse na aanpassing
Betrouwbaarheidsniveau na aanpassing
Referentieperiode na aanpassing NEN-EN50341-2-15:2019 CC2 Afkeur CC2-0 30 jaar CC2 Verbouw 50 jaar Windgebied III 24,5 m/s Windsnelheid (m/s) Terreincategorie Reductiefactor c_{dir} 1,00 IJsgebied fasegeleider В IJsgebied bliksemgeleider

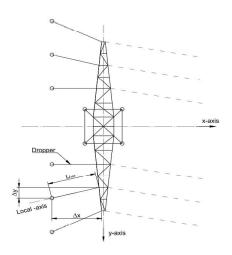
Geleiders

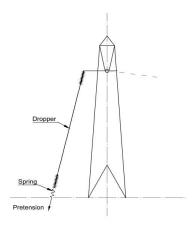
Omschrijving	Spanning	Geleider Back	Bundel Ba	IJsgebied	Toeslag gewicht	Toeslag diameter	
Circuit 1	150 kV	ACSR 20/224	2	В	2 %	2 %	
Circuit 2	150 kV	ACSR 20/224	2	В	2 %	2 %	
Bliksemdraad 1		Niet aanwezig	0	0	0 %	0 %	0
Bliksemdraad 2		Niet aanwezig	0	0	0 %	0 %	0

Isolatoren	(1)			
Omschrijving	Ophanging	Gewicht	Lengte	Windopp.
		[kN]	[m]	[m²]
Circuit 1	Afspanketting	1,50	4,50	1,00
Circuit 2	Afspanketting	1,50	4,50	1,00
Bliksemdraad 1	0	0,00	0,00	0,00
Bliksemdraad 2	0	0,00	0,00	0,00

^{1.} Eigenschappen gelden voor geheel van de isolatorset

Ophanghoogte en positie in mast


Circuits	Nummer	Aanduiding	Ophanghoogte	Aangrijppunt
Circuit 1	10	150ct1f1	20,9 m	20,9 m
Circuit 1	11	150ct1f2	20,9 m	20,9 m
Circuit 1	12	150ct1f3	27,6 m	27,6 m
Circuit 2	20	150ct2f1	20,9 m	20,9 m
Circuit 2	21	150ct2f2	20,9 m	20,9 m
Circuit 2	22	150ct2f3	27,6 m	27,6 m
Bliksemdraad 1	1	bl1	0,0 m	0,0 m
Bliksemdraad 2	3	bl2	0,0 m	0,0 m


18-6-2021 2 van 13

Project: Tower: Number: H150 97

Principe hoekmast met aflopers

Top view tower

Side view tower

Hoogteafwijking mastbeeld naastgelegen masten en richtingsverandering t.o.v. Lijnrichting

	dering Lokaal ∆x Lengte overspa	Hoogteverschil Ric	overspanning
Circuits	Δx Lhor L	ding ∆h	L
Circuit 1	4,0 4,7 21,1 m	f1 20,6 m	1,1 m
Circuit 1	3,7 3,7 20,9 m	f2 20,6 m	20,9 m
Circuit 1	1,7 2,6 27,5 m	f3 27,4 m	27,5 m
Circuit 2	4,0 4,0 21,0 m	f1 20,6 m	21,0 m
Circuit 2	3,7 4,5 21,1 m	f2 20,6 m	21,1 m
Circuit 2	1,7 2,6 27,5 m	f3 27,4 m	27,5 m
Bliksemdraad 1	0,0 0,0 0,0 m	0,0 m	0,0 m
Bliksemdraad 2	0,0 0,0 0,0 m	0,0 m	0,0 m
Bliksemdraad 1	0,0 0,0 0,	0,0 m	ο,

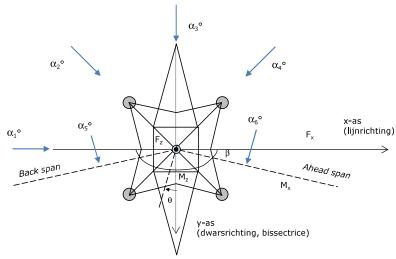
Voorspanning en veerstijfheid

			Voorspanning	Veerstijfheid	Effectieve rekstijfheid
Circuits	Nummer	Aanduiding	F _{pr}	k	EA _{fict}
Circuit 1	10	150ct1f1	3,0 kN	500 kN/m	4916 kN/m
Circuit 1	11	150ct1f2	3,0 kN	500 kN/m	4916 kN/m
Circuit 1	12	150ct1f3	3,0 kN	500 kN/m	7159 kN/m
Circuit 2	20	150ct2f1	3,0 kN	500 kN/m	4916 kN/m
Circuit 2	21	150ct2f2	3,0 kN	500 kN/m	4916 kN/m
Circuit 2	22	150ct2f3	3,0 kN	500 kN/m	7159 kN/m
Bliksemdraad 1	1	bl1	0,0 kN	0 kN/m	kN/m
Bliksemdraad 2	3	bl2	0,0 kN	0 kN/m	kN/m

De effectieve rekstijfheid is bepaald met de invloed van de veerstijfheid Deze is berekend door de optelling van de reciproke waarden van de veerstijfheid van geleider en veer.

18-6-2021 3 van 13

Project: Tower: Number:


Lijn- en mastgegevens

Deze invoer is opgenomen voor beschouwde windrichtingen en komt overeen met invoer geleiderbelastingen voor de mast

Lijnhoek	β	169 °
Rotatie mast t.o.v. bissectrice	θ	0 °
Hoogte onderkant mast t.o.v. ma	aaiveld	0,5 m
Beschouwde windrichtingen	α_1	0 °
Windrichtingen volgens:	α_2	45 °
Geleiderbelastingen	α_3	90 °
_	α_4	135 °
	α_5	84,5 °
	α_6	95,5 °

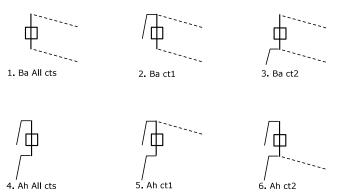
Windrichtingen gelden t.o.v. hoofdrichting mastconstructie, niet t.o.v. bissectrice.

Windrichtingen en positieve richtingen belastingen

Beschouwd	aantal	windrichtingen	
1a			(
3			(
4			
6			(
Overig			(

18-6-2021 4 van 13

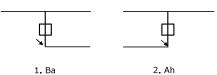
Project: Tower: Number: H150 97


Geleiderafval

		SPLS	SPLS - torsie		kelzijdige trek	5a - gele	iderbreuk
		Aanw.	Afw.	Aanw.	Afw.	Aanw.	Afw.
Circuit 1	150ct1f1	1	0	1	0	1	0
Circuit 1	150ct1f2	1	0	1	0	1	0
Circuit 1	150ct1f3	1	0	1	0	1	0
Circuit 2	150ct2f1	0	1	1	0	1	0
Circuit 2	150ct2f2	0	1	1	0	1	0
Circuit 2	150ct2f3	0	1	1	0	1	0
Bliksemdraad 1	bl1	1	0	1	0		0
Bliksemdraad 2	bl2	0	1	1	0		0

Belastingsituaties SPLS

Beschouwde situaties SPLS: 1 t/m 6, alle mogelijke situaties. Geleiderbelastingen naar volgende mast geen onderdeel van deze berekening.


Principe belastingssituaties:

Belastingsituaties 5a. Geleiderbreuk

Beschouwde situaties geleiderbreuk 5a: 1 en 2, alle mogelijke situaties.

Principe belastingssituaties:

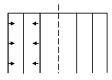
18-6-2021 5 van 13

Project: ZWO380 D2.2 OSP Mast 97

Project: ZWO3 Tower: H150 Number: 97

Belastingsituaties 6. Bouw- en onderhoud

Onder 6a wordt de belasting door aanwezigheid lijnwagen of lijnfiets in combinatie met puntlast op traverse in rekening gebracht. Combinatie 6b bevat geen belastingen in geleider of op traverse. Deze combinatie met 20% wind is geschikt voor controle stijgpunt in combinatie met kortsluitbelastingen.


	Fase	Bliksem
Lijnwagen (nvt.)	0,0 kN	0,0 kN
Puntlast op traverse	1,0 kN	1,0 kN

Belastingsituaties 8. Kortsluiting

Principe belastingssituaties:

3. 10-12

Kortsluitkrachten

(Zie separate berekening)

Geleider	w _{z,G} Ko	rtsluitkra	F _x	F _v	F_z
	[N/m]	[kN]	[kN]	[kN]	[kN]
10	150ct1f1	15,6	2,9	-1,9	15,2
11	150ct1f2	15,6	2,8	-0,3	15,3
12	150ct1f3	29,6	1,8	- 2,2	29,5
20	150ct2f1	15,6	3,0	- 0,3	15,3
21	150ct2f2	15,6	2,7	1,8	15,2
22	150ct2f3	29,6	1,8	2,2	29,5
1	bl1				
3	bl2				

Belastingcombinaties kortsluiting

Belastingcombinatie
ULS 8 Kortsluiting 10-11
ULS 8 Kortsluiting 10-12
ULS 8 Kortsluiting 11-12
ULS 8 Kortsluiting 20-21
ULS 8 Kortsluiting 20-22
ULS 8 Kortsluiting 21-22

18-6-2021 6 van 13

Project: ZWO380 D2.2 OSP Mast 97

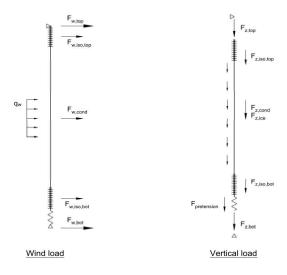
Tower: H150 Number: 97

Tussenresultaten geleiderbelastingen

Geleiders

CCICIACIO						
Circuit	Geleider	Diameter	Α	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Circuit 2	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Bliksemdraad 1	Niet aanwezig					
Bliksemdraad 2	Niet aanwezig					

Verticale belasting


Circuit	Bundel	Toeslag	W _{z,}	G	IJsgebied	Formule	$W_{z,ijs}$	W _{z,ijs,bu}	unde l
	[-]	[%]	[N,	/m]			[N/m]	[N/m]	
Circuit 1		2	2	15,5	E	3 4+0,2c		8,1	16,1
Circuit 2		2	2	15,5	E	3 4+0,2c		8,1	16,1
Bliksemdraad 1		0	0		()			
Bliksemdraad 2		0	0		()			

Schema voor berekenen horizontale en verticale belasting

Horizontale belasting wordt bepaald voor de wind tegen de geleider en isolatoren boven en onder.

De horizontale component als gevolg van de scheefstand van de afloper wordt per belastingscombinatie apart bepaald De verticale krachten gelden alleen voor de EDS-conditie zonder externe belastingen en temperatuursverandering

De berekeningen zijn weergegeven op het volgende blad.

18-6-2021 7 van 13

Project: Tower: Number: H150 97

Isolatoren					Boven			Onder		
Geleider	G _{isolator}	Lengte	Windopp.	Vormfactor	Windhoogte	Stuwdruk	F _{h,iso} V	Vindhoogte	Stuwdruk	$F_{h,iso}$
	[kN]	[m]	[m ²]	[-]	[m]	[kN/m²]	[kN]	[m]	[kN/m²]	[kN]
150ct1f1	1,50	4,5	1,0	1,2	19,15	0,87	1,04	3,05	0,49	0,59
150ct1f2	1,50	4,5	1,0	1,2	19,15	0,87	1,04	3,05	0,49	0,59
150ct1f3	1,50	4,5	1,0	1,2	25,85	0,95	1,14	2,95	0,49	0,59
150ct2f1	1,50	4,5	1,0	1,2	19,15	0,87	1,04	3,05	0,49	0,59
150ct2f2	1,50	4,5	1,0	1,2	19,15	0,87	1,04	3,05	0,49	0,59
150ct2f3	1,50	4,5	1,0	1,2	25,85	0,95	1,14	2,95	0,49	0,59
bl1	0,00	0,0	0,0	1,2	0,50	0,49	•	0,50	0,49	•
bl2	0,00	0,0	0,0	1,2	0,50	0,49		0,50	0,49	

Horizontale belasting

norizontale	belasting										
	hoogte										
Geleider	wind	Stuwdruk	G_c	C_c	$d_{toeslag}$	W_y	D _{ijs,toeslag}	$W_{y,ijs}$	F _{w,geleider}	F _{w,boven}	F _{w,onder}
	[m]	[kN/m²]	[-]	[-]	[mm]	[N/m]	[mm]	[N/m]	[kN]	[kN]	[kN]
150ct1f1	11,1	0,73	0,97	1,20	20,75	35,0	40,2	67,9	0,20	1,2	0,8
150ct1f2	11,1	0,73	0,97	1,20	20,75	35,0	40,2	67,9	0,20	1,2	0,8
150ct1f3	14,4	0,79	0,97	1,20	20,75	38,4	40,2	74,4	0,35	1,5	0,9
150ct2f1	11,1	0,73	0,97	1,20	20,75	35,0	40,2	67,9	0,20	1,2	0,8
150ct2f2	11,1	0,73	0,97	1,20	20,75	35,0	40,2	67,9	0,20	1,2	0,8
150ct2f3	14,4	0,79	0,97	1,20	20,75	38,4	40,2	74,4	0,35	1,5	0,9
bl1	0,5	0,49	0,84								
bl2	0,5	0,49	0,84								

 $\begin{tabular}{ll} \textbf{Verticale belasting} \\ \textbf{Formules:} & F_{z,top} = F_{z,iso,top} + F_{z,cond} + F_{z,iso,bot} + F_{pr} \\ & F_{t,mid} = F_{z,cond}/2 + F_{z,iso,bot} + F_{pr} \\ & F_{z,bot} = -F_{pr} \\ \end{tabular}$ $\begin{aligned} & L_{geleider} = \Delta h - 2L_{iso} \\ & F_{z,cond} = L_{cond} \times w_z \end{aligned}$

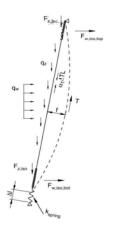
Geleider	$W_{z,G}$	W _{z,ijs}	L _{geleider}	$F_{z,iso}$	$F_{z,gel}$	$F_{z,ijs}$	Pretension	F _{z,boven}	$F_{t,mid}$	F _{z,onder}
	[N/m]	[N/m]	[m]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
150ct1f1	15,5	16,1	11,6	1,5	0,2	0,2	3,0	6,2	4,6	-3,0
150ct1f2	15,5	16,1	11,6	1,5	0,2	0,2	3,0	6,2	4,6	-3,0
150ct1f3	15,5	16,1	18,4	1,5	0,3	0,3	3,0	6,3	4,6	- 3,0
150ct2f1	15,5	16,1	11,6	1,5	0,2	0,2	3,0	6,2	4,6	- 3,0
150ct2f2	15,5	16,1	11,6	1,5	0,2	0,2	3,0	6,2	4,6	-3,0
150ct2f3	15,5	16,1	18,4	1,5	0,3	0,3	3,0	6,3	4,6	-3,0
bl1			0,0				0,0			
bl2			0,0				0,0			

18-6-2021 8 van 13

Project: Masttype: Mast:

Auteur: Versie: TBR Geleiderbelastingen v1.9

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar


ULS (bezwijksterkte) NEN-EN503		341-2-15:20	019					
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γQ		γa
		°C	G _{k,mast}	G _{k,geleider}	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,05	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,12	0,00	0,0
ULS 3	Wind+ijs	- 5°	1,05	1,05	0,00	0,34	0,97	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,00	0,34	0,97	0,0
ULS 4	Koude+wind	-20°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,00	0,22	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,05	1,05	1,20	0,22	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 7	Permanent	10°	1,15	1,15	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijksterkte, enkel voor hoekmasten: afwezigheid geleid		ders)	γ _G	γq				
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,05	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	- 5°	1,05	1,05	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,05	1,05	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,05	1,05	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,0	0,24	0,0	0,0
SLS (contro	le van de vervormingen, vermoeiing	g, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	0,94	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,28	0,88	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen	6
Aantal belastingcombinaties ULS	57
Aantal belastingcombinaties SPLS	210
Aantal belastingcombinaties SLS	15
Aantal knooplasten	4512

Schematisation

De trekkracht in de afloper wordt bepaald met de toestandsvergelijking voor een gekromde kabel.

In de rekstijfheid van de kabel is de invloed van de veer verdisconteerd.

18-6-2021 9 van 13

Project: Masttype: Mast:

- Tabellen met geleiderbelastingen

 In de onderstaande drie tabellen is weergegeven:

 De trekkracht per belastingcombinatie en de bijbehorende zeeg en veerverlenging

 De geleiderbelastingen in het lokale assenstelsel voor het onderste bevestigingspunt

 De maximale waarden voor de reacties onder en boven in het globale assenstelsel

Trekkracht, zeeg en veerverlenging

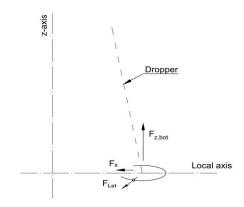
Geleider	Combinatie	Zeeg [m]	Veer- verlengin g [m	veer- verlengin g [m]	rek- kracht initieel [kN]	Trek- kracht [kN]
150ct1f1	SLS 1a	0,45	0,009	0,018	4,6	9,2
	SLS 3	0,33	0,007	0,016	4,7	7,9
	SLS 4	0,19	0,006	0,015	4,6	7,3
	SLS 6	0,25	0,002	0,011	4,6	5,6
	SLS 7	0,22	0,000	0,009	4,6	4,6
	ULS 1a	0,48	0,011	0,020	4,9	9,9
	ULS 3	0,35	0,007	0,017	5,0	8,3
	ULS 4	0,21	0,006	0,015	4,9	7,5
	ULS 6b	0,28	0,003	0,012	4,9	6,1
150ct1f2	SLS 1a	0,42	0,009	0,018	4,6	9,0
	SLS 3	0,29	0,006	0,015	4,7	7,7
	SLS 4	0,14	0,006	0,015	4,6	7,4
	SLS 6	0,19	0,002	0,011	4,6	5,4
	SLS 7	0,17	0,000	0,009	4,6	4,6
	ULS 1a	0,45	0,010	0,019	4,9	9,7
	ULS 3	0,31	0,007	0,016	5,0	8,1
	ULS 4	0,15	0,006	0,015	4,9	7,4
	ULS 6b	0,24	0,003	0,012	4,9	6,0
150ct1f3	SLS 1a	0,49	0,012	0,021	4,6	10,5
	SLS 3	0,32	0,009	0,018	4,8	9,2
	SLS 4	0,14	0,009	0,019	4,6	9,3
	SLS 6	0,21	0,003	0,013	4,6	6,3
	SLS 7	0,10	0,000	0,009	4,6	4,6
	ULS 1a	0,53	0,014	0,023	5,0	11,5
	ULS 3	0,35	0,010	0,019	5,1	9,7
	ULS 4	0,16	0,010	0,019	5,0	9,4
	ULS 6b	0,24	0,004	0,013	5,0	6,6

Controle iteratieproces

Iteratie	
C)
C)
ок	
	С ОК ОК ОК ОК

18-6-2021 10 van 13

Project: Masttype: Mast:

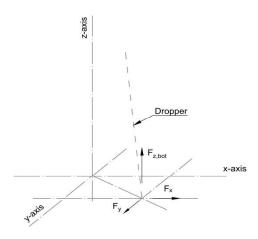

Belastingen in lokale richting geleider

De belastingen op het onderste bevestigingspunt voor het dimensioneren van de ondersteuningsconstructie

De richting van de laterale kracht wordt bepaald door de windrichting en kan in alle richtingen aangrijpen.

De resulterende horizontale kracht kan worden afgeleid uit de vectoriële optelling van de kracht in x-richting en laterale kracht.

Combinatie1	Fx,lok,bot [kN]	Flat,bot [kN]	Fz_bot [kN]
SLS 1a	2,1	0,7	-7,6
SLS 3	1,8	0,3	-6,3
SLS 4	1,7	0,1	-5,8
SLS 6	1,3	0,1	-4,0
SLS 7	1,1	0,0	-3,0
ULS 1a	2,3	0,9	-8,2
ULS 3	1,9	0,3	-6,6
ULS 4	1,7	0,2	-5,8
ULS 6b	1,4	0,2	-4,4
SLS 1a	1,6	0,7	-7,4
SLS 3	1,4	0,3	-6,1
SLS 4	1,3	0,1	-5,8
SLS 6	1,0	0,1	-3,8
SLS 7	0,8	0,0	-3,0
ULS 1a	1,7	0,9	-8,0
ULS 3	1,5	0,3	-6,3
ULS 4	1,3	0,2	-5,8
ULS 6b	1,1	0,2	-4,3
SLS 1a	1,0	0,9	-8,9
SLS 3	0,9	0,4	-7,5
SLS 4	0,9	0,2	-7,7
SLS 6	0,6	0,2	-4,6
SLS 7	0,4	0,0	-3,0
ULS 1a	1,1	1,1	-9,8
ULS 3	0,9	0,4	-7,9
ULS 4	0,9	0,2	-7,7
ULS 6b	0,6	0,2	-4,9


18-6-2021 11 van 13

Project: Masttype: Mast:

Maximale waarden in globale assenstelsel

De maximale waarden van de verticale kracht en de resulterende horizontale kracht per belastingcombinatie Zowel voor het bovenste als het onderste bevestigingspunt

ieleider	Combinatie	Fx_top [kN]	Fy_top [kN	Fz_top [kN]	Fx_bot [kN]	Fy_bot [kN]	Fz_bot [kN]
150ct1f1	SLS 1a	2,5	0,4	10,8	-2,6	0,0	- 7,6
	SLS 3	1,4	0,0	9,6	-2,0	0,0	-6,3
	SLS 4	1,3	0,0	8,9	-1,6	0,0	-5,8
	SLS 6	0,9	0,0	7,2	-1,2	0,0	-4,0
	SLS 7	0,7	0,0	6,2	-1,0	0,0	-3,0
	ULS 1a	2,9	0,5	11,6	-2,8	0,0	- 8,2
	ULS 3	1,6	0,0	10,1	-2,1	0,0	-6,6
	ULS 4	1,3	0,0	9,1	-1,6	0,0	-5,8
	ULS 6b	1,1	0,0	7,8	-1,5	0,0	-4,4
	ULS 7	0,7	0,0	6,5	-1,1	0,0	-2,8
150ct1f2	SLS 1a	2,4	1,2	10,5	-2,4	0,0	-7,4
	SLS 3	1,3	0,4	9,4	-1,8	0,0	-6,1
	SLS 4	1,2	0,1	8,9	-1,5	0,0	-5,8
	SLS 6	0,8	0,2	7,0	-1,1	0,0	-3,8
	SLS 7	0,7	0,0	6,2	-1,0	0,0	-3,0
	ULS 1a	2,8	1,4	11,4	-2,6	0,0	-8,0
	ULS 3	1,4	0,5	9,9	-1,9	0,0	-6,3
	ULS 4	1,2	0,2	9,1	-1,5	0,0	-5,8
	ULS 6b	0,9	0,2	7,6	-1,4	0,0	-4,3
	ULS 7	0,7	0,0	6,5	-1,0	0,0	-2,8
150ct1f3	SLS 1a	2,0	0,8	12,2	-1,4	0,0	- 8,9
	SLS 3	1,0	0,0	11,0	-1,0	0,0	-7,5
	SLS 4	0,5	0,0	10,9	-0,6	0,0	-7,7
	SLS 6	0,3	0,0	7,9	-0,4	0,0	-4,6
	SLS 7	0,2	0,0	6,3	-0,3	0,0	-3,0
	ULS 1a	2,4	1,0	13,2	-1,6	0,0	-9,8
	ULS 3	1,2	0,1	11,6	-1,0	0,0	-7,9
	ULS 4	0,5	0,0	11,1	-0,6	0,0	-7,7
	ULS 6b	0,7	0,0	8,3	-0,6	0,0	-4,9
	ULS 7	0,2	0,0	6,6	-0,3	0,0	-2,8
150ct2f1	SLS 1a	2,5	1,2	10,5	-2,5	0,0	-7,4
	SLS 3	1,3	0,4	9,4	-1,9	0,0	-6,1
	SLS 4	1,3	0,2	8,9	-1,6	0,0	-5,7
	SLS 6	0,9	0,2	6,9	-1,2	0,0	-3,7
	SLS 7	0,7	0,0	6,2	-1,0	0,0	-3,0
				,		•	,

ZWO380 D2.2 OSP Mast 97 H150 Project: Masttype:

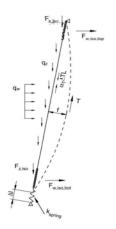
Mast:	97						
150ct2f1	ULS 3	1,5	0,5	9,9	-2,1	0,0	-6,3
	ULS 4	1,3	0,2	9,0	-1,6	0,0	-5,7
	ULS 6b	1,0	0,2	7,6	-1,5	0,0	-4,3
	ULS 7	0,7	0,0	6,5	-1,1	0,0	-2,8
150ct2f2		2,4	2,1	10,0	- 2,3	-0,9	-6,8
	SLS 3	1,3	1,1	8,8	-1,7	-0,8	- 5,5
	SLS 4	1,1	1,0	8,4	-1,4	-0,7	- 5,2
	SLS 6	0,7	0,7	6,3	-1,0	-0,5	-3,1
	SLS 7	0,7	0,5	6,2	-1,0	-0,7	-3,0
	ULS 1a	2,8	2,5	10,8	- 2,5	-1,0	-7,4
	ULS 3	1,4	1,3	9,3	-1,8	-0,8	- 5,7
	ULS 4	1,1	1,0	8,5	-1,4	-0,7	-5,1
	ULS 6b	0,9	0,8	7,2	-1,3	-0,6	-3,9
	ULS 7	0,7	0,5	6,5	-1,0	- 0,7	-2,8
150ct2f3	SIS 1a	2,0	2,1	11,7	-1,4	-0,8	-8,4
	SLS 3	1,0	1,1	10,4	-0,9	- 0,7	-6,8
	SLS 4	0,5	0,9	10,6	-0,6	-0,5	-7,3
	SLS 6	0,3	0,6	7,1	-0,4	-0,2	-3,8
	SLS 7	0,2	0,3	6,3	-0,3	-0,4	-3,0
	ULS 1a	2,4	2,5	12,7	-1,6	-0,8	-9,2
	ULS 3	1,2	1,3	11,0	-1,0	-0,7	-7,2
	ULS 4	0,5	1,0	10,7	-0,6	-0,5	-7,3
	ULS 6b	0,7	0,7	7,8	-0,6	-0,5	-4,4
	ULS 7	0,2	0,3	6,6	-0,3	-0,4	-2,8
	,	-/ -	5,5	5,5	3,3	٥, .	2,5

18-6-2021 13 van 13

Project: Masttype: Mast:

Auteur: Versie: TBR Geleiderbelastingen v1.9

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar


ULS (bezwijksterkte) NEN-EN5034			341-2-15:20)19				
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γQ		γa
		°C	G _{k,mast}	G _{k,geleider}	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,15	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,40	0,00	0,0
ULS 3	Wind+ijs	- 5°	1,15	1,15	0,00	0,42	1,30	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,00	0,42	1,30	0,0
ULS 4	Koude+wind	-20°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,00	0,28	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,15	1,15	1,30	0,28	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 7	Permanent	10°	1,30	1,30	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwij	ksterkte, enkel voor hoekmasten: a	fwezigheid geleid	ders)	γ _G	γq			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,15	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,15	1,15	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,15	1,15	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,15	1,15	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,0	0,24	0,0	0,0
SLS (contro	le van de vervormingen, vermoeiing	g, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	1,00	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,30	1,00	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen	6
Aantal belastingcombinaties ULS	57
Aantal belastingcombinaties SPLS	210
Aantal belastingcombinaties SLS	15
Aantal knooplasten	4512

Schematisation

De trekkracht in de afloper wordt bepaald met de toestandsvergelijking voor een gekromde kabel.

In de rekstijfheid van de kabel is de invloed van de veer verdisconteerd.

18-6-2021 1 van 5

Project: Masttype: Mast:

- Tabellen met geleiderbelastingen

 In de onderstaande drie tabellen is weergegeven:

 De trekkracht per belastingcombinatie en de bijbehorende zeeg en veerverlenging

 De geleiderbelastingen in het lokale assenstelsel voor het onderste bevestigingspunt

 De maximale waarden voor de reacties onder en boven in het globale assenstelsel

Trekkracht, zeeg en veerverlenging

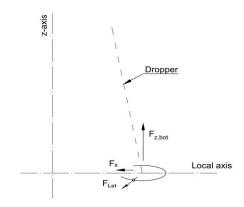
HERRIACHL,	zeeg en veerve	rienging		rotare	тек-	
Geleider	Combinatie Z	eeg [m]	Veer- verlengin g [m	veer-	kracht initieel [kN]	Trek- kracht [kN]
150ct1f1	SLS 1a	0,46	0,010	0,019	4,6	9,4
	SLS 3	0,34	0,007	0,016	4,7	8,1
	SLS 4	0,20	0,006	0,015	4,6	7,4
	SLS 6	0,26	0,002	0,011	4,6	5,7
	SLS 7	0,22	0,000	0,009	4,6	4,6
	ULS 1a	0,52	0,013	0,022	5,6	11,0
	ULS 3	0,38	0,009	0,018	5,7	9,0
	ULS 4	0,22	0,006	0,015	5,6	7,7
	ULS 6b	0,30	0,004	0,013	5,6	6,4
150ct1f2	SLS 1a	0,43	0,009	0,018	4,6	9,2
	SLS 3	0,30	0,007	0,016	4,7	7,9
	SLS 4	0,14	0,006	0,015	4,6	7,4
	SLS 6	0,20	0,002	0,011	4,6	5,4
	SLS 7	0,17	0,000	0,009	4,6	4,6
	ULS 1a	0,49	0,012	0,022	5,6	10,8
	ULS 3	0,34	0,008	0,017	5,7	8,7
	ULS 4	0,17	0,006	0,015	5,6	7,6
	ULS 6b	0,26	0,003	0,013	5,6	6,3
150ct1f3	SLS 1a	0,51	0,012	0,022	4,6	10,9
	SLS 3	0,34	0,010	0,019	4,8	9,4
	SLS 4	0,15	0,009	0,019	4,6	9,3
	SLS 6	0,22	0,003	0,013	4,6	6,3
	SLS 7	0,10	0,000	0,009	4,6	4,6
	ULS 1a	0,58	0,017	0,026	5,6	12,9
	ULS 3	0,40	0,012	0,021	5,8	10,6
	ULS 4	0,19	0,010	0,019	5,6	, 9,7
	ULS 6b	0,27	0,005	0,014	5,6	7,0

Controle iteratieproces

Geleider	Iteratie
bl1	0
bl2	0
150ct1f	:ОК
150ct1f	юк
150ct1f	:ок
150ct2f	:OK
150ct2f	юк
150ct2f	юк

18-6-2021 2 van 5

Project: Masttype: Mast:

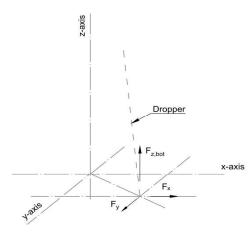

Belastingen in lokale richting geleider

De belastingen op het onderste bevestigingspunt voor het dimensioneren van de ondersteuningsconstructie

De richting van de laterale kracht wordt bepaald door de windrichting en kan in alle richtingen aangrijpen.

De resulterende horizontale kracht kan worden afgeleid uit de vectoriële optelling van de kracht in x-richting en laterale kracht.

	Fx,lok,bot	Flat,bot	Fz_bot
Combinatie1	[kN]	[kN]	[kN]
SLS 1a	2,2	0,8	-7,8
SLS 3	1,9	0,3	- 6,4
SLS 4	1,7	0,2	-5,8
SLS 6	1,3	0,2	-4,1
SLS 7	1,1	0,0	- 3,0
ULS 1a	2,5	1,1	- 9,2
ULS 3	2,1	0,4	-7,1
ULS 4	1,8	0,2	- 5,9
ULS 6b	1,5	0,2	- 4,6
SLS 1a	1,7	0,8	- 7,6
SLS 3	1,4	0,3	- 6,2
SLS 4	1,3	0,2	- 5,8
SLS 6	1,0	0,2	-3,8
SLS 7	0,8	0,0	- 3,0
ULS 1a	2,0	1,1	- 9,0
ULS 3	1,6	0,4	- 6,8
ULS 4	1,4	0,2	- 5,8
ULS 6b	1,1	0,2	-4,4
SLS 1a	1,0	0,9	- 9,2
SLS 3	0,9	0,4	- 7,6
SLS 4	0,9	0,2	- 7,7
SLS 6	0,6	0,2	-4,7
SLS 7	0,4	0,0	-3,0
ULS 1a	1,2	1,3	-11,0
ULS 3	1,0	0,5	-8,5
ULS 4	0,9	0,3	- 7,8
ULS 6b	0,7	0,3	-5,1


18-6-2021 3 van 5

Project: Masttype: Mast:

Maximale waarden in globale assenstelsel

De maximale waarden van de verticale kracht en de resulterende horizontale kracht per belastingcombinatie Zowel voor het bovenste als het onderste bevestigingspunt

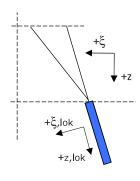
Geleider	Combinatie	Fx_top [kN]	Fy_top [kN	Fz_top [kN]	Fx_bot [kN]	Fy_bot [kN]	Fz_bot [kN]
150ct1f1	SLS 1a	2,6	0,4	11,0	-2,7	0,0	- 7,8
	SLS 3	1,5	0,0	9,8	-2,0	0,0	-6,4
	SLS 4	1,3	0,0	9,0	-1,6	0,0	-5,8
	SLS 6	0,9	0,0	7,3	-1,3	0,0	-4,1
	SLS 7	0,7	0,0	6,2	-1,0	0,0	-3,0
	ULS 1a	3,5	0,8	12,9	-3,2	0,0	-9,2
	ULS 3	1,7	0,0	11,0	-2,3	0,0	-7,1
	ULS 4	1,3	0,0	9,5	-1,7	0,0	-5,9
	ULS 6b	1,1	0,0	8,2	-1,6	0,0	-4,6
	ULS 7	0,7	0,0	6,8	-1,1	0,0	-2,6
150ct1f2	SLS 1a	2,6	1,2	10,8	-2,5	0,0	-7,6
	SLS 3	1,4	0,4	9,6	-1,9	0,0	-6,2
	SLS 4	1,2	0,2	9,0	-1,5	0,0	-5,8
	SLS 6	0,8	0,2	7,0	-1,1	0,0	-3,8
	SLS 7	0,7	0,0	6,2	-1,0	0,0	-3,0
	ULS 1a	3,4	1,8	12,6	-3,0	0,0	-9,
	ULS 3	1,7	0,6	10,7	-2,1	0,0	- 6,
	ULS 4	1,2	0,3	9,4	-1,5	0,0	-5,
	ULS 6b	1,0	0,3	8,1	-1,5	0,0	-4,
	ULS 7	0,7	0,0	6,7	-1,0	0,0	-2,
150ct1f3	SLS 1a	2,2	0,8	12,5	-1,5	0,0	-9,:
	SLS 3	1,1	0,0	11,2	-1,0	0,0	-7,
	SLS 4	0,5	0,0	11,0	-0,6	0,0	-7,
	SLS 6	0,3	0,0	8,0	-0,4	0,0	-4,
	SLS 7	0,2	0,0	6,3	-0,3	0,0	-3,
	ULS 1a	2,9	1,3	14,8	-2,0	0,0	-11,
	ULS 3	1,4	0,2	12,7	-1,2	0,0	-8,
	ULS 4	0,5	0,0	11,5	-0,6	0,0	- 7,
	ULS 6b	0,8	0,0	8,9	-0,7	0,0	-5,
	ULS 7	0,2	0,0	6,8	-0,3	0,0	-2,
150ct2f1	SLS 1a	2,6	1,3	10,8	-2,6	0,0	-7,
	SLS 3	1,4	0,4	9,5	-2,0	0,0	-6,
	SLS 4	1,3	0,2	8,9	-1,6	0,0	-5,
	SLS 6	0,9	0,2	7,0	-1,2	0,0	-3,
	SLS 7	0,7	0,0	6,2	-1,0	0,0	-3,
	ULS 1a	3,5	1,8	12,6	-3,2	0,0	-9,

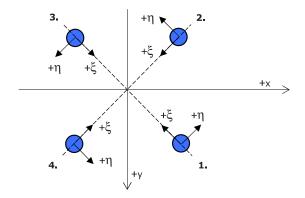
18-6-2021

Project: Masttype:

Mast:	97						
150ct2f1	ULS 3	1,7	0,6	10,7	-2,3	0,0	-6,8
	ULS 4	1,3	0,3	9,4	-1,6	0,0	-5,7
	ULS 6b	1,0	0,3	8,1	-1,6	0,0	-4,4
	ULS 7	0,7	0,0	6,7	-1,1	0,0	-2,6
150ct2f2	SLS 1a	2,6	2,2	10,2	-2,4	-1 ,0	- 7,0
	SLS 3	1,4	1,2	9,0	-1,8	- 0,8	-5,6
	SLS 4	1,1	1,0	8,4	-1,4	- 0,7	- 5,2
	SLS 6	0,7	0,8	6,3	-1,0	- 0,5	-3,1
	SLS 7	0,7	0,5	6,2	-1,0	- 0,7	-3,0
	ULS 1a	3,4	3,0	12,1	-2,9	- 1,2	-8,4
	ULS 3	1,7	1,4	10,1	-2,0	- 0,9	- 6,2
	ULS 4	1,1	1,1	8,7	-1,4	- 0,7	-5,0
	ULS 6b	1,0	0,9	7,6	-1,4	-0,6	-3,9
	ULS 7	0,7	0,4	6,8	-1,0	- 0,7	- 2,6
150ct2f3	SLS 1a	2,2	2,2	12,0	-1,5	- 0,8	-8,7
	SLS 3	1,1	1,2	10,5	-0,9	- 0,7	-7,0
	SLS 4	0,5	0,9	10,6	-0,6	- 0,5	- 7,3
	SLS 6	0,3	0,7	7,2	-0,4	- 0,2	- 3,9
	SLS 7	0,2	0,3	6,3	-0,3	-0,4	-3,0
	ULS 1a	2,9	3,0	14,3	-1,9	- 0,9	-10,5
	ULS 3	1,4	1,5	12,0	-1,2	- 0,8	- 7,8
	ULS 4	0,5	1,0	11,0	-0,6	-0,4	- 7,2
	ULS 6b	0,8	0,8	8,3	- 0,7	- 0,5	-4,5
	ULS 7	0,2	0,3	6,8	-0,3	-0,4	-2,5

18-6-2021 5 van 5




Project: ZW-Oost RSD-MDK150 Masttype: Winkelmast 150°

Mast: 97

Auteur: SSHD Oplegreacties per randstijl Versie: 1.4

Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

Assenstelsels

Maximale drukbelasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 1a_45 Ba All Cts	- 27	- 25	-179	1	- 37	7	-182
2	SPLS 1a_0 Ba All Cts	-19	17	-128	- 2	-25	4	-130
3	ULS 3_135	62	69	-545	- 5	- 93	2	- 553
4	ULS 3_95,5	96	-101	-787	3	-139	8	-800

Maximale trekbelasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	42	54	425	8	68	3	431
2	ULS 3_0,9_95,5	80	- 83	668	-2	115	-4	678
3	SPLS 1a_0,9_0,9_45 Ba All Cts	-16	-15	109	-1	22	-4	111
4	SPLS 1a 0.9 0.9 0 Ba All Cts	- 9	7	58	1	11	-1	59

Maximale torsiebelasting (positief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_90 Ba Ct2 Ba Ct1	-20	67	226	61	34	4	229
2	SPLS 6a_90 Ba Ct2 Ba Ct1	72	5	271	54	48	- 2	275
3	SPLS 6a_90 Ba Ct2 Ba Ct1	79	-6	-313	60	- 52	-1	-317
4	SPLS 6a_90 Ba Ct2 Ba Ct1	6	- 97	-399	64	- 73	7	-405

Maximale torsiebelasting (negatief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_90 Ba Ct1 Ba Ct2	53	-20	148	-51	23	2	150
2	SPLS 6a_90 Ba Ct1 Ba Ct2	0	-83	351	- 58	59	0	356
3	SPLS 6a_90 Ba Ct1 Ba Ct2	-12	80	-275	- 65	-48	2	- 279
4	SPLS 6a_90 Ba Ct1 Ba Ct2	97	-11	-438	-61	- 77	4	-444

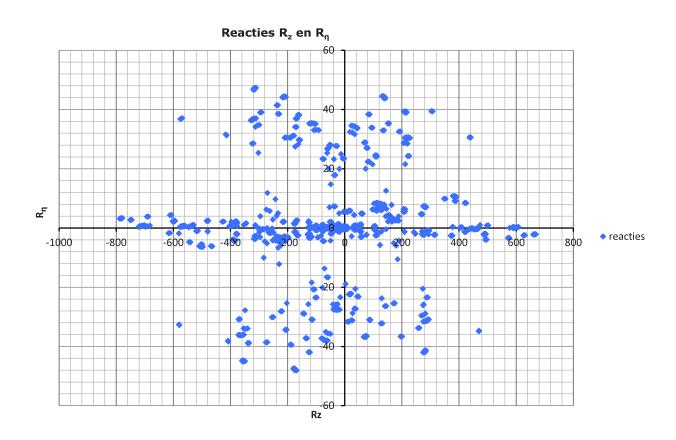
Combinatie Ftrek+Fh

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	42	54	425	8	68	3	431
2	ULS 3_0,9_95,5	80	- 83	668	-2	115	-4	678
3	SPLS 6a_90 Ba Ct1 Ba Ct2	-12	80	-275	-65	-48	2	- 279
4	SPLS 6a 90 Ba Ct2 Ba Ct1	6	-97	-399	64	-73	7	-405

Permanente belasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SLS 7	16	21	164	3	26	1	166
2	SLS 7	24	- 26	211	-1	35	0	214
3	SLS 7	32	34	-263	-1	- 46	2	- 267
4	SLS 7	38	-40	-310	1	- 55	4	-315

Omhullenden ongeacht stijl

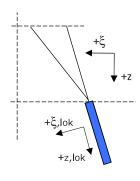

Belasting	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Max. druk	ULS 3_95,5	96	-101	-787	3	-139	8	-800
Max. trek	ULS 3_0,9_95,5	80	- 83	668	-2	115	-4	678
Max. pos. torsie	SPLS 6a_90 Ba Ct2 Ba Ct1	6	- 97	-399	64	- 73	7	- 405
Max. neg. torsie	SPLS 6a_90 Ba Ct1 Ba Ct2	- 12	80	- 275	-65	-48	2	- 279
Comb. trek+torsie	ULS 3_0,9_95,5	80	-83	668	-2	115	-4	678

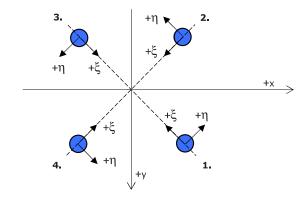
Maximale drukbelasting SLS

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 1a_0,9_0,9_45	-18	- 9	-53	7	-19	10	- 56
2	SLS 1a_0	4	-8	72	-3	9	3	72
3	ULS 3_135	62	69	-545	- 5	- 93	2	-553
4	ULS 3_135	92	- 96	-751	3	-133	8	- 762

Maximale trekbelasting SLS

Stijl	Combinatie	R_x	R_v	R_z	R_n	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	42	54	425	8	68	3	431
2	ULS 3_0,9_135	75	- 79	630	-2	109	-4	640
3	ULS 1a_0,9_0,9_45	- 2	4	-50	-4	- 2	-7	- 50
4	SLS 1a_0	20	- 23	-180	2	-31	1	-183




Project: ZW-Oost RSD-MDK150 Masttype: Winkelmast 150°

Mast: 97

Auteur: MKh
Oplegreacties per randstijl Versie: 1.4

Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

Assenstelsels

Maximale	drukbelasting
Maximale	urukbelastilig

	-							
Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 1a_45 Ba All Cts	-28	- 25	-182	2	-38	7	-186
2	SPLS 1a_0 Ba All Cts	- 20	17	-131	- 2	-26	4	-134
3	ULS 3_135	74	82	-649	-6	-110	2	-658
4	ULS 3 95,5	115	-121	-945	4	-167	9	-959

Maximale trekbelasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	52	66	518	10	83	3	524
2	ULS 3_0,9_95,5	98	-101	814	-2	141	- 5	827
3	SPLS 1a_0,9_0,9_45 Ba All Cts	-16	-15	109	-1	22	- 4	111
4	SPLS 1a 0.9 0.9 0 Ba All Cts	- 9	7	58	1	11	-1	59

Maximale torsiebelasting (positief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_90 Ba Ct2 Ba Ct1	-20	69	232	63	34	4	234
2	SPLS 6a_90 Ba Ct2 Ba Ct1	74	5	276	56	48	- 2	280
3	SPLS 6a_90 Ba Ct2 Ba Ct1	82	- 6	-326	62	-54	-1	-330
4	SPLS 6a_90 Ba Ct2 Ba Ct1	7	-100	-412	66	-76	7	-419

Maximale torsiebelasting (negatief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_90 Ba Ct1 Ba Ct2	54	-21	152	- 53	23	2	153
2	SPLS 6a_90 Ba Ct1 Ba Ct2	0	- 85	359	-60	60	0	364
3	SPLS 6a_90 Ba Ct1 Ba Ct2	-12	83	-286	-67	-51	3	-291
4	SPLS 6a_90 Ba Ct1 Ba Ct2	101	-11	-452	-63	- 79	4	-459

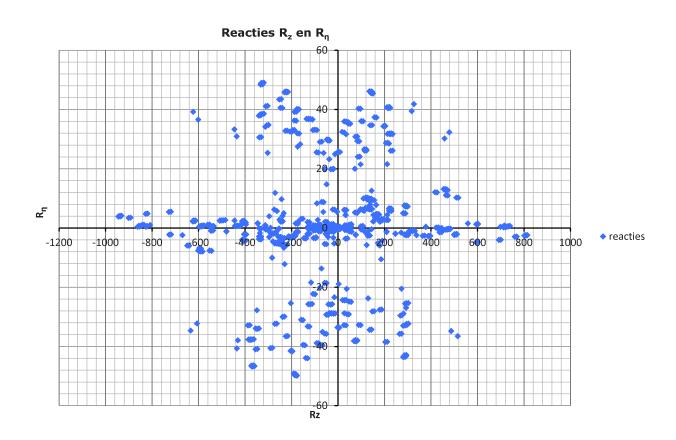
Combinatie Ftrek+Fh

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	52	66	518	10	83	3	524
2	ULS 3_0,9_95,5	98	-101	814	-2	141	- 5	827
3	SPLS 6a_90 Ba Ct1 Ba Ct2	-12	83	-286	- 67	-51	3	-291
4	SPLS 6a 90 Ba Ct2 Ba Ct1	7	-100	-412	66	-76	7	-419

Permanente belasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SLS 7	16	21	164	3	26	1	166
2	SLS 7	24	- 26	211	-1	35	0	214
3	SLS 7	32	34	-263	-1	- 46	2	- 267
4	SLS 7	38	- 40	-310	1	- 55	4	-315

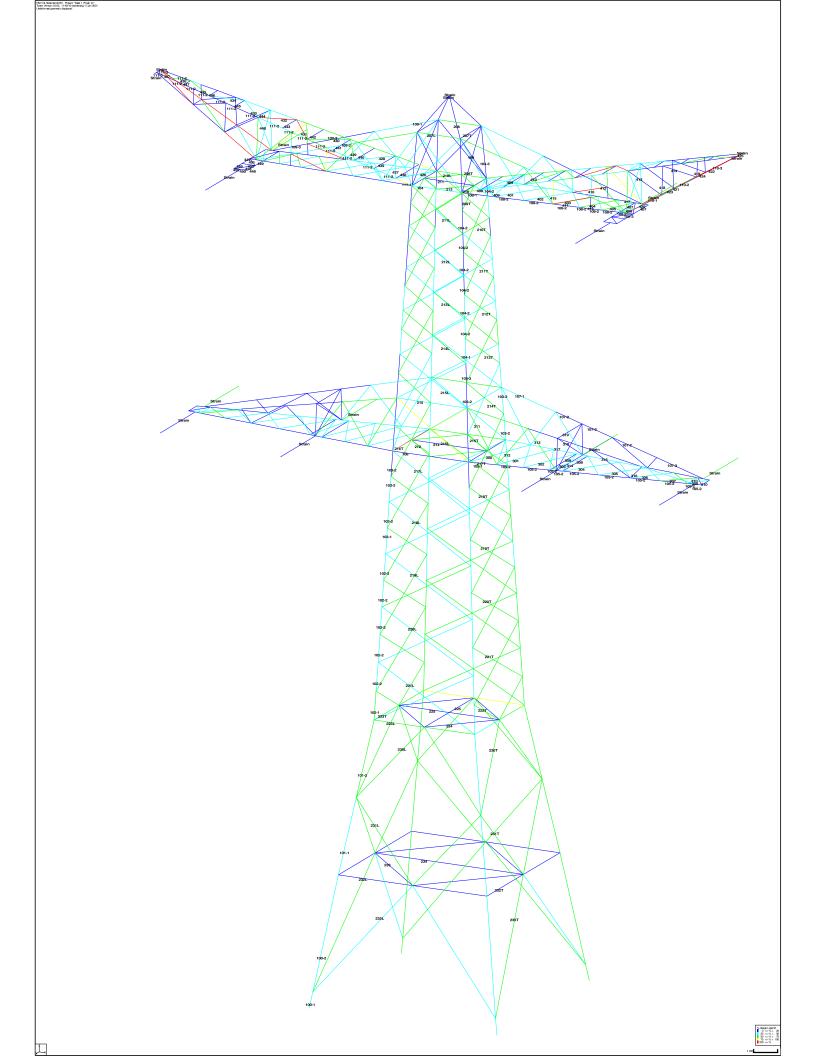
Omhullenden ongeacht stijl


Belasting	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Max. druk	ULS 3_95,5	115	-121	-945	4	-167	9	- 959
Max. trek	ULS 3_0,9_95,5	98	-101	814	- 2	141	- 5	827
Max. pos. torsie	SPLS 6a_90 Ba Ct2 Ba Ct1	7	-100	- 412	66	- 76	7	- 419
Max. neg. torsie	SPLS 6a_90 Ba Ct1 Ba Ct2	-12	83	- 286	-67	-51	3	-291
Comb. trek+torsie	ULS 3_0,9_95,5	98	-101	814	-2	141	- 5	827

Maximale drukbelasting SLS

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 1a_0,9_0,9_45	- 25	-14	-90	8	-28	13	- 94
2	SLS 1a_0	3	- 7	63	-3	7	3	63
3	ULS 3_135	74	82	-649	-6	-110	2	-658
4	ULS 3_135	110	-115	-901	3	-160	9	-915

Maximale trekbelasting SLS


Stijl	Combinatie	R _x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	52	66	518	10	83	3	524
2	ULS 3_0,9_135	92	- 96	769	-3	133	- 5	780
3	ULS 1a_0,9_0,9_45	-8	-1	-17	- 5	6	- 9	-15
4	SLS 1a_0	19	- 22	-172	2	-29	1	-174

APPENDIX B

PLS-tower output

Assessment of groups for initial mast (afkeur level)

0.48 0.46 0.50 0.53	0.35 0.44 0.33	0.46 0.32 1.04	0.51	0.44	0.56	0.68 7.54	0.49	0.56	0.50	0.00	0.69	0.67	0.03	0.00	0.42	0.48	0.50	0.50	0.42	0.47	9.69	0.56 0.54	0.14	0.52	0.33	0.69	0.13	0.34	0.42	0.25	0.44 0.60	0.33	9.18	0.16	0.00	0.00	3.00
3524.5 0.0 3524.5 3172.0 0.0	2265.7 2014.0 0.0 1208.4	830.8 0.0 747.7	198.3 89.3 755.2	553.8	553.8	415.4	415.4	415.4	251.7	376.1	376.1	251.7	181.3	69.4	375.4	226.6	338.5	338.5	251.7	226.6	226.6	338.5	338.5	226.6	1472.7	145.9	90.6	138.8	87.3	72.7	7.27	72.7	2265.7	43.6	43.6	25.1	25.1
2357.3 2357.3 2372.2 0.0	1694.4 1694.4 0.0 1016.6	1016.6 0.0 508.3	117.6 58.8 508.3	338.9	338.9 254.2	254.2 254.2	254.2	254.2	169.4	58.8	254.2 169.4	169.4	169.4	58.8	254.2	169.4	254.2	254.2	169.4	169.4	169.4	254.2	254.2	169.4	338.9	169.4	169.4	117.6	75.4	75.4	75.4 75.4	75.4	75.4	37.7	37.7	37.7	37.7
1/10 / 1795.4 1710.7 1548.5 1623.9	1548.5 1220.3 1301.9 1220.3	599.7 513.2 53.4.4	235.9 176.3 412.6	356.4	356.4	356.4 356.4 356.4	356.4	356.4	250.3	74.3	229.6	250.3	159.0	179.7	362.3	176.4	205.3	205.3	125.9	176.4	176.4	205.3	76.0	176.4	737.4	152.8	118.0	120.2	78.2	65.9	62.9	61.2 332.1	834.4	939.8	81.2	37.4	37.4
ULS 1a 0,9 105 ULS 1a 0,9 105 ULS 1a 0,9 105 ULS 1a 0,9 105 ULS 1a 0,9 105	ULS 1a_0,9_105 ULS 3_0,9_105 ULS 1a_0,9_105 ULS 3_0,9_105	ULS 3_0,9_105 ULS 3_0,9_105 SPLS 1a_0,9_93 Ba Ct1	SPLS 6a_93 Ba Ct1 Ba Ct2 ULS 3_105	SPLS 6a 93 Ba Ct1 Ba Ct2 SPLS 6a 93 Ba Ct1 Ba Ct2 SPLS 6a 93 Ba Ct1 Ba Ct2	1 2 2	11 27 11	1 2 2	1 2 2	0,0	123	SPLS 6a_93 Ba Ct1 Ba Ct2 SPLS 6a_93 Ba Ct2 Ba Ct1	+ 0	ULS 1a_105 ULS 1a_0.9_135	ULS 3 135	SPLS 6a_93 Ba Ct1 Ba Ct2	SPLS 6a 93 Ba Ct2 Ba Ct1	SPLS 6a 93 Ba Ct1 Ba Ct2	SPLS 6a_93 Ba Ct2 Ba Ct2 SPLS 6a_93 Ba Ct1 Ba Ct2	SPLS 1a 105 Ba Ct1 SPLS 6a 93 Ba Ct2 Ba Ct1	SPLS 6a_93 Ba Ct1 Ba Ct2 SPLS 6a_93 Ba Ct1 Ba Ct2	SPLS 6a_93 Ba Ct1 Ba Ct2 SPLS 6a_93 Ba Ct1 Ba Ct2	SPLS 6a_93 Ba Ct1 Ba Ct2 SPLS 6a_93 Ba Ct1 Ba Ct2	SPLS 1a_0,9_93 Ba Ct1 ULS 3_105	SPLS 6a 93 Ba Ct1 Ba Ct2	ULS 3_0,9_105 ULS 3_105		SPLS 1a 0,9 93 Ba Ct2	ULS 3_0,9_93	ULS 3 0,9 93	ULS 3_0,9_93 ULS 3_0,9_93	ULS 3_0,9_93 ULS 3_0,9_93	ULS 3_0,9_93 ULS 3_93	ULS 3_0,9_93	ULS 3_0,9_93 ULS 1a_105	ULS 1a_105	ULS 1a 135	
813.0 820.0 820.9 821.5 748.9	539,5 539.1 431.8 229,4	235,6 193.1 21.5	59.9	150,3	189.9	172,5	123.7	143.4	85.0	0,0	159.2	112,9	12.7	0.0	107.3	81,3	91.0	107,0	53.4 86.9	98,4	116.1	115.5	8,5	88.3	241.8	100.5	12,2	40.2	31,3	16,7	28.9	20,2	24.1	146,0	0.0	0,0	0.0
3628.8 0.62 0.0 0.62 3628.8 0.64 3265.9 0.69 0.0 0.64				570.2 0.50 570.2 0.58 570.2 0.58	570.2 0.56 427.7 0.57	427.7 0.50 427.7 0.50 427.7 0.64	427.7 0.54	427 7 0.56 259.2 0.80	259.2 0.62 75.6 0.05	388.8 0.63	388.8 0.64 259.2 0.68	259.2 0.66	233.3 0.07	86.4 0.00	388.8 0.51	233.3 0.44	349.9 0.50	349.9 0.53	259.2 0.53	233.3 0.53	233.3 0.62	349.9 0.61	349.9 0.00	233.3 0.52	1516.3 0.58	181.4 0.00	155.5 0.08	151.2 0.38	103.7 0.30	86.4 0.31	86.4 0.39		2332.8 0.41				43.2 0.03
2357.3 2372.2 0.0	1694.4 1694.4 0.0 1016.6	1016.6 0.0 508.3	117.6 58.8 508.3	338.9	338.9 254.2	254.2	254.2	254.2	169.4	58.8	254.2 169.4	169.4	169.4	58.8	254.2	169.4	254.2	254.2	169.4	169.4	169.4	254.2 254.2	254.2	169.4	338.9	169.4	169.4	117.6	75.4	75.4	75.4	75.4	75.4 999.7	37.7	37.7	37.7	37.7
1652.9 1652.2 1652.2 1456.3	482 7 164 7 167 6 227 3	502.4 502.4 380.1	192.4 70.2 243.3	339.4	332.7 313.2	319.6 298.7 305.9	325.9	295.1	39.2	15.7	262.0 194.0	194.0	25.0	29.5	217.6	180.2	196.7	214.5	125.1	184.4	201.6	210.6	69,3	205.8	725.3	80.1	204.1	112.0	76.6	58.5 69.1	77.9 85.7	105.6 170.3	355.1 852.5	790.6	41.4	23.5	57.6
	ਜ ਜ ਜ ਜ		e e	a Ct2 Ba Ct1 a Ct1 Ba Ct2	8 8 8	8888	e e	8 8		å	93 Ba Ct1 Ba Ct2 93 Ba Ct2 Ba Ct1	ő	05	20 B	a Ct2 Ba Ct1	a Ct2 Ba Ct1	a Ct2 Ba Ct1	a Ct1 Ba Ct2 a Ct2 Ba Ct1	3.9 45 Ba Ct1 33 Ba Ct2 Ba Ct1	a Ct2 Ba Ct2 a Ct1 Ba Ct2	a Ct1 Ba Ct2 a Ct1 Ba Ct2	a Ct2 Ba Ct1 a Ct1 Ba Ct2	Ba Ct1	93 Ba Ct1 Ba Ct2 35		P3 C1	a Ct2										
43 -1020.1 ULS 1a 105 43 -1020.3 ULS 1a 105 43 -1051.3 ULS 1a 105 49 -1001.1 ULS 3_105 48 -931.2 ULS 3_105			-59.7 SPLS 6a -0.5 ULS 3.13		185.8 SPLS 144.9 SPLS	176.8 SPLS 126.7 SPLS	-136.4 SPLS -158.2 SPLS	-142.8 SPLS -135.5 SPLS	-104.3 ULS	-0.2 ULS 7	-162.0 SPLS 6a	-112,2 SPLS 6a	-10.9 ULS 1a	0.0	-112.0 SPLS 6a S	-74.6 SPLS 6a 9	-92.7 SPLS 6a 9	-113.5 SPLS 6a	-29.6 SPLS 1a (-101.7 SPLS 6a -	-105.7 SPLS 6a	-128.8 SPLS 6a_9	-13.6 SPLS 1a_1 0.0	-87.8 SPLS 6a		0.0							45 0.0 47 350.4 ULS 3_93	308 6 ULS	-20.4 ULS 0.0		
1 0.33 0.33 0.33 0.50 0.50 0.50 0.50 0.50 0.50 1 1.20 2.40 1.00 2.40 2.45 1.00	00000	0000	8 8 8	0.52	0.52 0.52	5.52	0.52	000	1.00	50	0.50	5.50	0.50	1 00	33	52	52.	5.52	1.00	5.52	5.52	1.00	1.00	00.1	00	00	54	233	223	55.0	5.58	1.00	00 1.00 1.00	00 1	00.1	1.00	1.00
14M24-5.6t 0 14M24-5.6t 0 14M24-5.6t 1	10M24-5.6t 2 10M24-5.6t 2 6M24-5.6t 2	6N24-5.6t 2 6N24-5.6t 1	2M20-5.6t 1 1M20-5.6t 1 6M24-5.6t 2	4M24-5.6t 0 4M24-5.6t 1	4M24-5.6t 0 3M24-5.6t 0	3M24-5.6t 0 3M24-5.6t 0 3M24-5.6t 0	3M24-5.6t 0	3M24-5.6t 1 2M24-5.6t 1	2M24-5.6t 1 1M20-5.6t 1	1M20-5.6t 1 3M24-5.6t 1	3M24-5.6t 1 2M24-5.6t 1	2N24-5.6t 1 2N24-5.6t 1	2M24-5.6t 1	1M20-5.6t 1	3M24-5 6t 1	2M24-5.6t 0	3M24-5.6t 0	3M24-5.6t 0	2M24-5.6t 0 2M24-5.6t 1	2M24-5.6t U	2M24-5.6t 0	3M24-5.6t 0 3M24-5.6t 1	3M24-5,6t 0	2M24-5.6t 1	9M24-5.6t 1	2M24-5.6t 1	2M24-5.6t 0	2M20-5 6t 0	2M16-5.6t 0	2M16-5,6t U 2M16-5,6t U	2M16-5.6t 0 2M16-5.6t 0	2M16-5.6t 0 2M16-5.6t 1	2M16-5.6t 1. 12M24-5.6t 1.	1M16-5.6t 1	1M16-5.6t 1 2M16-5.6t 1	1M16-5.6t 1	1M16-5.6t 1
200x200x20 5235 200x200x20 5235 200x200x20 5235 200x200x18 5235 200x200x18 5235	200x200x18 5235 180x180x16;5235 180x180x16;5235 180x180x16;5235	120x120x11 S235 120x120x11 S235 120x120x11 S235 140x140x16 S235	100x100x10 S235 90x90x9 S235 110x110x10 S235	120x120x11 S235 120x120x11 S235 120x120x11 S235	120x120x11 5235 120x120x11 5235 120x120x11 5235	120x120x11 5235 120x120x11 5235 170x120x11 5235	130x120x11 S235	120x120x11 S235 110x110x10 S235	110x110x10 S235 75x75x7# S235	65x65x6 S235 150x90x10 S235	150x90x10 S235 110x110x10 S235	110x110x10 5235 90x90x9 5235	90x90x9 S235 70x70x6 S235	100x100x8 S235	160x80x10 S235	90x90x9 S235	90x90x9 5235 90x90x9 5235	90x90x9 90x90x9 5235	75x75x8 5235 90x90x10 5235	90x90x10 5235 90x90x9 5235	90x90x9 S235 90x90x9 S235	90x90x9 S235 90x90x9 S235			140x140x13±5235 90x90x9 5235	70x70x7 5235	100x100x6 5235	75x75x7# 5235	60x60x6 S235	60x60x5 5235 60x60x5 5235	60x60x5 S235 60x60x5 S235	60x60x5 S235 120x80x10 S235			65x65x6 S235 50x50x5 S235	50x50x5 S235 50x50x5 S235	50x50x5 S235
BRKSTK - Main member Eerste TSNSTK - Main member Eerste TSNSTK - Main member Tweede TSNSTK - Main member Tweede TSNSTK - Main member	K - Main member - Main member - Main member - Main member	ain member ain member ain member	Derde TSNSTK - Bottom diagonal 2 Derde TSNSTK - Bottom horizontal 2 Derde TSNSTK - Hor 3	- CD 1 - Diagona1 3	CD 2 K-CD 3	-CD 3 K - CD 4 K - CD 4	K-055	K - Diagonal 4 K - Hor under 1	K - Hor under 1 K - Diagonal under 1	K - CD under 1	Eerste TSNSTK - Diagonal 1 Eerste TSNSTK - Diagonal 2	- Diagonal 2 - Hor under 1	- Hor under 1	Eerste TSNSTK - Hor under 1	t diagonal 1	front 1	Bovenstuk CD front 3	front 5	ront 6 - Diagonal side 4	CD side	Bovenstuk CD side 2 Bovenstuk CD side 3	Bovenstuk CD side 4 Bovenstuk diag side 1	side 5 upper horizontal front	Boventraverse diaphragm diag Boventraverse diaphragm horiz	lower horiz front	upper horiz front	pers	Eerste DWSRM CD2 Under	CD4 Under	CD6 Under	CD7 Under	I CD9 Under I Horiz1&2 under	Horiz3&4 under Main member bottom	Main member bottom - Front diag 1	I - Front diag 2	e DWSRM - Front diag 4 e DWSRM - Front diag 5	1 - Front diag 6

Date Author Version

Assessment of groups for initial mast (afkeur level)

Control Cont	State Compression Durdling State Compression Durdling State Compression Durdling State Compression Durdling State State	100 100
--	---	---

Date Author Version

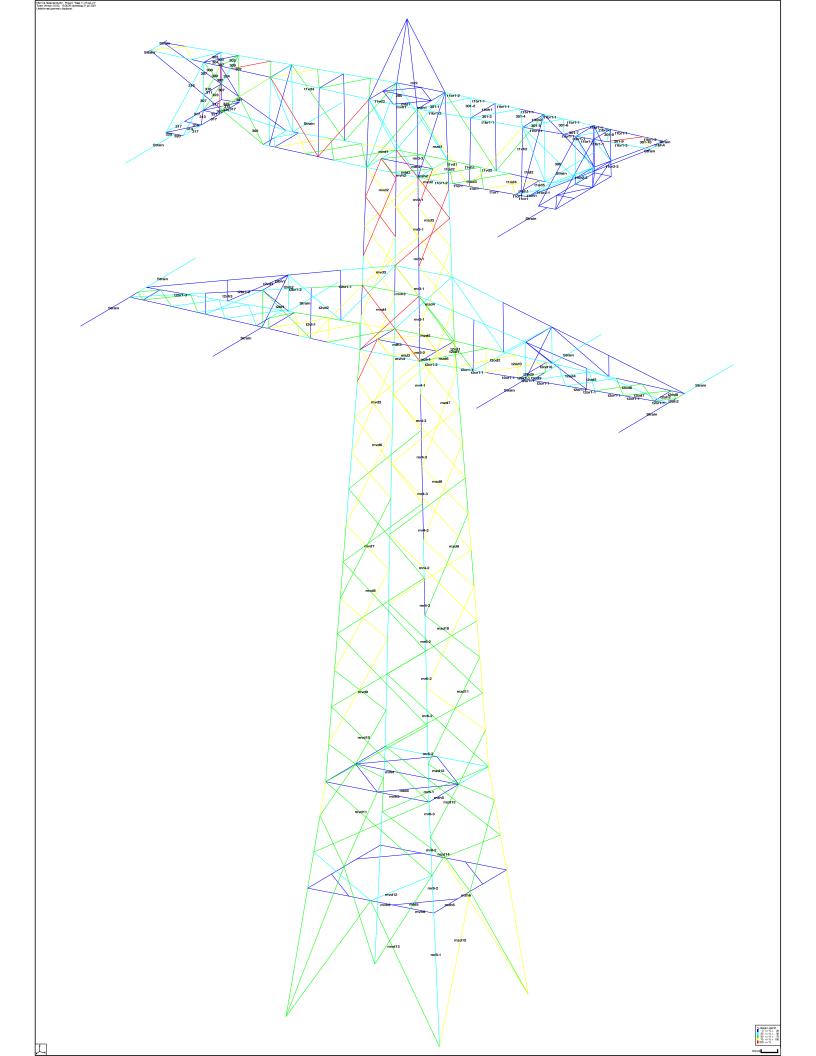
Assessment of groups for strengthened mast (afkeur level)

(trek) Opm,2 0.48 0.48 0.46 0.50 0.53 0.48 0.48	0.23 0.046 0.04 0.04 0.51 0.00	0.19 0.44 0.56 0.46 0.52 0.52 0.54	0.65 0.60 0.56 0.53 0.04 0.00	0.69 0.67 0.07 0.03 0.03 0.42	0.83 0.48 0.04 0.50 0.52 0.43 0.047 0.58 0.58	0.55 0.51 0.52 0.00 0.03 0.21 0.70 0.70	0.43 0.42 0.43 0.63 0.63 0.63 0.63 0.63 0.65 0.65 0.65
(trek) U.C., 1524.5 1524.5 0.0 0.0 1524.5 172.0 0.0 0.0 1265.7 1014.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1208.4 830.8 0.0 747.7 198.3	755.2 553.8 553.8 553.8 553.8 415.4 415.4	415.4 415.4 415.4 251.7 69.4 58.0 376.1	376.1 251.7 181.3 181.3 69.5 69.4 375.4	251.7 226.6 226.6 338.5 338.5 338.5 251.7 251.7 226.6 338.5	338.5 62.5 82.5 100.7 472.7 472.7 115.9 90.6	138.8 138.8 138.8 87.3 87.3 72.7 72.7 72.7 72.7 72.7 72.7 6.0 0.0 0.0 0.0 43.6 43.6
Stuik M M O M O M T T T T T T T T T T T T T T	1016.6 1016.6 0.0 508.3 117.6 58.8	508.3 338.9 338.9 338.9 254.2 254.2	254.2 254.2 254.2 254.2 169.4 169.4 58.8 58.8 254.2	254.2 169.4 169.4 169.4 169.4 58.8 58.8 58.8 58.2	169.4 169.4 169.4 169.4 254.2 254.2 169.4 169.4 169.4 169.4 169.4 169.4 254.2	254.2 84.7 254.2 169.4 84.7 762.5 169.4 169.4	117.6 117.6 117.6 117.6 117.6 175.4
ittodsn, Af 1710.7 1710.7 1710.7 1710.7 1548.5 1548.5 1548.5 1548.5 1520.3	513.2 513.2 599.7 513.2 834.4 235.9	412.6 356.4 356.4 356.4 356.4 356.4 356.4 356.4	356.4 356.4 356.4 250.3 250.3 106.8 74.3	229.6 250.3 250.3 159.0 159.0 82.9 179.7 362.3	224.3 176.4 176.4 205.3 205.3 205.3 196.0 196.0 176.4 176.4	205.3 76.0 205.3 176.4 124.4 737.4 737.6 152.8 131.8	120.2 120.2 120.2 78.2 65.9 65.9 65.9 65.9 65.9 61.2 32.1 332.1 332.1 332.1 332.1 332.1 332.1 31.1 31
Trek Communite trek Net 8262 US 18 0.9 105 8152 US 18 10.9 105 8152 US 18 10.9 105 8254 US 18 10.9 105 8255 US 18 10.9 105 8255 US 18 10.9 105 8255 US 18 10.9 105 8254 US 18 10.9 105 8255 US 18 10.9 105 825	237.6 US ± 20,9 105 237.3 US ± 2,0 ± 105 193.6 US ± 2,0 ± 105 21.4 SPLS 1a,0 ½ 93 Be Ct 89.2 ULS ± 0,9 0 60.0 SPLS 6 ± 33 Be Ct Be 0.0	79.0 ULS 3.105 150.4 SE 62.9 SE CIT Ba 190.9 SPLE 62.9 SE CIT Ba 150.0 SPLE 62.9 SE CIT Ba 190.2 SPLE 62.9 SE CIT Ba 132.2 SPLE 62.9 SE CIT Ba 172.6 SPLE 62.9 SE CIT Ba 177.8 SPLE 62.9 SE CIT Ba 137.8 SPLE 62.9 SE CIT Ba	110.55 STID 5.29 SB of ILB 81 113.7 SRIS 60.29 SB of ILB 81 113.6 SRIS 60.29 SB of ILB 81 113.6 SRIS 60.29 SB of ILB 81 110.1 SRIS 60.29 SB of ILB 82 83.7 ULS 10.9 10.5 2.1 ULS 10.9 10.5 115.9 SPIS 60.29 SB of IS	104.5 SN 5 SN	84.0 98.5 6, 20 8 6.0 8 84.0 98.5 6, 20 8 6.0 8 94.5 98.5 6, 20 8 6.0 8 94.5 98.6 6, 20 8 6.0 8 94.5 98.6 6, 20 8 6.0 8 107.5 98.6 6, 20 8 6.0 8 107.5 98.6 6, 20 8 6.0 8 97.5 98.5 6, 20 8 6.0 8 97.5 98.5 6, 20 8 6.0 8 97.5 98.5 6, 20 8 6.0 8	113.3 \$916.6.39 th CII Ba 8.8 \$105.10.99 \$38 th CII Ba 104.2 US 2.109 80.1 \$105.6.30 th CII Ba 20.2 US 2.09.20 24.2 US 2.09.20 102.7 US 12.75 102.7 US 12.75 12.8 \$105.10.9.9.38 th CII Ba	345 0 145 3 105 405 105 405 105 405 105 405 105 105 105 105 105 105 105 105 105 1
U.C. (druk) Op 0.62 0.62 0.64 0.64 0.64 0.64 0.61	0.41 0.49 0.15 0.51 0.51	0.20 0.55 0.58 0.43 0.57 0.70	0.54 0.56 0.68 0.80 0.00 0.00	0.64 0.66 0.10 0.10 0.00 0.00 0.55	0.54 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.50 0.20 0.00 0.00 0.01 0.01 0.01 0.03	0.35 0.35 0.30 0.31 0.31 0.31 0.01 0.00 0.00 0.00
Stuik (druk) 3628.8 3628.8 3628.8 3628.8 3265.9 00 2332.8 2073.6	1244.2 85.4 0.0 855.4 2332.8 216.0	570.2 570.2 570.2 570.2 570.2 427.7 427.7	427.7 427.7 427.7 427.7 259.2 259.2 75.6 64.8	388 233 2 233 2 233 2 2 233 2 2 2 2 2 2	259.2 233.3 249.9 349.9 207.4 259.2 259.2 233.3 233.3 249.9	349.9 77.8 349.9 233.3 1516.6 466.6 181.4 155.5 155.5	1512 1512 1512 1637 864 864 864 864 864 864 864 864 1728 1728 1728 1728 1728 1728 1728 1728
Afschuiving 2357.3 2357.3 2357.3 0.0 2357.2 0.0 0.0 1694.4 1694.4 1694.4	1016.6 1016.6 0.0 508.3 999.7 117.6 58.8	508.3 338.9 338.9 338.9 254.2 254.2 254.2	254.2 254.2 254.2 254.2 169.4 169.4 58.8 58.8 58.8	254.2 169.4 169.4 169.4 169.4 58.8 58.8 254.2 254.2	169.4 169.4 254.2 254.2 254.2 254.2 169.4 169.4 169.4 169.4 169.4 169.4	254.2 84.7 254.2 169.4 84.7 762.5 338.9 169.4 169.4	117.6 117.6 117.6 117.6 75.4 75.4 75.4 75.4 75.4 75.4 75.4 75.4
Knik 1795.4 1622.2 1652.2 1652.2 1463.4 1463.4 1164.7 1164.7	1227.3 502.4 502.4 502.4 380.1 551.0 70.2	,9 93 243.3 93 84 CC2 8a 339.4 93 84 CC1 8a 326.1 93 84 CC1 8a 326.1 93 84 CC1 8a 332.7 93 84 CC1 8a 313.2 93 84 CC1 8a 319.5 93 84 CC1 8a 298.7	CCI Ba 205.9 CCI Ba 205.9 CCI Ba 205.1 CCI Ba 295.1 CCI Ba 249.0 249.0 39.2 CCI Ba 22.5 CCI Ba 22.5 CCI Ba 262.0	93 Ba CCT Ba 262.0 93 Ba CC2 Ba 194.0 9,9,105 147.3 0,9,105 147.3 45 25.0 93 Ba CC2 Ba 217.6 93 Ba CC2 Ba 217.6	Ba Ct. 224.5 (Ct. Ba 180.7 (Ct. Ba 180.7 (Ct. Ba 196.7 (Ct. Ba 205.6 (Ct. Ba 205.6 (Ct. Ba 214.5 (Ct. Ba 187.1 (Ct. Ba 187.1 (Ct. Ba 187.1 (Ct. Ba 187.1 (Ct. Ba 187.1 (Ct. Ba 187.4 (Ct. Ba 192.7 (Ct. Ba	98 CH Ba 227.7 55 Ba CH 69.3 57 Ba CH Ba 205.8 58 CH Ba 205.8 105 206.3 105 206.3 18 B CH 69.7 18 B CH 204.7	10112 112.0 122.3 16.6 59.1 77.9 85.7 105.6 170.3 355.1 852.5 790.6 790.6
Druk Combinate d -1047-0 US 1a 105 -1025-0 US 1a 105 -1025-3 US 1a 105 -1055-8 US 1a 105 -933-8 US 3 105 -693-0 US 3 105 -599-0 US 3 105 -599-8 US 3 105	-304.0 ULS 3_105 -247.0 ULS 3_105 -567 ULS 18_93 -567 ULS 18_93 -597 SPLS 68_93 Ba Ct1 Ba -0.5 ULS 18_135	47.8 ULS 3 0,9 93 16.9 17.8 16.9 17.8 17.8 18.0 5 18.5 19.8 18.0 5 18.5 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8		162,0 SPLS 68,93 BR -1142, SPLS 68,93 BR -1123, SPLS 68,93 BR -147, ULS 18,0,9,11 -2.6 ULS 18,45 0.0 -122,9 SPLS 68,93 BR -1123, SPLS 68,93 BR	91,3 91,6 10,9 10,9 10,9 10,9 10,9 10,9 10,9 10,9	114.5 SPLS 6a, 93 Be CT 144.5 SPLS 1a, 105 Be CT 0.7 SPLS 6a, 938 Be CT 0.9 ULS 3, 105 -21.9 ULS 3, 105 0.0 SPLS 1a, 135 Be CT 13.3 SPLS 1a, 135 Be CT	22,6 US 2,9 3,9 3,9 4,2 8,0 9,9 9,9 9,9 9,9 9,9 9,9 9,9 9,9 9,9 9
Slankheid 18 18 43 43 49 48 48 48 49 49	37 62 62 83 83 128 200	104 94 90 99 96 104 101 109	108 112 111 111 108 225 238 113				1129 1166 1167 117 127 127 149 49 49 49 49 47 62 62 62 62 62 62 62 63 64 64 64 64 64 64 64 64 64 64 64 64 64
RLY RLZ (1,000 1,000 0,33 0,50 0,50 0,50 0,50 0,50 0,50					0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	-0	0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53
							0.53 0.10 0.53 0.10 0.53 0.10 0.55 0.10 0.55 0.10 0.55 0.10 0.55 0.10 0.10
	6M24-5.6t 6M24-5.6t 12M24-5.6t 2M20-5.6t 1M20-5.6t		3M24-5,68 3M24-5,68 3M24-5,68 3M24-5,68 2M24-5,68 1M20-5,68 3M24-5,68 3M24-5,68	3M24-5,6t 2M24-5,6t 2M24-5,6t 2M24-5,6t 2M24-5,6t 1M20-5,6t 3M24-5,6t 3M24-5,6t	2 M24-5 G 2 M24-5 G 3 M24-5 G 3 M24-5 G 3 M24-5 G 2 M24-5 G 2 M24-5 G 2 M24-5 G 2 M24-5 G 2 M24-5 G 3 M24-5 G	3M24-5.6t 3M24-5.6t 3M24-5.6t 2M24-5.6t 3M24-5.6t 9M24-5.6t 2M24-5.6t 2M24-5.6t 2M24-5.6t 2M24-5.6t	2020-5.67 2020-5
Staalsoort 20 \$235 20 \$235 20 \$235 20 \$235 18 \$235 18 \$235 16# \$235 16# \$235	16# 5235 11 5235 11 5235 11 5235 15 5235 10 5235	10 \$235 11 \$235 111 \$235 111 \$235 11 \$235 11 \$235 11 \$235 11 \$235	111 5235 111 5235 111 5235 10 5235 10 5235 10 5235 10 5235 10 5235		10 5235 5235 5235 5235 5235 5235 5235 5235	\$235 \$235 \$235 \$235 \$235 \$235 \$235 \$235	\$235 \$235 \$235 \$235 \$235 \$235 \$235 \$235
groep	Derde TRONS IR 1802/180X Derde Trons IR 120/120X Bovenstuk - Ma 120/120X Bovenstuk - Ma 120/120X Bovenstuk - Ma 120/120X Dordertaverse I 140/140X Derde TSNSTK 100/100X Derde TSNSTK 90/20X9	Derde TSNSTK IJOX110041 Derde TSNSTK IZOX120411 5 Derde TSNSTK IZOX120411 5 Derde TSNSTK IZOX120411 5 Derde TSNSTK IZOX120411 5 Tweede TSNST IZOX120411 5	Weede TSKST1 130X.130X.1 Tweede TSKST1 130X.130X.1 Tweede TSKST1 120X.120X.1 Tweede TSKST1 120X.10X.10X.10 Tweede TSKST1 110X.110X.10 Tweede TSKST1 10X.110X.10X.10X.10X.10X.10X.10X.10X.10X	Eerste TSNSTK 150x00x10 Eerste TSNSTK 110x110x10 Eerste TSNSTK 110x110x10 Eerste TSNSTK 00x90x9 Eerste TSNSTK 00x10x0x8 EERSTE TSNSTK 10x110x0	Derect SISISINI LOOLOGOOD Bounstak CD 1 90260-9	Boventskir (dag 10,50,50,50) Boventravers (b50,50,50)	EGERTE DURSKIN 755/3/3/3 EGERTE DURSKIN 755/3/3 EGERTE DURSKIN 750/3/3 EGERTE DURSK

Date Author Version

0.57	0.00	00.00	00.00	0.12	0.54	0.24	0.38	0.46	0.48	0.53	0.54	0.40	0.26	0.32	0.26	0.42	0.00	800	0.00	0.71	0,11	0.49	00.00	00.0	0.02	0.82	0.78	0.34	0.02	0.22	00.0	0.75	0.40	0,55	0.78	0.11	0.00	00.0	0.50	0.22	0.48	0.51	0.65	0.07	0.26	0.13	0,43	60.0	0.78	0.01	0.03	00.0	0.03	0.02	0.01	100	0.03	0.01	0,92	0.48	0.17	0,51	0.21	60.0	0.50	0.01	
50.1	75.1	25.1	25.1	25.1	549.4	0.0	549.4	72.7	72.7	72,7	72.7	72.7	0.0	36.4	43.6	72.7	40.9	0.00	25.1	25.1	25.1	25.1	25.1	25.1	25.1	25,1	52.0	25.1	1.62	1,000	0.0	267.8	0.0	267,8	69.3	0.0	69.3	0.0	n n	38.2	31.8	25.1	52.0	59.4	25.1	25.1	25,1	25.1	25.1	25.1	1.52	72.7	72.1	75.1	75.1	25.1	25.1	25.1	178,3	0.0	89.1	43,3	202.5	189.0	34.1	34.1	
75.4	7.75	37.7	37.7	37.7	338.9	0.0	338.9	75.4	75.4	75,4	75.4	75.4	75.4	37.7	37.7	75.4	60.3	27.75	27.7	37.7	37.7	37.7	37.7	37.7	37.7	37,7	60.3	37.7	37.7	7.7.0	0.0	176.4	0.0	176,4	120.6	0.0	120.6	4.07	37.7	37.7	37.7	37.7	60,3	60,3	37.7	37.7	37.7	37.7	37.7	3/./	27.7	2/./	3/./	7.75	7.70 E EC	7 7 2	37.7	37.7	113,0	0.0	75.4	60,3	188.2	188.2	5.03	60.3	
49.4	57.4	37.4	37.4	37.4	249.5	439.9	249.5	64.9	64.0	64.9	63.0	28.3	391.7	60.5	81.2	57.7	61.2	37.0	37.4	37.4	37,4	37.4	37.4	37.4	37.4	37,4	75.3	37.4	97.4	827.4	827.4	347.6	361.7	235,2	142.7	333.7	142.7	332.1	46.1	55.3	46.1	37.4	75.3	98.8	37.4	37.4	37.4	37.4	37.4	37.4	4.75	4,75	5/4	4,75	57.0	27.4	37.4	37.4	157,3	239.7	180.2	62,7	422.1	1739.7	51.0	51.0	
				100	, o							63	m		e					Ba Ct2		e			0,9_135		m	0 6 0 6 0	Da All	3 0 9 9 3	93 Ah Ct2				3	m	0,9 0 Ba	0,9 U Ba	3 0.9 105	0.9 0	05	0 6'0	05	0,9 0 Ba	35	0 6'0 6'0 e				Ba Ct2 Ba	0 6.0	0,9 135	0,8,0	0,9 0,9 135	0,5 0 00	O G O Ra	135	0,9 0 Ba			Ba Ct2 Ba	3				0.9 105 Ba C	
28.3 ULS 1a_105	1110 2 125			0 ULS 3 0,9 0	134.7 ULS 1a_135	ULS 1a_135	ULS 1a 135	V ULS 1a 105	ULS 1a 105	ULS 1a_105	8 ULS 1a 105	UIS 1a 0.9	0 6'0 E SIN 1	ULS 3 105	6 6'0 E STO 9	ULS 3_105	0.0	1115 19 105	1115 1a 75	UIS 6a 93 B	2.7 ULS 1a 45	6 6'0 E SIN 1			0.6 SPLS 1a 0,9 0,9 135	0 ULS 3 105	8 ULS 3 0,9 9	01S 1a 0,9	SPLS 18 U.S	119 6 115 3 0 9 9	SPLS 3 0.9	6 ULS 1a 93	ULS 3 105	ULS 3 105	9 OLS 3 0,9 9	0 0LS 3 0,9 9	SPLS 1a 0,9	SPLS 18 U,9	15.9 ULS 3 0.9 1	U.S 1a 0.9	ULS 3 0,9 1	ULS 1a 0,9	1 6'0 E SIN 8	SPLS 1a 0.9	5 ULS 3 135	8 ULS 1a 0,9	0 ULS 3_93	ULS 5a Ba 1	, ULS 3_93	SPLS 6a 93	ULS 18 0,9	SPLS 18_0,9	ULS 18 0,9	CDLS 18 U,9	10.0 1115 2 03	SPIS 18 0 9	US 1a 0.9	3 SPLS 1a 0,9	105 3 105	9 ULS 3 93	SPLS 6a_93	0 6'0 E STO 1	38.6 ULS 1a_105	ULS 1a_135	ULS 13 135	SPIS 1a 0.9	
28.3	25	0.0	0.0	57.0	134.7	104	95.	29.7	30.6	34,4	33.6	23.7	19.4	11,5	9'6	24,4	0	107	3	17.5	2,7	12,4	0	0.0	0,0	20,6	40.8	28	,	119.6	4.0	131.5	146,0	97,0	53,8	36.0		5	15.51	8	15.2	12,7	33,8	3.5	9	E,	10,5	7,7	19.7	3	5	5 6	5	5 6	,		0.0	0	104	115,6	12.9	22,1	38'6	17.	18.3		
0.00	1000	0.03	90.0	0.03	0.00	0.00	0.00	0.44	0.45	0.44	0.48	0.26	0.01	0.56	0.40	0.62	0.77	00.0	00.0	0.16	0.59	0.81	0.04	0.03	0.73	0.06	0.07	0.01	0.31	0.47	0.01	0.00	0.00	0,12	0.82	0.75	0.82	0.05	0.59	0.58	0.51	0.86	0.11	69.0	0.12	0.26	0.08	0.44	0.00	0.03	0.04	70.0	0.04	10.0	0.00	200	0.01	0.03	0.75	09.0	0.00	0,33	0.08	00.00	0.01	0.73	
86.4	45.2	43.2	43.2	43.2	570.2	0.0	570.2 86.4	86.4	86.4	86.4	86.4	86.4	172.8	43.2	51.8	86.4	70.6	43.0	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	70.6	43.2	43.2	004.00	0.0	291.6	0.0	291.6	82.3	0.0	82.3	1/2.8	43.2	51.8	43.2	43.2	9'0'	70.6	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.4	43.2	43.2	43.2	181.4	0.0	121.0	58.8	220.5	235.2	58.8	2000	
								4	75.4	75.4	75.4	75.4	75.4	37.7	37.7	4	60.3	0 1	, ,	37.7	37.7	37.7	37.7	37.7	37.7	37.7					0.0	176.4	0.0	76,4	20.6	0.0	20.6	4.0.1	37.7	37.7	37.7	37.7	60.3	50.3	37.7	37.7	37.7	37.7	37.7	27.7	27.7	2/./	27.7	27.7	7.70	7 72	37.7	37.7	13.0	0.0	75.4	50,3	38.2	.88.2	50.3	50.3	
									m	0	82.0	-	7	4.									38.4							691.4											4				4	0	32,7	.7	61.0	7	20.3		20					6.09	_	=	9	9	7	.3	0.	7	
25	2 2	57		Ct1 32	143.6	84	887						O			Ct2 26	22	27		ш		ı		П				ш	ш				l						ı	ı		l		l										58 Ct1 30	0 0 0	,			_	119	142	51,	565	5 Ba C 1602	Ct2	9	
20	C6 PT C	S 1a 135	530	2LS 1a 0 Ba C	0.0		2 13 105	S 1a 105	S 1a_105	S 1a_105	36.0 ULS 1a 93	S 1a 105	LS 1a 0,9 13	53 0,9 105	15.1 ULS 3_105	rg.	5 3 105			53 0.9 93	5 3 105	5 3 93	S 1a_45	5 3_105	-S 1a_0,9_0,9	US 1a 0,9 0	LS 1a 0 Ba A	25 1a 0,9 0,	2 3 105	300.9 115 3 105	S 1a 0.9 93			S 1a 0,9 0,9	5 3 93	5 3 93	5 3 93	-5 18_135	-9.0 ULS 1a 0.9 0.9 0	53 0.9 105	S 1a 0.9 0.9	53 0,9 93	NS 1a 0,9 0,	5 3 0,9 93	S 1a 0,9 0,9	5 3 0,9 105	S 1a 0,9 0,9	5 3 0,9 93		LS 68 93 Ba	5 3 105	2 /3	S 18 U,9 13	C 12 13 0,9 0	-3.2 ULS 18_135	S 1a 135	2LS 1a 0 Ba C	S 1a 135	5 3 0,9 105	71.5 ULS 3 0,9 105		5 3 93	S 1a_135	LS 1a 0,9 10	LS 18 105 B2	C 1a 135	200
0.0	2 0	130	- 2-0 U	10 S	0.0	0.0	0.0	759.3 ∪	31.8 ∪	-328 ∪	36.0 U	19.6	S 9-0-	11.4 U	-15,1 U	-16.7 ∪	40.4			0 6 17	22.0 ∪	19.3 ∪	1.4 ∪	- 1.1 U	12.8 ∪	1.2 S	2.1.5	8 0	11.0	300.9	7.2 U	0.0	0.0	-5.6 ∪	∩ 6.99	∩ 0-69-	49.8 U	4 0	0.6-	-15.1	-12.3 ∪	17.3 ∪	3.9 S	36.9 ∪	-3.5 ∪	0 6 €	-2.5 ∪	16.7 ∪	0.0	0 0) i	0.0	0 T	0.00	1 5	2 0	0.4 S	-1.0 U	84.5 ∪	71.5 U	0.0	0 6 91-	-141 ∪	0.1 S	0.0	42.9 U	
1.00 219	190	74	143	148	160	229	118	111	103	96	86	2 2	61	239	20	203	151	183	163	104	95	187	128	69	232	212	202	711	20 5	20	14	291	291	291	135	134	156	47	224	207	199	211	180	149	165	158	147	100	62	977	117	195	1//	138	120	101	82	62	83	103	81	115	39	15	102	1001	
0 1.00							1 1.00				2 0.52		l				00.1	ľ	1		0 1.00	ľ	0 1.00		_	1,00			1	1 00		_	0 1.00	_	0 1.00	-	-	1	8 8	1	-	Γ	П	ľ	0 1.00	Γ	0 1.00	_	0 1.00			ľ		ľ					2 1,00				Ш	0 2.00			
1.00					1.00 1.49						0.52 0.5		l		П		ı			ı				П							l		l						1.00	l				l								ı			100		l		ľ				Ш	2.00 2.00			
5.6t	100	5.6t	5.6t	5.6t	5.6t		5.6t	5.61	5.6t	5.6t	5.61	5 61	5.6t	5.6t	5.6t	-5.6t	1M16-8.8t	5 6t	100	5.61	1M16-5 6t	5.6t	5.6t	-5.6t	5.61	1M16-5.6t	8.8t	1M16-5.6t	200	10.01		-5.6t		5.61	-8,8t		-8'8t	200	1M16-5.6t	5.6t	5.6t	5.6t	8.8t	8.8t	5.6t	5.6t	5.6t	5.6t	5.6t	5.61	200	200	2.00	200	100	i i	5.6t	5.6t	5.6t		5.6t	8.8t	8.81	8.8t	8.81	8 84	
2M16-5.6t	TMIC	1M16	1M16	1M16	4M24		4M24-5.6	ZM16	2M16	2M16	2M16-5.6t	2M16-	2M16	1M16	1M16	2M16	1M16	TMIE	1M16	1M16	1M16	1M16	1M16-5.6t	1M16-	1M16-5.6t	1M16	1M16	1M16	TWIP	TOME		3M20-5.6t		3M20-5.6t	1M16-8.8		1M16	ZMID	IMIG	1M16	1M16	1M16	1M16	1M16	1M16-5.6t	1M16-5-6	1M16-5.6t	1M16-5.6t	1M16-5.6t	IMID	IMID-5.61	IMIG-5-51	IMIP	TMID	10 C-0TMT	1M16	1M16	1M16-5.6t	3M16		2M16	1M16-	2M20-	2M20-8.8t	IMIE	1M16	
5235				5235			5235		5235			5235		5235	5235		2355	5555	5233	5235	5235	5235	5235	5235		5235		5235					5235			8355	П		5235	ı	5235	L		ı			5235	5235	S235	5235	5235	5235	5235	5235	2620	5225	5235	5235			\$ \$235		Ш	5355			
Eerste DWSRM 50x50x5	SKM SUXSUXS	SRM 50x50x5	SRM 50x50x5	SRM 50x50x5	Eerste DWSRM 90x90x11	Eerste DWSRM 90x90x11	Eerste DWSRM 90x90x11	VSRP 60x60x5	Tweede DWSRI 60x60x5	VSRN 60x60x5	Tweede DWSRI 60x60x5	Tweede DWSRP 60x60x5	Tweede DWSRP 120x120x10	Tweede DWSRI 60x60x5	fweede DWSR1 65x65x6	Tweede DWSRN 50x50x5	Tweede DWSRI 60x60x6	Tweede DWSRP 50x50x5	Tweede DWSRN 50x50x5	VSRP 50x50x5	Tweede DWSRN 50x50x5	Tweede DWSRI 50x50x5	Tweede DWSRI 50x50x5	fweede DWSRN 50x50x5	Tweede DWSRI 50x50x5	Tweede DWSRI 50x50x5	VSRI 55x55x6	Tweede DWSRI 50x50x5	DWSRP 50X50X5	Tweede DWSRF 140X140X13#	Tweede DWSRP 140x140x13#	Tweede DWSRI 90x90x9	Tweede DWSRP 90x90x9	Tweede DWSRI 90x90x9	Tweede DWSRI 70x70x7	VSR! 70×70×7	Tweede DWSRF 70x70x7	VSKP IZUXBUX	Tweede DWSRP 55X55X5	VSR1 55x55x6	VSRP 55x55x5	Tweede DWSRN 50x50x5	VSR! 55x55x6	VSRI-60x60x6	Tweede DWSRP 50x50x5	Tweede DWSRI 50x50x5	Tweede DWSRN 50x50x5	Tweede DWSRI 50x50x5	Tweede DWSRN 50x50x5	I Weede DWSRP 50X50X5	I Weede DWSKI SUXSUXS	Weede DWSKP SUXSUXS	I weede DWSRF 50x50x5	VSRP 50X50X5	Tweede DWSRP 50X50X5	VSRN SOXSOXS	Tweede DWSRI 50x50x5	Tweede DWSRN 50x50x5	Tweede DWSRI-75x75x7#	Tweede DWSRN 75x75x7#	Weede DWSRN 75x75x7	Tweede DWSRP 50x50x5	VSRI UNP160	Tweede DWSRNHEB160	VSRP SUXSUXS	VSRI 50x50x5	
_	Foreto DWG	Eerste DWS	Eerste DW	Eerste DW:	Eerste DW	Eerste DW	Tweede DW	Tweede DV	Tweede DV	Tweede DV	Tweede DV	Tweede DW	Tweede DV	Tweede DV	Tweede DV	Tweede DV	Tweede DV	Tweede Dw	Tweede Dy	Tweede DWSRP	Tweede DW	Tweede DV	Tweede DV	Tweede DV	Tweede DV	Tweede DV	Tweede DV	Tweede DV	Tweede Dy	Tweede DV	Tweede DW	Tweede DW	Tweede DW	Tweede DV	Tweede DV	Tweede DV	Tweede DV	I weede D	Tweede DW	Tweede DW	Tweede DW	Tweede DV	Tweede DV	Tweede DV	Tweede DW	Tweede DV	Tweede DV	Tweede DV	Tweede DV	I weede DV	I weede Dy	Tweede Dy	/ Meede D	Tweede Dy	Twoodo Du	Tweede DW	Tweede DW	Tweede DV	Tweede DV	Tweede DV	Tweede DV	Tweede DV	Tweede Dv	Tweede DV	Tweede U	Tweede DW	
313	215	316	317	318	107-1	107-2	107-3	401	402	403	404	406	407	408	409	410	411	412	414	415	416	417	418	419	420	421	422	423	474	108-1	108-3	109-1	109-2	109-3	110-1	110-2	110-3	425	427	428	429	430	431	432	433	434	435	436	437	438	629	440	441	44.2	440	445	446	447	111-1	111-2	111-3	448	449	450	451	453	

Date Author Version


Assessment of groups for strengthened mast (verbouw level)

ZW380 Oost D2.3 GT-BD Hoekmast H1 Mast 1

Staafgroep	Omschrijving Profiel	Staalsoort	Bouten	RLX	RLY	RLZ Slankheid	Druk Combinatie druk	Knik		Stuik (druk)	U.C. (druk)	opm.	Trek Combinatie trek	Nettodsn.	Afschuif
411	Tweede DWSRM 60x60x6	S355	1M16-8-8t	1.00	.00		-47,7 ULS 3_105	52.6	60.3	20.6	0.91		0.0	61.2	60.3
412	Tweede DWSRN 50x50x5	S355	1M16-8-8t	1,00	П		0.0	20.8	60,3	58.8	00.0		30,2 ULS 3_105	51.0	60,3
422	Tweede DWSRN 55x55x6	S355	1M16-8-8t	1,00	1.00		-2.1 SPLS 1a_0 Ba All Cts	29.1	60,3	20.6	0.07		49.1 ULS 3_0,9_93	75.3	60,3
110-1	Tweede DWSRN 70x70x7	S355	1M16-8-8t	1,00			-81.3 ULS 3_93	81.5	120.6	82.3	1.00		65.0 ULS 3_0,9_105	142,7	120.6
110-2	Tweede DWSRN 70x70x7	S355		1.00		1.00 134	-83.2 ULS 3_105	92.0	0.0	0.0	06.0		44.0 ULS 3_0,9_93	333.7	0.0
110-3	Tweede DWSRN 70x70x7	S355	1M16-8-8t	1.00			-60.8 ULS 3_93	61.0	120.6	82.3	1.00		0.1 SPLS 1a_0,9_0,9_0 Ba	142,7	120.6
431	Tweede DWSRN 55x55x6	S355	1M16-8-8t	1.00			-3.9 SPLS 1a_0,9_0,9_0 Ba	35.8	60.3	9'0'	0.11		41.2 ULS 3_0,9_105	75.3	60.3
432	Tweede DWSRN 60x60x6	5355	1M16-8-8t	1.00			-45-4 ULS 3_0,9_105	53.8	60.3	9.07	0.84		5.6 ULS 1a_0,9_0,9_0	98.8	60.3
448	Tweede DWSRN 50x50x5	S355	1M16-8-8t	0.50	0.50		-20.7 ULS 3_93	51.6	60,3	58.8	0.40		27.0 ULS 3_0,9_93	62.7	60,3
449	Tweede DWSRN UNP160	S355	2M20-8-8t	1.00			-18.7 ULS 1a_135	565.7	188.2	220.5	0,10		50.5 ULS 1a_105	422.1	188.2
450	Tweede DWSRN HEB160	S355	2M20-8.8t	2.00 2			-0.1 SPLS 1a_0,9_105 Ba C	1602.3	188.2	235.2	0.00		22.4 ULS 1a_135	1739.7	188.2
451	Tweede DWSRN 50x50x5	S355	1M16-8-8t	1.00	00'1		-0.6 SPLS 1a 105 Ba Ct2	29.0	60.3	58.8	0.01		27.2 ULS 1a 135	51.0	60.3
452	Tweede DWSRN 50x50x5	S355	1M16-8.8t	1.00			-0.2 SPLS 1a_135 Ba All Cts	85.2	60.3	58.8	0.00		5.9 ULS 1a_135	51.0	60.3
453	Tweede DWSRN 50x50x5	S355	1M16-8.8t	1.00	1.00	1.00 100	-55.7 ULS 1a_135	60.7	60.3	58.8	0.95		0.2 SPLS 1a_0,9_105 Ba C	51.0	60.3

Stulk (trek)
40.9
40.9
40.9
52.0
69.3
69.3
52.0
52.0
52.0
53.0
188.0
34.1
34.1

The bolted connections on groups 110-1 and 110-3 require strengthening using plates. Refer to Appendix D and E.
 Groups 448 t/m 453 are new groups which were added for the upper conductor attachment extension

Assessment of groups for initial mast (afkeur level)

200 200 33 34 17	93	afschuiving, stuik	00	12.1	57	15	27	0.11	4 to 1	00	73	0.00	65	77 Manthoden chulb	6 stulk	6.0	99 22	77 4 nettodsn., stuik	22	14	00	58	00		55	0.	33	59	21	72	22	06	00 nettodsn 10	24	80 80	10.0	2 4	74 15	0
18.7 0.00 22.4 0.43 18.7 0.06 0.0 0.33 258.8 0.47	85.3 0.2 0.0 0.0 102.4 0.1	44.8 1.6 44.8 0.6 155.2 0.0	258.8 0.4	77.6 0.2	950.4 0.3 588.0 0.0	38.4 0.4	44.8	0.0	44.8	65.4 0.0	77.6 0.9	259.2 0.3	56.0 0.6	259.2 0.3	77.6 1.1	90.6 0.8	177.5 0.6	177.5 0.4	116.5 0.6	23.3 0.0	32.0 0.0	23.3 0.6	38.8 0.0	305.5	77.6 0.8	44.8 0.6	38.4 0.6	38.4 0.5	38.4 0.4	211.2 0.8	977.5 0.5 1108.8 0.6	320.7 0.0	38.4 0.4	211.2 0.8	211.2 0.7	211.2 0.6	0.0	1782.0 0.7	Ildon
37.7 37.7 37.7 0.0 294.0	75.4 75.4 75.4	37.7 37.7 294.0	117.6 294.0 75.4	117.6	470.4	37.7 60.3	37.7	75.4	37.7	75.4	37.7 117.6	188.4	75.4	188.4	1176	117.6	176.4	176.4	176.4	37.7	37.7	37.7	37.7 58.8	294.0	352.8	37.7	37.7	37.7	37.7	37.7	468.6 1163.5	352.8	37.7	37.7	218.2	218.2	0.0	1444.5	0.0011
36.9 36.9 36.9 267.9	162.5 326.7 251.2 332.1	104.8 104.8 126.7	204.3	68.7	536.0	72.6	104.8	m		63.6	76.4	317,3	63.6	293.9	115.4	133.1	143.9	143.9	99.2	36.9	72.6	88.1	46.1 178.8	184.6	394.0	104.8	332.1	89.9	104.8	104.8	880.8	394.0	184.0	241.5	196.7	193.2	1097.7	1024.1	1024-1
0.0 PLS 1a_0,9_0,9_135 Ba All Cts 9.6 ULS 3_76 11.1 ULS 3_0,9_76 19.4 ULS 3_90 15.3 ULS 3_90	kortsluitbelast kortsluitbelast ULS	6 kortsluitbelasting 10%12 1 SPLS 6a_90 Ba Ct1 Ba Ct2 7 kortsluitbelasting 10%12		SPLS 6a_90	ULS kortsluitbelas	 SPLS 6a 90 Ba Ct1 Ba Ct2 kortsluitbelasting 108.12 	0 6 kortsluitbelasting 10&12	ш	1 SPLS 6a 90 Ba Ct1 Ba Ct2 5 SPLS 6a 90 Ba Ct1 Ba Ct2		10 M	0 0	8 SPLS 6a_90 Ba Ct2 Ba Ct1 2 SPLS 6a 90 Ba Ct2 Ba Ct1	7 ULS 3 0,9 76	7 SPLS 6a 90 Ba Ct2 Ba Ct1			kortsluitt		 SPLS 6a_90 Ba Ct1 Ba Ct2 		8 kortsluitbelasting 108.11 1 SPLS 6a_90 Ba Ct2 Ba Ct1		SPLS	SPLS 6a_90 Ba Ct1 Ba SPLS 6a_90 Ba Ct2 Ba	0 Ba Ct1	0 Ba Ct1 Ba 0 Ba Ct1 Ba	 SPLS 6a_90 Ah Ct1 Ba SPLS 6a_90 Ah Ct2 Ba 	SPLS 6a_90 Ah	SPLS 6a 90 Ah Ct2 Ba SPLS 6a 90 Ba Ct1 Ba	SPLS 6a_90 Ba Ct	ULS 6a_9	8 SPLS 6a 90 Ba Ct2 Ba Ct1 2 SPLS 6a 90 Ah Ct2 Ba Ct2	SPLS 6a_90 Ah Ct SPLS 6a_90 Ba Ct		9 SPLS 6a 90 Ba Ct2 Ba Ct1	1 ULS 3_0,9_90	3 ULS 3 0,9 90 ULS 3 0.9 76	2 ULS 3 U,9 /e
9.99.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	21,9 11.1 7.5 25,0	60.	34, 98,	17.2	173		knik, afschuiving, stuik 0.	23.	24.	0.0	27.4 knik 70.	62,	38.		knik 89	80.4	94,	67.0	61.0	3.1	0 8	15.	0	135.4	150,	38,	30.	22.	32.6	27.	249	468,6	184	35.1	154	124	707.	762	400
34.6 0.01 34.6 0.09 34.6 0.04 0.0 0.38 32.0 0.35	38.2 0.04 38.2 0.11 38.2 0.59 72.8 0.00	60.5 0.00 60.5 0.08 124.0 0.11	132.0 0.45 132.0 0.19 86.4 0.20	29.6 0.33	150.4 0.51	51.8 0.07 82.3 0.30	60.5 1.62	72.8 0.15	60.5 0.82	86.4 0.00	29.6 1.01	59.2 0.83	86.4 0.68	59.2 0.66	29.6 1.05	51.2 0.91	59.2 0.00	59.2 0.03	94.4 0.00	34.6 0.00 43.2 0.08	51.8 0.73 43.2 0.00	43.2 0.00 51.2 0.92	43.2 0.02 64.8 0.01	0.0 0.50	29.6 0.81	72.8 0.00 60.5 0.62	72.8 0.13 51.8 0.64	51.8 0.70	51.8 0.46 60.5 0.84	60.5 0.76	109.6 0.63	0.0 0.71	51.8 0.45	60.5 0.98	85.1 0.81	85.1 0.80	0.0	782.0 0.91	22.0
37.7 37.7 0.0 94.0	75.4	37.7 37.7 294.0 3	117.6 1 294.0 4	117.6	470.4 9	37.7 60.3	37.7	75.4	37.7	75.4	37.7 17.6 1	0.0	35.2	88.4 2	17.6	17.6 1	76.4 2	76.4 2	76.4	37.7	37.7	37.7 17.6 1	37.7 58.8	294.0	17.6	37.7	37,7	37.7	37.7	37.7	468.6 12 163.5 13	52.8	37.7	37.7	18.2 2	18.2	0.0	1444.5 17	02.50
25.4 37.7 28.5 37.7 30.0 37.7 160.3 0.0 160.5 294.0	153.2 148.1 195.9 352.1		167.1 2			34.2 62.6	40.5	358.2	102.9	37.6	101.5 85.8	283.9	117.2	262.2	84.8	96.7 1	79.8	107.4	56.7 1	38.3	35.6 25.5	93.9	7	161.0	79.8	344.6	349.4 98.2	95.4	92.5 108.6	103.6	813.5 4 789.8 11	792.5 379.4 3	197.3 2	110.1	173.0 2	166.4 2		937.3 14	
ortsluitbelasting 118.12 LS 3 0,9 76 ortsluitbelasting 118.12 LS 3 0,9 76	LS 1a_0,9_0,9_76 PLS 6a_90 Ba Ct2 Ba Ct1 ortsluitbelasting 10&12 PLS 1a_0 Ba All Cts	ortsluitbelasting 10812 PLS 6a_90 Ba Ct2 Ba Ct1	ortslutbelasting 11812 LS 3 0,9 76 PIS 6a 90 Ba Ct2 Ba Ct1	PLS 6a_90 Ba Ct2 Ba Ct1 LS 3_76	LS 3_90 ortsluitbelasting 10&12	PLS 3_0,9_76 Ba Ct1 ortsluitbelasting 10&12	ortsluitbelasting 10&12 PLS 6a_90 Ba Ct1 Ba Ct2	PLS 1a_0 Ba All Cts ortsluitbelasting 11&12	PLS 6a_90 Ba Ct2 Ba Ct1 PLS 6a_90 Ba Ct2 Ba Ct1	ortsluitbe asting 11&12 PLS 6a_90 Ba Ct2 Ba Ct1	PLS 6a_90 Ba Ct1 Ba Ct2 PLS 6a_90 Ba Ct2 Ba Ct1	PLS 6a_90 Ba Ct2 Ba Ct1 PLS 6a_90 Ba Ct2 Ba Ct1	PLS 6a_90 Ba Ct2 Ba Ct1 PLS 6a_90 Ba Ct2 Ba Ct1	LS 3_90 bl c 64 on B4 C43	PLS 6a_90 Ba Ct2 Ba Ct1	. P	PIS 3 0 9 76 Ba Ct2	SPLS 3 0,9 76 Ba Ct2 SPLS 6a 90 Ba Ct1 Ba Ct2	PLS 6a 90 Ba Ct1 Ba Ct2	PLS 1a_0,9_0,9_0 Ba Ct1 PLS 6a_90 Ba Ct1 Ba Ct2	ortsluitbelasting 10&11	PLS 1a_0,9_135 Ba Ct1 PLS 6a_90 Ba Ct2 Ba Ct1	ortsluitbelasting 10812 PLS 6a_90 Ba Ct2 Ba Ct1	PLS 6a_90 Ba Ct1 Ba Ct2 PLS 6a_90 Ba Ct2 Ba Ct1	PLS 6a_90 Ba Ct2 Ba Ct1 PLS 6a_90 Ba Ct2 Ba Ct1	PLS 6a 90 Ba Ct1 Ba Ct2 PLS 6a 90 Ba Ct1 Ba Ct2	PLS 6a_90 Ba Ct1 Ba Ct2 PLS 6a_90 Ba Ct1 Ba Ct2	PLS 6a_90 Ba Ct2 Ba Ct1 PLS 6a_90 Ah Ct2 Ba Ct2	PLS 6a_90 Ah Ct2 Ba Ct2 PLS 6a_90 Ba Ct1 Ba Ct2	LS 6a_90 Ba Ct2 PLS 6a_90 Ba Ct2 Ba Ct1		22	PLS 6a 90 Ba Ct2 Ba Ct1 PLS 6a 90 Ah Ct2 Ba Ct2	g g	2 2	. m	70	LS 3 90	200
153 -0,4 k 139 -2,5 U 132 -1,1 k 80 -60,4 U 80 -55,7 U																	0.0	70.0	0.0		-26.1					Ш													
1M16-5.6t 1.00 1.00 1.00 1M16-5.6t 0.53 0.53 0.53 1M16-5.6t 1.00 1.00 1.00 1.63 1.00 1.00 5M20-5.6t 2.00 1.00 1.00	2M16-5.6t 2.60 1.00 1.00 2M16-5.6t 1.00 1.00 1.00 2M16-5.6t 1.00 1.00 1.00 2M16-5.6t 1.00 1.00 1.00	1.00 1.00 2.00 1.00	2.00 1.00	0.52 0.52 2.51 1.00	2 30 1.00 1.00 1.00	1.00 1.00	1M16-5.6t 1.00 1.00 1.00	2.00 1.00	0.52 0.52	1.00 1.00	0.52 0.52 0.52	1.48 1.00	1.00 1.00	2.00 1.00	2M20-5.6t 0.52 0.52 0.52 2M20-5.6t 0.51 0.51 0.51	0.52 0.52	1.00 1.95	0.52 0.52	1 00 1 00	1M16-5.6t 0.51 0.51 0.51 1M16-5.6t 1.00 1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	2.85 1.65	2M20-5.6t 1.54 1.00 1.00 2M20-5.6t 1.00 1.00 1.00	1.00 2.00	2.00 1.00 1.00 1.00	0.52 0.52	0.52 0.52 0.52	0.52 0.52	2.38 2.35	2.40 2.45	3M22-5.6t 1.00 1.00 1.00 1M16-5.6t 0.53 0.53 0.53	0.52 0.52	0.53 0.53	0.52 0.52	2.40 2.37	10M22-5.6t 1.20 2.40 1.00 8M22-5.6t 2.35 2.42 1.00	75 7 7 77
						S235 S355	S235 S235	S235	5235	5235 S235	S235 S235	S235 S235	S235 S235	5235	S235 S235	S235 5235	S235 S235	S235 S235	5235	S235 S235	S235 S235																		
50x50x4 5235 50x50x4 5235 50x50x4 5235 78x75x8 5235 75x75x8 5235							Ш	Ш	Ш															Ш		Ш													
tibh1 titd2 tibh2 tibr1 tibr1-2						verse front diag																																	

Date Author Version

Assessment of groups for initial mast (afkeur level)

6pvm	90x90x8 S235	0.52 0.52	118	S 6a 90 Ba Ct2 Ba	150,5	145.4	1901	69.0	103,8	æ	241,5	145.4	140.8	4/.0
mzd11	90x90x8 S235	0.52	122	S 6a 90	146.0	145.4	190.1	0.77	108.3	SPLS 6a_90 Ba Ct2 Ba Ct1	241.5	145.4	140.8	0.77
mvd10	90x90x8 S235	2M22-5 6t 0.52 0.52 0.52	126	Ba Ct2 Ba	141.6	145.4	190.1	0.69	87.6	'n,	155,3	145.4	140.8	0.62
mzd12	90x90x8 S235	2M22 5 6t 1.00 1.00 1.00	121	Ba Ct2 Ba	147.5	145.4	190,1	0.67	100,6	SPLS 6a_90 Ba Ct1 Ba Ct2	155,3	145.4	140.8	0,71
mzd13		1.00 1.00	127	S 6a_90 Ba Ct2 Ba	140.4	145.4	190.1	0.54	7.77	SPLS 6a_90 Ba Ct2 Ba Ct1	155.3	145.4	140.8	0.55
mth4	65x65x6 S235	1.00	295	S 6a 90 Ba Ct2 Ba	19.0	58.8	64.8	0.00	0.1	ULS 3_0,9_104	65.7	58.8	33.3	00.0
mzh5		1.00 1.00	103	-40.7 ULS 3 90	171.1	145.4	190.1	0.28	33.3	0F 3 0'6 80	241.5	145.4	140.8	0.24
mtd4	60x60x5 S235	1M20-5.6t 1.00 1.00 1.00	220	-2.3 ULS 1a_76	23,1	58.8	54.0	0,10	2.0	ULS 1a_0,9_90		58,8	27.7	0.07
mvh5	90x90x8 S235	1.00 1.00	103	3 9	171.1	145.4	190.1	0.28	30,7	0F 3 0'9 90		145.4	140.8	0.22
mvd11	90x90x8 S235	0.54	138	-70.9 SPLS 6a 90 Ba Ct2 Ba Ct1	127.3	145.4	190.1	0.56	82.2	SPLS 6a_90 Ba Ct2 Ba Ct1		145.4	140.8	0.58
Onderstuk main member	160×160×15+S235	2,31 2,38 1,00	22	855.4 ULS 3 90	945,2	0.0	0,0	0,91	761.4	0F 3 0'6 80		0.0	0.0	69.0
Onderstuk main member	160×160×15+5235	0.33	44	-841.7 ULS 3 90	1007.1	1444.5	1782.0	0.84	738.5	ULS 3 0.9 90		1444.5	1320.0	0.72
Onderstuk main member	160x160x15+S235	1,20 2,08	46	-891,2 ULS 3 90	996.4	1444.5	1782.0	0.89	782,8	ULS 3 0,9 90	111	1444.5	1518.0	0.76
mzd14	90x90x8 S235	2M22-5.6t 1.00 0.50 0.50	111	-98.5 SPLS 6a 90 Ba Ct2 Ba Ct1	151,6	145,4	190,1	0,68	93.6	SPLS 6a 90 Ba Ct1 Ba Ct2	155,3	145,4	140,8	99'0
mvd12	90×90×8 S235	1.00	135	S 6a 90 Ba Ct2	130.5	145.4	190.1	0,0	67.7	SPLS 6a 90 Ba Ct2 Ba Ct1	155.3	145,4	140.8	0.48
mzh6	70×70×7 S235	1.00	107	3 0.9 90	97.3	72.7	83.2	0.08	3.9	ULS 1a 90	92.7	72.7	58.7	0.07
mzd15	100×100×10 S235	0.33 0.33	84	-110.1 SPLS 6a 90 Ba Ct2 Ba Ct1	275.5	145,4	237,6	0,76	101,2	SPLS 6a 90 Ba Ct1 Ba Ct2	217.7	145,4	176.0	0.70
mvh6	70×70×7 S235	1.00 1.53	107	3 0.9 90	97.3	72.7	83.2	0.12	7.7	0F2 3 30	92.7	72.7	58.7	0.13
mtd5	60x60x5 S235	1.00 1.00	175	-1.7 ULS 1a 45	31.7	28.9	54.0	0.05	1.2	ULS 1a 0.9 0.9 45	54.7	58.8	27.7	0.04
mvd13	100×100×10 S235	0.33	84	-112,7 SPLS 6a 90 Ba Ct2 Ba Ct1	275,5	145,4	237,6	0,78	94.6	SPLS 6a 90 Ba Ct2 Ba Ct1	217.7	145,4	176.0	0.65
Bovenstuk Boven Diaphram Hrz	55x55x5 S235	1.00 1.00	160	0.0	40.8	75.4	86.4	0.00	0.2	0FS 3 80	59.4	75.4	26.0	0.00
Bovenstuk Bovenvlak Diag		1.00 1.00	178	-18.5 kortsluitbelasting 11812	28.6	37.7	43.2	0.65	5.1	ULS 3 0.9 76	46.1	37.7	28.0	0.18
Bovenstuk Bovenvlak Diad	55x55x5 S235	1.00 1.00	169	-5.5 ULS 3 0.9 76	30.4	37.7	43.2	0.18	20.7	kortsluithelasting 11812	46.1	37.7	28.0	0.74
Bovenstuk Bovenvlak Diag		1.00 1.00	160	-22.0 kortsluitbelasting 11812	32.7	37.7	43.2	0.67	6.2	ULS 3 0.9 76	46.1	37.7	28.0	0.22
Bovenstuk Bovenvlak Diad	55×55×5 S235	1.00	152	m	34.8	37.7	43.2	0.18	24.4	kortsluitbelasting 11812	46.1	37.7	28.0	0.87
Bovenstuk Bovenvlak Diag	55x55x5 S235	1.00	136	-28.1 kortsluitbelasting 11812	39.7	37.7	43.2	0.75	0.5	SPLS 1a 0,9 135 Ba Ct1	46.1	37.7	28.0	0.02
Bovenstuk Bovenvlak Diag	55x55x5 S235	1M16-5 6t 1.00 1.00 1.00	130	0.4 SPLS 1a 0,9 135 Ba Ct1	41.9	37.7	43.2	0.01	30.2	kortsluitbelasting 11&12	46.1	37.7	28.0	1.08 stuik
Bovenstuk Bovenvlak Diag		1.00 1.00	123	-24.7 kortsluitbelasting 11&12	48.0	60.3	58.8	0.51	9.0	ULS 3_0,9_76	62.7	60.3	38.1	0.02
Bovenstuk Bovenvlak Diag	50×50×5 S355	1.00 1.00	113	37	52.9	60.3	58.8	0.43	0.5	SPLS 1a_0,9_45 Ba Ct1	62.7	60.3	38.1	0.01
Bovenstuk Bovenvlak Diag	55x55x5 S235	1.00 1.00	113	-0.4 SPLS 1a_0,9_0 Ba All Cts	48.3	37.7	43.2	0.01	28.1	0LS 3_76	46.1	37.7	28.0	1.00 stulk
Bovenstuk Bovenvlak Diag	55x55x5	1.00	106	-31.9 ULS 3_76	51.0	37.7	43.2	0.85	0.3	SPLS 1a_0,9_0 Ba All Cts	46.1	37.7	28.0	0.01
Boventraverse upper horizontal (new)	50×50×5	1.00 1.00	113		52.9	60.3	58.8	0.00	20.2	kortsluitbelasting 10&12	62.7	60.3	38.1	0.53
Boventraverse upper horizontal (new)	50×50×5	1.00	106	-1.3 kortsluitbelasting 10812	56.9	60.3	58.8	0.02	7.2	0LS 3_0,9_76	62.7	60.3	38.1	0.19
Boventraverse upper CD (new)		0.52 0.52	9	m	96.6	60,3	58.8	0.11	16.0	0LS 3_90	62,7	60,3	38.1	0.42
Boventraverse lower CD (new)	50x50x5 S355	1M16-8.8t 0.50 0.50 0.50	114	-28.4 kortsluitbelasting 11812	58.6	60.3	58.8	0.48	25.1	kortsluitbelasting 11&12	62.7	60.3	38.1	99.0
Boventraverse vertical new frame		1.00 1.00	140	-45.9 kortsluitbelasting 10812	45.9	60.3	58.8	1.00 knik		kortsluitbelasting 11&12	62.7	60.3	38.1	0.50
Boventraverse diag new frame		1.00 1.00	152	-0.8 SPLS 1a_0,9_0,9_45 Ba Ct2	36.2	60.3	58.8	0.02	23.5	kortsluitbelasting 11&12	62.7	60.3	38.1	0.62
Boventraverse diag new frame		1.00 1.00	123	-22.6 kortsluitbelasting 11&12	47.7	60,3	58.8	0.47	33.1	kortsluitbelasting 11&12	62.7	60,3	38.1	0.87
Boventraverse horiz new frame	50x50x5 S355	1.00 1.00	112	-0.1 SPLS 1a_0,9_76 Ba Ct2	53.4	60.3	58.8	0.00	3,2	kortsluitbelasting 10&12	62.7	60.3	38.1	0.08
Boventraverse under horiz new frame	e 50x50x5 S355	1M16-8.8t 1.00 1.00 1.00	62	0.1 ULS 1a 0,9 0,9 76	86.2	60.3	58.8	0.00	0.3	kortsluitbelasting 10812	62.7	60.3	38.1	0.01
Boventraverse under diag new frame	50x50x5 S355	1M16-8 8t 1.00 1.00 1.00	134	-0.4 ULS 1a 0,9 104	43,0	60,3	58.8	0,01	0,3	ULS 1a 0,9 0,9 76	62,7	60,3	38.1	0,01
Boventraverse under diag new frame	50x50x5 S355	1M16-8.8t 1.00 1.00 1.00	133	-1.0 ULS 1a 0,9 104	43.2	60.3	58.8	0.02	0.5	SPLS 1a 0,9 76 Ba Ct2	62.7	60,3	38.1	0.01
Boventraverse under diag new frame	50×50×5	1.00 1.00	130	-1.0 ULS 1a 0,9 104	44.4	60.3	58.8	0.02	0.6 SP	LS 1a 0,9 0,9 76 Ba All Cts	62.7	60,3	38.1	0.02
Boventraverse under horiz new frame	50×50×5	1.00 1.00	62	0.0 SPLS 1a 0,9 0,9 76 Ba All Cts	86.3	60.3	58.8	0.00	0,3	kortsluitbelasting 10&12	62.7	60,3	38.1	0.01
Boventraverse overhang diag new frame 80x80x8		П	178	-0.4 SPLS 1a 0,9 0,9 104 Ba All Cts	74.5	94.1	117.6	0.01	34.3	kortsluitbelasting 10&12	181.9	94.1	83.2	0.41
Boventraverse overhang diag new frame 80x80x8	ame 80x80x8 S355	1M16-8 8t 1.00 1.00 1.00	71	-24.5 kortsluitbelasting 11812	244.0	60.3	94.1	0.41	0.5	ULS 1a 0,9 135	194,4	60,3	69.7	0.01
Boventraverse ketting connection beam	am HEB160 S355	2M20-8 8t 2.00 2.00 2.00	15	-1.0 ULS 1a 90	1602.3	188.2	235.2	0.01	1.7	ULS 1a 0,9 0,9 90	1739.7	188.2	166.3	0.01
Boventraverse horiz new frame	50×50×5 S355	1M16-8 8t 1.00 1.00 1.00	121	0'0	48,7	60,3	58.8	0.00	14,5	kortsluitbelasting 11&12	62,7	60,3	38.1	0,38
Boventraverse diag new frame	50×50×5 S355	1M16-8.8t 1.00 1.00 1.00	125	-24.5 kortsluitbelasting 11812	46.8	60.3	58.8	0.52	8.0	SPLS 1a 0,9 45 Ba Ct2	62.7	60,3	38.1	0.02
Davidantes din a new farmer	1110	400 4 00 4 00 4 00	***	40 4 111 5 3 00	2 (3		0.00	00.0	•	C10 40 00 40 000	000			
Soventiave diagrams		00.1		000000	7.76	200	900	0.70	9-1	SPIS a U.S. to Day 1.12	0.05	200	57.2	0.04

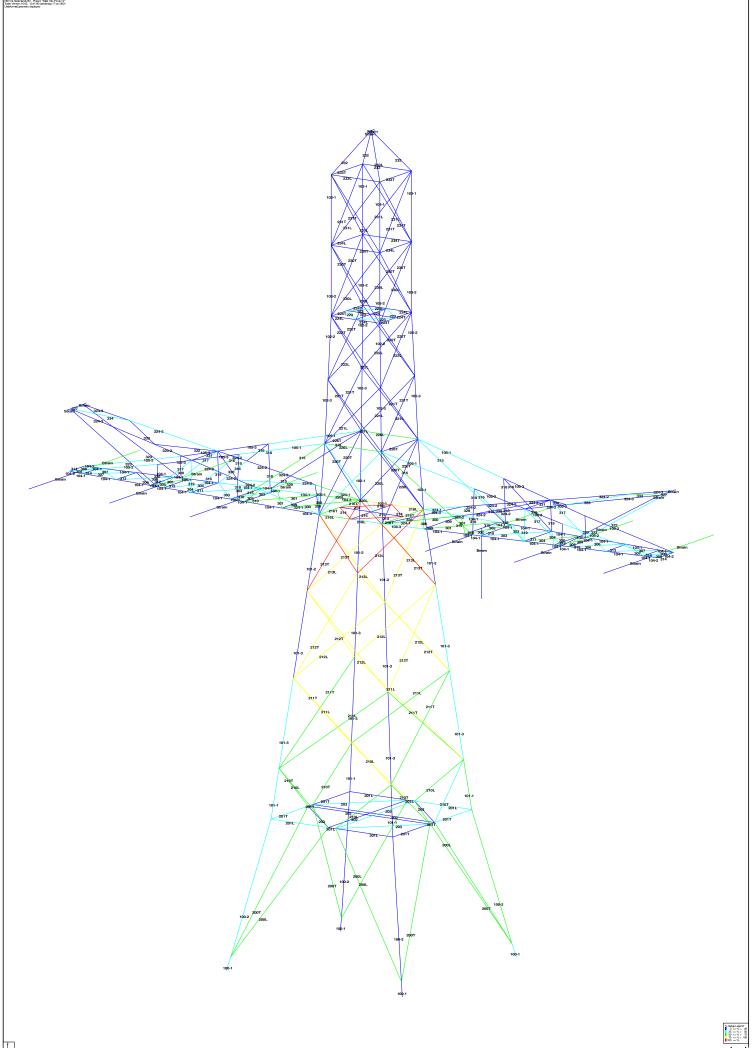
Assessment of groups for strengthened mast (afkeur level)

0.04	00.00	0.44	0.34	0.47	0.29	0.10	0,33	0.66	0.07	0.50	0.49	0.22	0.25	0.25	0.0	0.44	0.87	00.00	0.10	0.00	0.51	0.78	0.45	00.00	0,73	0.57	0.20	0.38	0.68	0.34	0.57	0.73	0.67	0.88	0,79	0.66	0.53	0.84	0.61	00.00	0.14	00.0	0.27	0.68	0.95	00.0	0,22	0.28	0.43	0.51	09.0	0.41	0.63	0.59	0.47	0.87	0.72	0.83	0.63	0.50	0.30	0.67	0.40	0.84	0.78	0.78	0.65
8.06	18.7	22.4	18.7	258.8	85.3	102.4	0.0	44.8	155.2	77.6	258.8	26.0	9.//	0.0	1000	4.85	61.0	69.7	44.0	32.0	0.0	44.8	44.8	65.4	44.8	123.3	0.0	259.2	26.0	1//5	145.5	123.3	123.3	90.6	28.0	177.5	177.5	145.5	116.5	23.3	22.4	38.4	32.0	23.3	90'06	23.3	305.5	0.0	453.6	0.0	44.8	0.0	339.4	38.4	38.4	44.8	44.8	211.2	1108.8	0.0	320.7	323.4	33.4	211.2	211.2	211,2	211.2
90'8	37.7	37.7	3/./	294.0	75.4	75.4	75.4	37.7	294.0	117.6	294.0	75.4	11/.6	0.0	411.6	37.7	60.3	120.6	37.7	37.7	77.7	37.7	37.7	75.4	37,7	188.2	0.0	188.4	75.4	735.2	188.2	188.2	188.2	117.6	37.7	176.4	176.4	188.2	176.4	37.7	37.7	37.7	37.7	37.7	117,6	58.8	294.0	0.0	352.8	75.4	37.7	75.4	37.7	37.7	37.7	37.7	37.7	218.2	1163.5	0.0	352.8	349.1	37.7	218.2	218.2	218,2	218.2
			267.9		326.7	251.2	332.1	104.8	126.7	68.7	204.3	63.6	1.00	299.7	236.0	72.6	142.7	194.4	104.8	60.5	332.1	84.7	94.8	63.6	84.7	131.6	317.3	293.9	63.6	126 /	1316	198.9	131.6	133.1	46.1	143.9	143 9	131.6	99.2	46.1	36.9	72.6	60.5	46.1	88.1	1788	184.6	479.4	394.0	332.1	104.8	332,1	81.2	88.9	89.9	104.8	104.8	184.0	866.2	943.3	394.0	276.6	89.9	241.5	196.7	194 4	193.2
1,7 kortsluitbelasting 11&1	0.0 SPLS 1a 0,9 0,9 135	9.9 ULS 3.76	1.2 ULS 3 0,9 76 90.0 ULS 3 90	96,1 ULS 3_90	21.9 ULS 3_76 11.2 kortduithelasting 1181	7.3 kortsluitbelasting 10&1	25.0 ULS 3 0,9 76	24.9 SPLS 6a 90 Ba Ct1 Ba	8.6 kortsluitbelasting 10&1	34.2 SPLS 6a_90 Ba Ct1 Ba	100,0 ULS 3_90	12.5 SPLS 6a_90 Ba Ct2 Ba	17.5 SPLS 6a_90 Ba Ct2 Ba	152.4 ULS 3 U.9 76	20 5 Vorteluithelecting 1181		52,3 kortsluitbelasting 10&1	0'0	3,8 kortsluitbelasting 108.1		23.3 SPLS 68 90 B8 CHI B8			П	Ba Ct2	Ba Ct1	a	8a 1	Ba Ct2	2	Ra Ct2		82,7 SPLS 6a_90 Ba Ct2 Ba		22.0 kortsluitbelasting 10&1	95.0 kortsluitbelasting 10&1	67.0 kortsuithelasting 1081	110.8 SPLS 6a 90 Ba Ct1 Ba	rtsluitbela		3.1 SPLS 6a_90 Ba Ct1 Ba	0.0	8.6 kortsluitbelasting 10&1	15.8 kortsluitbelasting 10&1	83,6 SPLS 6a_90 Ba Ct2 Ba	0.0			150.2 SPLS 6a 90 Ba Ct1 Ba											468.6 ULS 3 0,9 76			SPLS 6a 90 Ah Ct2	35,1 SPLS 6a_90 An Ct1 Ba 178,2 SPLS 6a_90 Ba Ct2 Ba	SPLS 6a	끊	Cţ5
0.05	0.01	0.10	0.38	0.35	0.04	0.59	0.00	0.12	0.11	0.44	0.19	0.21	0.34	55.0	0.17	0.06	0.30	0.86	0.69	0.02	0.15	0.82	0.48	0.00	0.70	0.61	0.45	0.82	0.67	0.28	0.63	0.62	0.46	0.90	0.00	0.00	0.03	0.54	0.00	0.02	0.00	0.08	0.00	0.00	0.91	0.02	0.20	0.61	0.78	0.00	0.62	0.13	0.64	0.70	0.46	0.84	0.76	0.95	0.79	0.71	0.56	0.67	0.45	1.00	0.81	0.91	0.80
103,7	34.6	34.6	0.0	432.0	138.2	138.2	172.8	60.5	324.0	129.6	432.0	86.4	129.6	0.00	821.6	815	82.3	94.1	60.5	43.2	60.27	60.5	60.5	86.4	90.5	205.8	0.0	259.2	86.4	259.2	205.2	205.8	205.8	151.2	43.2	259.2	259.2	205.8	194.4	43.2	34.6	43.2	43.2	43.2	151.2	43.2	378.0	0.0	453.6	172.8	60.5	172.8	21.8	21.0	51.8	60.5	60.5	285.1	1330.6	0.0	453.6	436.6	51.8	285.1	285.1	285.1	285.1
9.08	37.7	37.7	3/./	294.0	75.4	75.4	75.4	37.7	294.0	117.6	294.0	75.4	11/.6	0.0	4116	37.7	60.3	120.6	37.7	37.7	77.7	37.7	37.7	75.4	37.7	188.2	0.0	188.4	75.4	732.7	188.2	188.2	188.2	117.6	37.7	176.4	176.4	188.2	176.4	37.7	37.7	37.7	37.7	37.7	117,6	58.8	294.0	0.0	352.8	75.4	37.7	75.4	37.7	37.7	37.7	37.7	37.7	218.2	1163.5	0.0	352.8	349.1	37.7	218.2	218.2	218.2	218.2
34.8	1 25.4	28.5	160.3	160.5	153.2	195.9	352.1	1 40.0		1 70.6		60.1	9.07	484.1	307.4	34.7	1 62.6	1 72.4	40.5	28.8	97.7	102.9	1 108.1	П	101,5	145.5	1 283.9	~	ľ	2,711	1	143.6	ı		16.0	79.8		ľ		27.7					93.9			ľ			111	349.4	98.2			ш		185.1	789.8	792.5		281.1	88.1	177.0	173.0	169.0	166.4
1.7 kortsluitbelasting 11&1	 6.4 kortsluitbelasting 11&1 	_ L			3.1 ULS 1a 0,9 0,9 76			4.3 kortsluitbelasting 10&1	-11.1 SPLS 6a_90 Ba Ct2 Ba	-31.1 kortsluitbelasting 11&1	-32,3 ULS 3_0,9_76	-12.4 SPLS 6a 90 Ba Ct2 Ba		187.9 ULS 3 /6	1 Vorteliithelecting	2.2 SPIS3 0.9 76 Ba Ct1	-17.9 kortsluitbelasting 10&1	uitbelastin	-26.0 SPLS 6a 90 Ba Ct1 Ba	O.S. SPLS 1a 0 Ba All Cts	-25.2 SPIS 6a 90 Ba C+2 Ba		-17.9 kortsluitbelasting 1181	-0.1 SPLS 6a_90 Ba Ct2 Ba	-26.5 SPLS 6a_90 Ba Ct1 Ba	-88.5 SPLS 6a_90 Ba Ct2 Ba	128,0 SPLS 6a_90 Ba Ct2 Ba	155.1 SPLS 6a 90 Ba Ct2 Ba	-38.0 SPLS 6a 90 Ba Ct2 Ba	-32.9 SPLS 6a 90 Ba Ct2 Ba	£	3	-65.9 SPLS 6a_90 Ba Ct2 Ba	당	0'0	0 0 0	14 SPIS 3 0,9 76 Ba CI2	5a 90 Ba Ct1	0	SPLS 6a 90 Ba	0.2 SPLS 1a 0,9 0,9 0 Ba	oa yo ba	00	0.0 SPLS 1a_0,9_135 Ba (-85.9 SPLS 6a 90 Ba Ct2 Ba	-0.6 Kortsluitbelasting 10&1	-32,3 SPLS 6a 90 Ba Ct1 Ba	246.8 SPLS 6a 90 Ba Ct2 Ba	273.9 SPLS 6a 90 Ba Ct2 Ba	0.2 SPLS 6a 90 Ba Ct1 Ba	-23.2 SPLS 6a 90 Ba Ct1 Ba	-10.1 SPLS 6a_90 Ba Ct1 Ba	-24.3 SPLS 6a 90 Ba Ct1 Ba	-10.3 SPLS 68 90 68 Ct2 68	-17.4 SPLS 6a_90 Ah Ct2 Ba	-31,6 SPLS 6a_90 Ba Ct1 Ba	-28.6 ULS 6a_90 Ba Ct2	, 6a	621.2 ULS 3 90	6	6a 90 Ah All C	6a_90 Ba Ct2	69 90	6a 90 Ba Ct2	8 8	90 Ba	132,3 SPLS 6a 90 Ba Ct2 Ba
142	153	139	132	80	125	103	47	210	98	125	75	113				188	167	181	208	188	87	22	67	171	80	102	45	. 81	121	4 (70	103	102	115	264	165	220	112	163	168	104	183	205	123	119	171	72	36	67	121	89	47	28	6.7	71	82	06	94	63	62 -	- 09	96	82	66	102	105	107
0.50	1.00	0.53	1.00	1.00	0 0	1.00	1.00	1.00	1,00	0.52	1.00	1.00	7.00	8	00.1	00.1	1,00	1.00	00.1	1.00	1.00	0.52	1,00	1.00	0.52	0.52	1.00	1.00	1.00	001	100	0.52	0.51	0.52	1,00	1.00	00.1	0.52	1.00	1.00	0.51	1.00	1.00	1.00	1,00	100	1,00	1.00	1.00	1.00	1.00	1.00	1.00	0.52	0.52	0.52	0.52	0.53	1.00	1.00	1.00	1.00	0.53	0.53	0.53	0,53	0.52
20 0.50	00 1.00	53 0.53	00 1.00	00 1.00	2.60 1.00	00 1.00	000	00 1.00	00 1.00	52 0.52	00 1.00	00 1.00	25.0 25	20 1.00	00.1	1.00	00 1.00	00 1.00	00 1.00	000	25 0 25	52 0.52	00 1 00	00 1.00	52 0.52	52 0.52	08 1.83	1.00	00 1.00	000	1.00	52 0.52	51 0.51	52 0.52	00 1 00	00 1.95	1 75	52 0.52	00 1 00	00 1.00	51 0.51	1.00	00 1.00	00 1.00	00 1.00	100	00 1 00	85 1.65	24 1.00	2.00	00 1.00	00 1.00	000	52 0.52	52 0.52	52 0.52	52 0.52	53 0.53	38 2.35	40 2.45	00 1.00	00 1.00	53 0.53	53 0.53	53 0.53	53 0,53	52 0.52
4M12-5.6t	1M16-5.6t	1M16-5.6t	IMID-5-DI	5M20-5.6t	2M16-5.6t	2M16-5.6t	2M16-5.6t	1M16-5.6t	5M20-5.6t	2M20 5.6t	5M20-5.6t	2M16-5.6t	ZMZU-5-61	+5 3-0CM0	7M20 5.6t	1M16-5.6t	1M16-8-8t	1M16-8.8t	1M16-5.6t	1M16-5.6t	1M16-5.0L	1M16-5.6t	1M16-5.6t	2M16-5.6t	1M16-5.6t	2M20-8.8t		5M16-5.6t	2M16-5.6t	4M20-5 6t	2M20-8-81	2M20-8-8t	2M20-8-8t	2M20-5.6t	1M16-5.6t	3M20-5.6t	3M20-5 6t	2M20-8.8t	3M20-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.0t	1M16-5.6t	1M16-5.6t	2M20-5.6t	1M16-5.60	5M20-5.6t		6M20-5.6t	2M16-5.6t	1M16-5.6t	2M16-5.6t	1M16-5.6t	1M16-5-51	1M16-5.6t	1M16-5.6t	1M16-5.6t	3M22 5.6t	8M22-5.6t		6M20-5.6t	3M22-8-8t	1M16-5.6t	3M22-5.6t	3M22-5.6t	3M22-5.6t	3M22-5.6t
5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5233	5235	5355	8355	5235	5235	5235	5235	5235	5235	5235	S355	5235	5235	5235	5235	5233	5355	8355	5235	5235	5235	5233	5355	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235																
50x50x4	50x50x4	50×50×4	75x75x8	75x75x8	t1br1-3 75x75x8 t1or2-2 90x90x8	8×06×06	120x80x10	70x70x7	65x65x6	9x09x09	75x75x8	55×55×5	POXPOXP	120x120x11	120×120×11	60x60x6	te 170x70x7	80x80x8	70x70x7	60x60x5	120x80x10 65x65x7	65x65x7	65x65x7	55x55x5	65x65x7	70x70x7	UNP100	UNP100	55x55x5	65x65x6	70×20×2	70×70×7	70×70×7	65x65x7	55x55x5	75x75x8	75x75x8	70×70×7	65x65x6	50x50x5	50×50×4	50x50x5	60x60x5	50x50x5	65x65x7	50X50X5	75x75x7#	UNP140	UNP140	120x80x10	70x70x7	120x80x10	65x65x6	65×65×6	65x65x6	70X7X07	70x70x7	90x90x8	150x150x14	150x150x14	UNP140	6x06x06	65x65x6	90x90x8	90x90x8	8×06×06	8x06x06
mr2	t1bh1	t1td2	t1br1	t1br1-2	t1br1-3	t1or2-1	t1bh4	t1vd3	mzh1	mvd1	mvh1	mtd1	mzaı	mr3-3	mr3=3	11vh2	Boventravers	t1vd2	t1vd4	tivhi	110d2	tlod4	tlod5	mth2	t1od3	mvd2	tiori	t10r1-2	mtd2	mzhz	mzd2	mzd3	mvd3	mzd4	t2vd1	t2br1	t2hr1-3	mvd4	mvh3	t2vh1	t2td1	12Dn1	t2vd3	t2vh2	mzd5	tzvn3	mzh4	t2or1	t2or1-2	t2oh2	t2od10	t2od9	t2od8	120d/	t2od5	t2od2	t2od1	mvd5	mr4-2	mr4-3	mvh4	mzd6	t2od4	mzd7	mvd6	mzd8	Zpvm
mr2	t1bh1	t1td2	t1br1-1	t1br1-2	t1br1-3	t1or2-1	t1bh4	t1vd3	mzh1	mvd1	mvh1	mtd1	mzaı	mr3-1	mr3=2	11vh2	306	t1vd2	t1vd4	tlvhl	Toda	110d4	tlod5	mth2	t1od3	mvd2	tiori	t10r1-2		ı			П					l										Ш			Ш	t2od9	t20d8	120d/	t2od5	t2od2	t2od1	mvd5	mr4-2	mr4-3	mvh4	mzd6	t2od4	7pzu.	mvd6	mzd8	mvd7

Date Author Version

Assessment of groups for strengthened mast (afkeur level)

(trek)	0.70	0.64	0.74	0.55	0.80	0.84	0,74	0.77	0.02	N	0.00	0.0	0.24	0.0	0.58	0.69	0.72	0.76	99.0	0.48	0.07	0.70	0.13	0.04	0.65	0.00	0.19	0.72	0.23	0.85	20.02	000	500	0.54	0,01	0.53	0.19	0.42	0.66	0.37	70.0	0.08	0.01	0.01	0.01	0.02	0.01	0.41	0.01	0.01	0,38	0.02	0.04	0.02
rrek) U.C.	211.2	0.0	0.28	88.0	140.8	8.04)	140.8	140.8	40.0	0.00	80.6	55.5	27.7	800	40.8	0.0	320.0	18.0	140.8	140.8	58.7	176.0	58.7	27.7	176.0	26.0	28.0	28.0	28.0	28.0	70.0	28.1	38.1	57.3	28.0	38.1	38.1	38.1	38.1	52.3	20.1	38.1	38.1	38.1	38.1	38.1	38.1	83.2	69.7	166.3	38.1	38.1	52.3	38.1
Stuik																																																						
₹			ı					145.4																																														
Nettodsn	192.1	1097.7	1024.1	1024.1	227.7	241.5	241,5	241.5	155.	1	155.3	000	241.5	241	155 3	7.7601	1024.1	1024.1	155.3			П								ı					l							ı						П	194.4	1739.7	62.7	62.7	2.26	62,7
I. Trek Combinatie trek	135.3 SPLS 6a 90 Ba Ct2 Ba	707 1 ULS 3 0,9 90	/62.4 ULS 3 0,9 90	9 76	113.3 SPLS 6a_90 Ba Ct2 Ba	118 6 SPLS 6a 90 Ba Ct1 Ba	103,7 SPLS 6a_90 Ba Ct2 Ba	108 4 SPLS 6a 90 Ba Ct2 Ba	100 7 SPLS 64 90 B4 Ct1 B4	22 2 CPIC (2 DO DE CA) DE	// SPLS 6a 90 Ba Ct2 Ba	0.1 0LS 3_0,9_104	33,3 015 3_0,9 90	30.7 1115 3 0 0 00	82.3 SPI S 6a 90 Ba C#2 Ba	761.4 ULS 3 0.9 90	738 5 ULS 3 0,9 90	782.8 ULS 3 0,9 90	93.5 SPLS 6a 90 Ba Ct1 Ba	67.7 SPLS 6a 90 Ba Ct2 Ba	3.9 ULS 1a 90	101,2 SPLS 6a_90 Ba Ct1 Ba	7.7 ULS 3_90	1,2 ULS 1a_0,9_0,9_45	94.7 SPLS 6a_90 Ba Ct2 Ba	0.2 ULS 3_90	5.3 ULS 3.0,9.76	20.1 kortsluitbelasting 118.1	6.4 ULS 3 0,9 76	23.7 Kortsluitbelasting 11&1	O SPLS 18 U.9 133 Bd C	OF HIS 2 OF 76	0 5 CDIC 13 0 0 45 Ba CF	28.2 UIS 3.76	0.3 SPLS 1a 0,9 0 Ba All t	20.3 kortsluitbelasting 10&1	7,2 ULS 3_0,9_76	16.0 ULS 3_90	25.3 kortsluitbelasting 11&1	19.5 kortsluitbelasting 11&1	23.6 Vortellithelecting 118.1	3.1 kortsluithelasting 1081	0.3 kortsluitbelasting 1081	0.3 ULS 1a 0.9 0.9 76	0.5 SPLS 1a 0,9 76 Ba Ct	0.7 SPLS 1a_0,9_0,9_76 E	0.3 kortsluitbelasting 10&1	34.2 kortsluitbelasting 108.1	0.5 ULS 1a_0,9_135	1.7 ULS 1a 0,9 0,9 90	14,7 kortsluitbelasting 11&1	0.9 SPLS 1a_0,9_45 Ba Ct	1.9 SPLS 1a_0,9_45 Ba Ct	0.8 SPLS 1a 0,9 45 Ba All
.C. (druk) Opm	0.85	0.86	0.92	0.70	0.77	0.82	69.0	0.77	60.0	200	0.54	0.00	0.70	0.10	95.0	0.91	0.84	0.90	0,68	0.60	0.08	0.76	0.12	0.05	0.78	0.00	0,63	0.19	0.65	0.19	0.75	0.01	0.43	0.01	0,85	0.00	0.02	0,11	0.49	0.77	0.02	0.00	0.00	0.01	0.02	0.02	0.00	0.01	0.41	0.01	0.00	0.53	0.21	0.51
(druk)	285.1	0.0	1/82.0	1425.6	190.1	190.1	190.1	190.1	190.1	1001	190.1	0 4 0	190.1	1001	1901	0.0	1782.0	1782.0	190.1	190.1	83.2	237.6	83.2	54.0	237.6	86.4	43.2	43.2	43.2	43.2	45.2	0.07	0 00	20.6	43.2	58.8	58.8	58.8	28.8	70.6	0 00	0 00	0 00	28.8	58.8	58.8	58.8	117.6	94.1	235.2	58.8	58.8	70.6	28 8
uiving Stuik	218.2	0.0	1444.5	1163.5	145.4	145.4	145,4	145.4	145.4	140.4	145.4	20.0	145.4	145.4	145.4	0.0	1444.5	1444.5	145,4	145.4	72.7	145.4	72.7	58.8	145.4	75.4	37.7	37.7	37.7	37.7	20.0	60.5	200	60.3	37.7	60.3	60.3	60,3	60.3	60.3	500	60.3	60.3	60.3	60.3	60.3	60.3	94.1	60.3	188.2	60,3	60.3	60.3	60.3
inik Afsc	158.8	37.3	5/3	10.7	9.69	155.5	150,5	146.0	141.0	7 (4)	4.0	0.4	23.1	11.1	7.3	15.2	17.1	96.4	151,6	30.5	17.3	275.5	97.3	31,7	75.5	40.8	9.8	30.4	32.7	0 1	7.60	0.00	0.00	85.0	0,10	52.9	6.9	96.6	98.6	83.3	20.5	33.4	36.2	13.0	13.2	4.4	86.3	74.5	244.0	2.3	48.7	46.8	52.7	2.8
iruk	-134.5 SPLS 6a 90 Ba Ct2 Ba 1				- 1		- 1	-111.6 SPLS 6a 90 Ba Ct1 Ba 1	ш	П	- 11											-110.1 SPLS 6a_90 Ba Ct2 Ba 2			-112.8 SPLS 6a_90 Ba Ct2 Ba 2		luitbelasting 11&1		Sluitbelasting 118.1	50.5 Literature 110.5		155 Dd C	11011		-31,9 ULS 3 76		asting 10&1		. S.	3 (ı		ı	-1.0 ULS 1a 0,9 104	Ш		П	-24.5 kortsluitbelasting 118.1 2	-1.0 ULS 1a_90 16		۱	-10.9 ULS 3 90	
	П		1		- 1		- 1	122	ш	П	ш			ш						ı		84	107	175	84	160	178	169	160	152	130	123	113	102	106	113	106	65	114	116	133	112	62	134	133	130	62	178	71	12	121	125	151	123
RLZ Slankh	0.53	1,00	1.00	1.00	0.52	0.52	0,52	0.52	1 00	000	00.0	00.0	1.00	001	0.54	1.00	0,33	1.00	0.50	1.00	1.00	0,33	1.00	1.00	0,33	1.00	1.00	1.00	1.00	1.00	7.00	1.00	00.1	00.1	1,00	1.00	1.00	0,52	0.50	1.00	000	00.1	1.00	1.00	1.00	1,00	1.00	1,00	1.00	2.00	1,00	1.00	1.00	1.00
RLY	0.53	2,37	2.40	2,42	0.52	0.52	0,52	0.52	7 00 1	3 5	00.0	000	1.00	100	0.54	2.38	0,33	2.08	0,50	1,00	1.53	0,33	1.53	1,00	0.33	1.00	1.00	1.00	1.00	1.00	000	1.00	00.1	1.00	1,00	1.00	1.00	0,52	0.50	1.00	00.1	00-1	1.00	1.00	1.00	1,00	1.00	1,00	1.00	2.00	1,00	1.00	1.00	1.00
RLX	0.53	2.40	1.20	2.35	0.52	0.52	0,52	0.52	0.52	0 0	00.1	00.1	00.1	000	0.54	2.31	0.33	1.20	1 00	1.00	1.00	0.33	1.00	1.00	0.33	1.00	1.00	1.00	1.00	100	00.1	00.1	000	1.00	1 00	1.00	1.00	0.52	0.50	1.00	00.1	00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1,00
Bouten	3M22-5.6t	10 11 00000	10M22-5-60	8M22-5.6t	2M22 5.6t	2M22-5.6t	2M22-5.6t	2M22-5.6t	2M22-5.0L	20122-2000	1M20 E 64	1M20-5.01	1M20-5-6t	2M22 5 6t	2M22-5.6t	1000	10M22-5.6t	10M22-5-6t	2M22-5.6t	2M22-5.6t	1M22-5.6t	2M22-5.6t	1M22-5.6t	1M20-5.6t	2M22-5.6t	2M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5 6t	10.C=0.MI	1M16-8-81	1M16-8-8t	1M16-8-8t	1M16-5 6t	1M16-8.8t	1M16-8,8t	1M16-8-8t	1M16-8-8t	1M16-8-8t	IMIG 8 84	1M16-8-8t	1M16-8-8t	1M16-8-8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M20-8.8t	1M16-8-8t	2M20-8-8t	1M16-8-8t	1M16-8.8t	1M16-8-8t	1M16-8-8t
Staalsoort	5235	5235	5235	5235	5235	5235	3235	5235	2250	25.23	2235	252	5235	222	232	2235	5235	5235	5235	5235	5235	5235	3235	5235	5235	5235	5235	5235	5235	5235	5235	5555	2322	5355	5235	5355	5355	5355	S355	5355	2255	5355	5355	5355	5355	5355	S355	5355	S355	5355	5355	5355	S355	355
		160x160x15#		x15#				90x90x8													70X70X7	100x100x10 5			×10										l							ı								Ш		۱		
hrijving	_							mzd11 90			'n	mm4				stuk mair	Onderstuk mair 160x160x15#	Onderstuk mair 160x160x15#	mzd14 90		mzh6 70			mtd5 6(mvd13 10	Bovenstuk Bove 55x55x5	Bovenstuk Bove 55x55x5	Bovenstuk Bove 55x55x5	Bovenstuk Bove 55x55x5	Bovenstuk Bove 55x55x5	Bovenstuk Bove 55x55x5	Bovenstuk Bow 50x50x5	Bovenetilk Bove 50×50×5	Bovenstuk Bove 60x60x6	Bovenstuk Bove 55x55x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse · 60x60x6	Boventraverse (50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse (80x80x8	Boventraverse (80x80x8	Boventraverse HEB160	Boventraverse 50x50x5	Boventraverse (50x50x5	Boventraverse (60x60x6	Boventraverse 15
daoab			ı					zd11		2777		- L		445				E-62			rh6		rh6 r		vd13 r							2-1																						


Date Author Version

Assessment of groups for strengthened mast (verbouw level)

ZW380 Oost D2.3 RSB-RSD Hoekmast H150° 11

U.C. (trek)	0.89	0.87	00.00	0.58	0.71	0.74	69.0	0.84	69.0	0.67	0.05	0.01	0.65	0.53	0.23	0.50	0.66	0.37	0.62	0.88	0.08	0.01	0.01	0.01	0.02	0.01	0.41	0.01	0.01	0.38	0.02	0.04	000
tuik (trek)	69.7	61.0	69.7	123.3	145.5	123.3	123.3	145.5	323.4	45.8	38.1	38.1	52.3	38.1	38.1	38.1	38.1	52.3	38.1	38.1	38.1	38.1	38.1	38.1	38.1	38.1	83.2	69.7	166.3	38.1	38.1	52.3	38.1
Afschuif S	120.6	60.3	120.6	188.2	188.2	188.2	188.2	188.2	349.1	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	94.1	60,3	188.2	60.3	60.3	60.3	, V
Nettodsn.	194.4	142.7	194.4	131.6	131.6	198.9	131.6	131.6	276.6	75.3	62.7	62.7	98.8	62.7	62.7	62.7	62.7	98.8	62.7	62.7	62.7	62.7	62.7	62.7	62.7	62.7	181.9	194.4	1739.7	62.7	62.7	98.8	62.7
Trek Combinatie trek	62.2 kortsluitbelasting 10&1	52.3 kortsluitbelasting 10&1	0.0	71.7 SPLS 6a_90 Ba Ct1 Ba	94.1 SPLS 6a 90 Ba Ct2 Ba	91.5 SPLS 6a 90 Ba Ct2 Ba	84.8 SPLS 6a 90 Ba Ct2 Ba	111.0 SPLS 6a_90 Ba Ct1 Ba	191.3 SPLS 6a_90 Ba Ct2 Ba	30.4 kortsluitbelasting 11&1	2,1 ULS 3_0,9_76	0.5 SPLS 1a 0,9 45 Ba Ct.	34.1 ULS 3_76	20.3 kortsluitbelasting 10&1	8.9 ULS 3_0,9_76	19,2 ULS 3_90	25.3 kortsluitbelasting 11&1	19.5 kortsluitbelasting 11&1	23.8 kortsluitbelasting 11&1	33.6 kortsluitbelasting 11&1	3.1 kortsluitbelasting 10&1	0.3 kortsluitbelasting 10&1	0.4 ULS 1a_0,9_0,9_76	0.5 SPLS 1a_0,9_76 Ba Ct.	0.9 ULS 1a_0,9_0,9_76	0.3 kortsluitbelasting 10&1	34.2 kortsluitbelasting 10&1	0.6 ULS 1a_0,9_135	2.1 ULS 1a_0,9_0,9_90	14.7 kortsluitbelasting 11&1	0.9 SPLS 1a_0,9_45 Ba Ct.	1.9 SPLS 1a_0,9_45 Ba Ct.	0.8 SDIS 1a 0.9 45 Ba All
-mdo																																	
U.C. (druk)	00.00	0.30	0.86	0.62	0.62	0.63	0.47	0.54	0.69	0.01	0.52	0.52	0.01	00.00	0.02	0.14	0.49	0.77	0.02	0.48	00.00	00.00	0.01	0.03	0.03	00.00	0.01	0,41	0.01	00'00	0.53	0.25	0.81
Stuik (druk)	94.1	82.3	94.1	205.8	205.8	205.8	205.8	205.8	436.6	20.6	58.8	28.8	70.6	58.8	58.8	58.8	58.8	20.6	58.8	58.8	58.8	58.8	58.8	58.8	58.8	58.8	117.6	94.1	235.2	58.8	58.8	20.6	8 85
fschuiving St	120.6	60.3	120.6	188.2	188.2	188.2	188.2	188.2	349.1	60.3	60.3	60.3	60.3	60.3	60.3	60,3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	94.1	60.3	188.2	60.3	60.3	60.3	803
Knik At	71.6	62.6	72.4	П	151.6	143.6	144.7		281.1	52.9	48.0	52.9	85.0	52.9	56.9	96.6	58.6	83.3	36.2	47.7	53.4	86.2	43.0	43.2	44.4	86.3	74.5	244.0	1602.3	48.7	46.8	52.7	47.8
Druk Combinatie druk	0.0	17.9 kortsluitbelasting 108.1	-62.5 kortsluitbelasting 108.1	-90.7 SPLS 6a_90 Ba Ct2 Ba	94.5 SPLS 6a 90 Ba Ct2 Ba	-90.3 SPLS 6a 90 Ba Ct2 Ba	67.3 SPLS 6a 90 Ba Ct1 Ba	-70.8 ULS 6a_90 Ba Ct1	-195.3 SPLS 6a_90 Ba Ct2 Ba	-0.4 SPLS 1a_0,9_135 Ba C	-24.8 kortsluitbelasting 11&1	-27.5 ULS 3_76	-0.4 SPLS 1a_0,9_0 Ba All (0.0	-1.4 kortsluitbelasting 10&1	-8-5 ULS 3_0,9_90	-28.5 kortsluitbelasting 11&1	-46.1 kortsluitbelasting 108.1	-0.9 SPLS 1a_0,9_45 Ba Ct.	-22.9 kortsluitbelasting 1181	-0.1 SPLS 1a 0,9 76 Ba All	-0.1 ULS 1a_0,9_0,9_76	-0.6 ULS 1a_0,9_104	-1.3 ULS 1a_0,9_104	-1.3 ULS 1a_0,9_104	0.0 SPLS 1a_0,9_0,9_76 B	-0.4 SPLS 1a_0,9_0,9_104	-24.5 kortsluitbelasting 11&1	-1.2 ULS 1a_90	0.0	-24.6 kortsluitbelasting 11&1	-13.0 ULS 3_90	-24 5 Vorteliithelasting 1081
RLZ Slankheid	183	167	181	102	86	103	102	112	86	130	123	113	102	113	106	9	114	116	152	123	112	62	134	133	130	62	178	71	15	121	125	151	123
				2 0.52	00.1		1 0.51					00.1	00.1	00.1			0.50								00.1	00.1	00.1		0 2.00	00.1		_	1 00
RLX RLY			1.00 1.00	0.52 0.52	1.00 1.00	0.52 0.52	0.51 0.51	0.52 0.52				1.00 1.00	1.00 1.00	1.00 1.00			0.50 0.50									1.00 1.00	1.00 1.00		2.00 2.00	1.00		1.00 1.00	1 00
Bouten	IM16-8.8t	IM16-8.8t	LM16-8.8t	2M20-8.8t	2M20-8,8t	2M20-8.8t	2M20-8.8t	2M20-8.8t	3M22-8-8t	IM16-8.8t	1M16-8.8t	IM16-8.8t	1M16-8.8t	1M16-8-8t	1M16-8-8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8-8t	1M16-8.8t	1M16-8-8t	1M16-8-8t	1M16-8-8t	IM16-8.8t	1M16-8-8t	1M20-8-8t	1M16-8.8t	2M20-8,8t	IM16-8.8t	1M16-8-8t	1M16-8-8t	1M16-8-8t
Staalsoort B	5355 1	S355 1	S355 1	5355 2	S355 2	5355 2	S355 2	5355 2	S355 3			5355 1	5355 1	5355 1			5355 1	5355 1								5355 1	5355 1	5355 1	S355 2	5355 1		5355 1	5355
Omschrijving Profiel	t1vd1 80x80x8	Boventraverse (70x70x7	t1vd2 80x80x8	mvd2 70x70x7	mzd2 70x70x7	mzd3 70x70x7	mvd3 70x70x7	mvd4 70x70x7	6x06x06 9pzm	Bovenstuk Bove 55x55x6	Bovenstuk Bove 50x50x5	Bovenstuk Bove 50x50x5	Bovenstuk Bove 60x60x6	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse 150x50x5	Boventraverse 50x50x5	Boventraverse · 60x60x6	Boventraverse (50x50x5	Boventraverse (50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse (50x50x5	Boventraverse 150x50x5	Boventraverse 150x50x5	Boventraverse 150x50x5	Boventraverse (80x80x8	Boventraverse (80x80x8	Boventraverse HEB160	Boventraverse 50x50x5	Boventraverse (50x50x5	Boventraverse (60x60x6	Boventraverse (50x50x5
Staafgroep																																	

1) The bolted connections on groups t1vd1 and t1vd2 require strengthening with plates. Refer to Appendix D and E. 2) Groups 301-7, 301-8 and 302 t/m 325 are new groups which were added for the upper conductor attachment extension.

ZW380 Oost D2.3 RSD-WDT Lijnportaal Mast 19a

										i t	stulk	arschulving, nettodsn.,																														
5.0 0.45		3.9 0.04	7 9 0	3.9 0.37	1.2 0.74	1 0 28 4 0 28	3.5 0.27	12 0.64	2 0.66	1.2 0.91	1.04	0.01	2.6 0.51	9.8	219.8 0.09	9.8 0.02	3.8 0.06	7.1 0.08	1.5 0.00	3.2 0.05	27 0.04	5.4 0.05	80.0	3.0 0.07	7.6 0.03	3.3 0.67	2.7 0.46	69.0 0.1	2.0 0.38	0.39	0.13	3.8 0.11	3.4 0.15	3.5 0.40	3.5 0.15	3.5 0.01	3 4 0.38		2.0 0.10	2.3 0.04	3 0.01	2.3 0.01
3 371	3 879.3 6 879.3	3 42	7 549	1 18	1 24	1 27.	1 9	1 24	1 24	1 24	1 24	9	2 35.	1 21	1 21	1 21	3 21	1 21	4 1	2 15	200.00	2 17	3 6 6	3 6	1 11	6 14	13.	3	6 12	9 9	6 150	17.1	6 170		1 6	n (n)	2 258.4	2 0	9 6	m m		m
0 3720 0 2168	7 0 3 813 3 1626	.0 0 .4 482 .9 1626	3 406. 7 1897.	3 271	0 271	4 271	7 94	3 271	3 271	3 271	3 271	2 120	5 806	6 271.	6 271	6 271	6 271 7 60	5 271.	7 60	3 188	5 188	3 188	.8	4 271	9 94	8 135	3 135	8 60	7 1	8 60	.0 135	.1 135	1.	7 94	, ,	7 94			.4 120 .8 60			
135 1661.		90 1065. Ct1 550. Ct1 493.	Ш		Ct2 262 Ct2 337	3,5 216 3,5 216	135 165 Ct2 131	Ct2 260	Ct2 260	CH2 260			90 916.5 Ct2 469.5	Ct1 204	3,5 204	Ct2 204	Ct2 204		135 62.	₩.	176	3 3	3,5 98.8	3,5 98	135 181 Cts 225	Cts 225	Cts 169	St	ts 1	Cts 98	Ct2 290.1	Ct2 290		90 131			119.2			Cts 98.8 135 98.8	9 45 98	
		ULS 3 0,9 90 SPLS 3 0,9 53,5 Ba Ct1 SPLS 3 0,9 53,5 Ba Ct1		ULS 14 90,5					ш	ш	ш			SPLS SPLS	D	SPLS 44 0,9	SPLS 1a_45 Ba Ct2 SPLS 4_90 Ba Ct2	SPLS 4		SPLS 3 53,5 Ba	SPLS 3_0,9_53,5 Ba	SPLS 3_0,9_53,5 Ba	orts 2 0,9 23,5 54		SPLS 4 0,9	SPLS 4 0,9 90		SPLS 4 0,9	SPLS 4 0,9	SPLS 4 0,9 90			Ш	Ш	ULS 4_54,5 SPLS 4_0,9_90 Ba Ct2	Ш	ш		ULS 3_0,9_53,5 ULS 3_0,9_135		ULS 1a_0,9_0,	SPLS 1a 0.9 0.9 0 Ba A
745.3	628. 44. 45.	50.8 15.4 28.8	2/3. 0.0 371.	109.0	181.		4.4	153.3	161.0	Ш	knik, afschi	Knik, afschuiving, stuik 155.	133,	76.1	19.	3.5	12.1	13.2	.011	7.	7.9	3.3	4.0	3.5	3.0	90.0	61.1	41.0	36.	23.7	17.1 1.7.1	16.9	20.	37.	32. 13.	15.	70.9	71,	7.1	2.5	000	
3951.4 0.54 2257.9 0.16	0.0 0.45 1270.1 0.15 1270.1 0.05	0.0 0.07 470.4 0.04 1058.4 0.06	793.8 0.15 1852.2 0.52	352.8 0.00	352.8 0.62 352.8 0.72	317.5 0.43 317.5 0.45	235.2 0.28 102.9 0.10	352.8 0.70	352.8 0.92	352.8 0.92	352.8 1.04	117.6 0.02	352.8 0.58	317.5 0.22	317.5 0.01	317.5 0.08	317.5 0.03 58.8 0.30	282.2 0.02	58.8 0.00	235.2 0.05	235.2 0.05	176.4 0.09	70.6 0.07	70.6 0.06 423.4 0.01	117.6 0.04 158.8 0.57	158.8 0.66	141.1 0.48	70.6 0.56	141.1 0.40	70.6 0.00	176.4 0.00 105.8 0.02	176.4 0.00	176.4 0.00	102.9 0.25	102.9 0.20	102.9 0.27	117.6 0.37 294.0 0.58	294.0 0.06		70.6 0.34		
003	0.0 813.3 1626.6		6.7	1.1	111	1.1	8.2	111	13:	11:	13;	0.6	8.2	11	1.1	11	0.3	111	0.3	8.2	88.2	8.2	60.3	71.1	94.1 35.6	35.6	2.6	60.3	9.0	60.3	135.6	5.6	5.6	1.1	4.1	4.1.	94.1	0.0 8.2	0.6	0.3	0.3	0.3
5 to 10 to	mar	2.4 482. 2.4 1626.	8.2 406. 2.1 1897.	3.4 27	6.5 27	3.0 2.	5.0	6.2	2. 2. 2.	7.7	8.3	3.0	2.2 80	8.4 2	8.4	9.1	8.5	9.9	8.6	9.9	8.5	5.2	4.3	5.4 2.	0.9	1.6	8.3	6.3	6,7 120 4.9 120	9.2	3.7	9.5	72.3	, LO	1.0	4.1	w r	0 0	4 4	27.5		
1643.	170 88 92	92	165	12 12	27	17	ω m	19	19	21 21	26	0 4	111	22	25	24	38	21	2 2		181		04	50	11 22	23	17	11	12	E1 E2	23	98	37	12	21	17	31	140	400	7 7	ı	
25.55	.35 53,5 Ba Ct1 i3,5	53,5 Ba Ct1 33,5 33,5	90 Ba Ct2		90 Ba Ct2 90 Ba Ct2	35	90 Ba Ct2 0	90 Ba Ct1	0,9 90 Ba Ct2	90 Ba Ct2	0,9 90 Ba Ct2	90 Ba Ut2 135	.35 0,9 90 Ba Ct2	0,9 53,5 Ba Ct1	0,9 90 Ba Ct2	43 Bd Ct2 90	0,9 135 Ba Ct2 0,9 90 Ba Ct2	0,9 90 Ba Ct2	35	1a 0,9 53,5 Ba Ct1	5,5	35	9 53,5	,9 53,5 ,9 53,5	90 Ah All Cts	90 Ba Ct1 0 9 90 Ah All Cts	90 Ba Ct.2	90 Ah All Cts	2 9	9	S 4_0,9_90 Ba Ct1	SPLS 4 0.9 90 Ba Ct1	0 0 00 Rs C+2	0,9 90 Ba Ct2	90 Ba Ct1	45 Ba Ct1	3,5	9 53,5	0 Ba Ct1 0 Ba All Cts	.35 0 Ba Ct2	135	3.5
១១១	-760.1 ULS 3_135 -119.1 SPLS 3_53,5 -42.3 ULS 3_53,5	-65,5 SPLS 3 -18,8 ULS 3 -31,7 ULS 3	-61.0 ULS 1a 90, -636.2 SPLS 4 90	0.0	PLS 4	LS 3 1	PLS 4	136.5 SPLS 4	-184.0 SPLS 4	200.5 SPLS 4	278.9 SPLS 4	-156.1 SPLS 4 -0.8 ULS 1a	LS 3	PLS 3	PLS 4	LS 1a	9.1 SPLS 1a 11.4 SPLS 4	-3.8 SPLS 4	0.0 ULS 3_1	SPLS	SIS	6.7 ULS 3.1	3.0 ULS 3.0	2.5 ULS 3 0 2.4 ULS 3 0	-3.3 ULS 3_0 -77.0 SPLS 4	-90.0 SPLS 4	64.5 SPLS 4	-33.7 SPLS 4	-37.9 ULS 4 9	.18.5 ULS 4 9	굺	14	0.0	PLS 4	PLS 4	PLS 12	13.4 ULS 3 5	8.3 ULS 3.0	-0.3 SPLS 1a	-8.9 ULS 3_1 -2.5 SPLS 1a	-0.9 ULS 1a	-9.3 115.3 5
		3 2 3 ;							Ш		Ш									Ш		Ш												Ш	Ш							
55 0.55 55 0.55	50 0.50 52 0.52 52 0.52	52 0.52 50 0.50 50 0.50	00 1.00	30 1.00	33 0.33	00 1.00	50 0.50	00 1 00	52 0.52	55 0.55	55 0.55	50 0.50	00 1.00	53 0.53	52 0.52	52 0.52	52 0.52 00 1.00	00 1.00	50 0.50	00 1.00	50 0.50	50 0.50	00 1.00	00 1.00	00 1.00 52 0.52	53 0.53	53 0.53	20 0.50	50 0.50	50 0.50	00 1.00	00 1.00	00 1.00	00 1.00	00 1.00	00 1.00	55 1.00	53 1,00 89 1.00	00 1.00	00 1.00 00 1.00	1.00 1.00	1.00
14M24-8.8t 0.55 0.14M24-8.8t 0.55 0.	0.50 0 6M24-8.8t 0.52 0 6M24-8.8t 0.52 0	0.52 0.52 4M16-8.8t 0.50 0.50 6M24-8.8t 0.50 0.50	3M24-8.8t 2.00 1.7M24-8.8t 1.00 2.	4-8-8t 1.00 1 4-8-8t 1.00 1	4-8.8t 1.00 0	4-8.8t 1.00 1 4-8.8t 1.00 1	0-8-8t 0-92 0	2M24-8 8t 1.00 1 2M24-8 8t 1.00 1 2M24-8 8t 0.52 0	4-8.8t 0.52 0.	4-8-8t 0.55 0	2M24-8.8t 0.55 0.	5-8.8t 0.50 0.	4-8.8t 1.00 2	4-8.8t 0.53 0	2M24-8.8t 0.52 0	ZMZ4-8 8t 0.82 0	2M24-8.8t 0.52 0.	2M24-8.8t 1.00 2	1M16-8.8t 0.50 0	2M20-8 8t 1.00 1	0.884 0.50 0.	ZMZ0-8.8t 0.50 0	1M16-8.8t 1.00 1.	5 8 8t 1 00 1 4 8 8t 1 00 1	1M24-8.8t 1.00 1.	4-8.8t 0.53 0	1M24-8.8t 0.53 0.	5-8.8t 0.52 0	ZM16-8.8t 0.50 0.	1M16-8 8t 0.52 0 1M16-8 8t 2.00 2	1M24-8.8t 1.00 1.	4-8.8t 1.00 1	14-8.8t 1.00 1	1M20-8 8t 1.00 1	2-8-8t 1.00 1	1M20-8.8t 1.00 1.	1M20-8.8t 1.00 1.	1.00 1.	2M16-8.8t 1.00 1. 1M16-8.8t 1.00 1.	5-8.8t 1.00 1.5-8.8t 1.00 1.	5-8-8t 1.00 1	5-8-81 1.00 1
12M 14M 8M2	6M2 6M2	4M1 6M2	3M2 7M2	2M2.	2M2 2M2	2M2 2M2	2M2 1M2	2M2 2M2 2M2	ZMZ	2M2 2M2	2M2	IM2 2M1	6M2 2M2	2M2,	2M2	2M2.	2M2 1M1	2M2.	1M1 2M2	ZMZ	2M2 2M2	ZMZ	1M1	1M1 2M2	1M2 1M2	1M2	1M2	1M1	2M1 2M1	1M1	1M2 1M2	1M2	1M2	1M2	1M2	1M2	1M2 2M2	ZMZ	2M1 1M1	1M1	1M1	1M1
180x180x16+5355 180x180x16+5355 180x180x16+5355	x180x16+5355 x130x12+5355 x130x12+5355	130x130x12+S355 100x100x10 S355 100x100x10 S355	x160x15;5355 x160x15;5355 x160x15;5355	x100x10 S355 x100x10 S355	x100x10 S355 x100x10 S355	90x9 S355	30x8 S355 70x7 S355	4100×10 5355	x100x10 5355	x100x10 \$355	x100x10 S355	70x/ 5355 50x5 5355	x160x15+S355 x120x12 S355	30x9 S355	90x9 S355	90x9 5355	90x9 S355 50x5 S355	30x8 5355	50x5 S355	30x8 S355	30x8 5355	50x6 5355	50x6 5355	60x60x6 S355 n120x120x12 S355	30x8 S355 30x9 S355	90x9 S355	30x8 5355	50x6 S355	50x6 5355 50x6 5355	50x6 S355 50x6 S355	x100x10 S355 50x6 S355	x100x10 S355 50x6 S355	x100x10 S355	70x7 5355	70x7 S355	70x7 5355	30x8 5355 x100x10 5355	<100×10 S355 <100×10 S355	120 S355 50x6 S355	50x6 S355 50x6 S355	50x6 S355	50x6 5355
180) ser 180)	ber 180) ber 130) ber 130)	130) 100) 100)	160)	100)	150)	5×06 5×06	80x6 70x7	100)	100)	100	100)	20%	member 160) member 120)	5×06	×06	3X06	300s agona 50x	member 80x8	50x	member 80x8	80x08)XQ9	.r 60x6	r member Lon 120)	member Tra 80x8 90x9	90x2	80x6	60x6	9009	60x6			Ш	Ш	Ш				EWP Hrz	60x6	9×09	9X09
Main mem Main mem	JTK - Main mem SNTK - Main mer SNTK - Main men	Tweede TSSNTK - Main member BVNSTK - Main member BNNSTK - Main member	SRM - Main botto RM - Main botto	SRM - Main top SRM - Main top	Jiagonal	lorizontal lorizontal	D 1 liagonal 1	NTK - Diagonal 1	MK-001	MK-CD 2	TK CD 3	VTK - CD 4	NTK - Horizontal	SNTK - CD 1	SNTK - CD 2	SNTK - CD 3	SNTK - CD 3 SNTK - Bottom di	SNTK - Horizonta	SNTK - CD 4	SNTK - Horizonta	BVNSTK -CD 1 809	.D 2	lorizontal membe	orizontal memb oven Horizontal	Soven Horizontal	202	4 9	9 00	20.7	CD 9 3ottom horizonta	Traverse - Bottom horizontal 2 Traverse - Bottom horizontal 3	Bottom horizonta	Bottom horizonta	Front diagonal 2	Traverse - Front diagonal 3 Traverse - Front vertical 1	Front vertical 3	Traverse - Front diagonal 5 Traverse - Front diagonal 6	Front diagonal 6	I - Ondertraverse Top diag 1	Traverse - Top diag 2 Traverse - Top diag 3	Traverse - Top diag 4	PE
ξĚ		ŭβΣΣĝ	SISIS	សសត្ថ		ΤÍ	U	រាស៍ទី	160	160	16	n lố	ថានី	81 6	S	83 6	SSS	is is	8 8	S	انار	اتار	T I	د بو	a۱۲	7	M	ď	~ ~	~ =	- 8	- 6	۳ "	15	- 4	114	-14	-14	ongitudinal	пĽ.	7	ſ,

17-6-2021 MKh 1.0

Date Author Version

Assessment of groups for strengthened mast (afkeur level)

ZW380 Oost D2.3 RSD-WDT Lijnportaal Mast 19a

00	0.1	0.04	0.05	0.03	0.17	0.00	0.40	0.37	0.74	0.69	0.28	0.03	0.26	0.65	0,71	0.67	0.93	0.87	0.88	0.01	0.52	0.74	0.08	0.09	0.03	0.05	0.17	0.03	00.00	0.75	0.05	0.04	0.05	60'0	0.08	0.01	0.03	0.52	0.62	0.46	0.50	0.30	0.38	0.15	0.13	0.19	0,11	0.15	0.40	0.44	0.15	0.01	0.00	0.10	0.12
3715.0	2122.8	879.3	0.0	423.9	0.0	549.6	301.5	183.9	244 2	301.5	271.4	142.5	93.5	244.2	244.2	244.2	244.2	293.1	293.1	89.0	1492.6	352.8	219.8	219.8	219.8	219.8	44.5	195.4	44.5	159.2	206.7	206.7	176.4	139.3	61.0	398.0	117.6	149.3	149.3	132.7	132.7	122.0	122.0	61.0	150.8	176.4	38.8	176.4	93.5	72.8	93.5	93.5	60.4	0.0	226.5
3720.3	2168.8	813.3	1626.6	482.3	0.0	1897.7	271.1	271.1	271.1	271.1	271.1	188.2	94.1	271.1	271,1	271.1	271.1	542.2	542.2	120.6	806.5	188.2	271.1	271.1	271.1	271.1	60.3	271.1	60.3	188.2	188.2	188.2	188.2	188,2	60.3	271.1	94.1	135.6	94.1	135,6	135.6	120.6	120.6	60.3 60.3	135,6	135.6	135,6	135.6	94.1	94.1	94.1	94.1	94.1	0.0	188.2
1661.0	1661.0	838.3	1065.0	550.4	1658.2	1510.3	425.5	260.3	262.0	337.6	216.4	165.3	131.7	260.3	260,3	260.3	260,3	307.0	307.0	66.2	916.5	469.5	204.6	204.6	204.6	204.6	62.7	160.3	62.7	165.3	176.5	176.5	117.3	123.2	98.8	448.4	181,9	225.8	131.7	169.3	169.3	121.7	121.7	2 86	290.1	290.1	80.0	290.1	131,7	131.7	131./	131.7	119.2	681.6	321.1
135	135	0,9 45 Ba Ct	در 90 90	53,5 Ba C	90 Ah All	- IIV 4P 06 6'0		Ba Ct2	0,9 90 Ba Ct2	90 Ba Ct2	53.5	135	Ba Ct2	9 90 Ba Ct2	90 Ba Ct2	90 Ba Ct2		90 Ba Ct2	Ba Ct2	30 Ba Ct2	96	Ba Ct2	9 45 Ba Ct	la 53,5	0,9 135 Ba C	5 Ba Ct2	90 Ba Ct2	90 Ba Ct2		F Ra Ct1	9_53,5		0.9 135	53,5	10.1	0.10		0,9 90 Ah All	Ah All Cts	90 Ah All	90 Ah All -	90 Ah All	90 Ah All	- An will -	10 Ba Ct2	0 90 Ba Ct2	1	4_90 Ba Ct2		200	90 Ba Ct2	0,9 90,5	- DC+	135	2
5 ULS 3 0,9	7 ULS 3 0,9	4 SPLS 1a 0,	9 ULS 3 0,9	13.2 SPLS 3 0,9 53,5 Ba C 23.9 SPLS 3 0.9 53.5 Ba C	6 SPLS 4 0,9	3 SPLS 4 0,9	109 6 ULS 3 45	2 ULS 1a 90 6 SPIS 4 90	SPLS 4	9 SPLS 4 0,9	1 ULS 3 0.9	4 ULS 1a 0,9	0 SPLS 4 90	5 SPLS 4 0,9	2 SPLS 4 0,9	3 SPLS 4 90	4 SPLS 4 0,9	5 SPLS 4_0,9	6 SPLS 4 90	6 SPLS 4 90	1 ULS 4_0,9	7 SPLS 4 90	7 SPIS 1a 0	0 ULS 1a 53	8 SPLS 1a_0,	9 SPLS 1a 4	7 SPLS 4_90	4.8 SPLS 4 0.9 90 Ba Ct2	1 ULS 3 135	ULS 3_1	2 ULS 3 0,9		4 UIS 3 0.9	6 0 E S T O 9	6 ULS 3 53,5	8 ULS 3 53,5	0 ULS 3 135	1 SPLS 4_0,9	7 SPLS 4 90	1 SPLS 4 0,9	0 SPLS 4 0,9	1 SPLS 4 0,9	5 SPLS 4 0,9	3 ULS 3 90	5 SPLS 4_90	2 ULS 3 90	1 ULS 3 90	7 SPLS 4_90	7 ULS 4 90	2 ULS 3	SPLS 4	2 ULS 1a_0,9	0 0 0 0 0 0 0 0	0 ULS 3 0,9	2 ULS 3_53,5
755	174,	35.	49,9	13.	275	371.	109	116.6	181	187,	.09	4,	24.	158	173	163	226,	255,	257,	0	416.	139,	\	19,	9.	6	7.	4	0	119.3	. 6	7,1	ń iń	10,	4	4 W	E.	71.	57.	61.	67.0	36	45.	6	17,	16.	4	20.	37	32.	13.	1,	0 6	71,	23
0.53	0.17	0.14	0.07	0.04	0.45	0.15	0.00	000	0.62	0.72	0.45	0.28	0.09	0.71	0,92	0.94	0.93	0.93	0.90	0.02	0.81	0.61	0.14	00.00	0.04	0.03	0.20	0.03	0.00	0.00	0.05	0.06	80.0	0.08	0.07	0.01	0.04	0.57	0.50	0.48	0.49	0.31	0.40	0.00	0.00	0.02	0,01	0.00	0.25	0.00	0.20	0.01	0.37	0.27	0.06
0.4	0,0	2 -1	- O	4 4	o	ω N	00	ω ₁ C	60	ω u	i vi	.2	0.0	o eo	e0 e	10 G	00.	4.	4.4	. 9	9	00 1	v r.	S.	ις. 1	i ri	60	1 7	ι κο	7.0	.2	.2	4 4	00	90 (ο 4	9	ω (n 0	=	1	2	rų (ي د	4	10 4 4	. 00	4 0	n o	o, c	n 0	n o	ως	0.0	2 0
3386.9	2257	1270	12/0	470	0	1852	352	352	352	352	317	235	102	352	352	352	352	423	423	117	1587	352	317	317	317	317	88 5	282	28	235	235	235	176	205	20 5	423	117	158	102	141	141	141	141	2 2	176	105	105	176	102	102	102	102	117	0	294
3720.3	2168.8	813.3	1626.6	482.3	0.0	1897.7	271.1	271.1	271.1	271.1	271.1	188.2	94.1	271.1	271.1	271.1	271.1	542.2	542.2	120.6	806.5	188.2	271.1	271.1	271.1	271.1	60.3	271.1	60.3	188.2	188.2	188.2	188.2	188,2	60.3	271.1	94.1	135.6	135.6	135.6	135.6	120.6	120.6	E 09	135,6	135.6	135,6	135.6	94.1	94.1	94.1	94.1	94.1	0.0	188.7
1688.0	1741.5	888.9	920.7	512.4	1225.7	1658.2	127.7	123.4	276.5	172.0	173.0	81.7	35.0	196.2	199.9	199.9	217.7	315,3	315.3	43.0	1112.2	550.7	178.0	258.4	258.4	267.3	38.5	219.9	58.6	119.9	188.5	188.5	75.2	189.9	44.3	505.4	116.5	220.9	145.0	178.3	212.0	126.7	134.9	39.2	233.7	309.5	80.1	372.3	125.5	82.2	211.0	174.1	36.3	140.0	140.0
10.10	10.11	,5 Ba Ct1	A	N N	Ba Ct2	S 1a_90,5 LS 4_90 Ba Ct2			Ba Ct2	Ba Ct2		Ba Ct2	90	90 Ba Ct1	Ba Ct2	9 90 Ba Ct2	Ba Ct2	Ba Ct2	0,9 90 Ba Ct2	35	10	9 90 Ba Ct2	5 Ba Ct1	SPLS 1a 0,9 0,9 53,5	5 Ba Ct2	,9_135 Ba C	7.6 SPLS 4_0,9_90 Ba Ct2	Ba Ct2		0 53 5 Ra	9.0 ULS 3_53,5	ر د م	0 10	, so	53,5	0,9 53,5	135	S 4_90 Ah All Cts	9 90 Ah All	90 Ba Ct2	Ab All Cr	ULS 4_90				SPLS 4_0,9_90 Ba Ct1	SPLS 4_0,9_90 Ba Ct1	C10 B10 C10	9 90 Ba Ct2	30	Ba Ct1	5 Ba Ct1	ı,	53,5	53.5
5 ULS 3 13 6 ULS 3 13	288.5 ULS 3 135	5 SPLS 3_5	0 ULS 3_13	-18.3 ULS 3 53,5	3 SPLS 4 90	-61.0 ULS 1a_90	0	0 0	1 SPLS 4_90 Ba (8 SPLS 4 90	5 ULS 3 53	8 SPLS 4 90 Ba Ct2	3 ULS 1a_0	SPLS 4	0 SPLS 4 90	SPLS	SPLS 4	9 SPLS 4 90	284 1 SPLS 4 0,	7 ULS 1a 1:	5 ULS 3_13	7 SPLS 4_0,	5 SPIS 3 5	9 SPLS 1a (3 SPLS 1a 4	1 SPLS 1a (6 SPLS 4_0,	3 SPLS 4 90	0 ULS 3 13	0 2 CDI C 13 (0 ULS 3_53,	5 ULS 3_53	5 ULS 3 135	5 ULS 3_53	0 ULS 3 0,9	4 ULS 3 0,9	3 ULS 3 0,9	8 SPLS 4_9(0 SPLS 4 0.	4 SPLS 4 90	9 ULS 4 90	9 ULS 4 90	3 ULS 4 90	0	0	1.0 SPLS 4_0,	8 SPLS 4_0,	0.0	8 SPLS 4 0,9 9	0	8 SPLS 4 90	5 SPLS 1a 4	3.4 ULS 3_53,5	2 ULS 3 0,9	
47 898 51 879	Ш	Н				12 -61. 56 -636.	94 0	99 0.	25 167	25 194.8	34 77	39 -22	4 t	14 138	184 0	187 0	33 -203	12 291	12 -284	34 0	53 -656.	71 -115	25.5	94 0.9	94	7	46 7	32 6	0 0	9 0	33 9	33 -10	37 6	76 -14	71	35 -2	28 3	37 -76	30 47	36 -64	55	35 37.9	79 -48	0 18	Ш		108 -0.8				7 7		7	7	ı
							-	-	1				2		***	-	1	1	1	-							T		-		1	-	-		-		1							2	-		ī		1	1			2	-	-
1.00 1.00	Ш	Н					Ш																						Ш			П													Ш		1.00 1.00					Ш	1.00 1.00		ı
1.00 1.0	Ш	Н					Ш																				1.00		Ш			П													Ш			1 00				Ш	1.00		ı
	Ш																																													35 55	, at	8	8t	.8t	50 80	.8t	18 10	18.	.8t
12M24-8-8t		6M24-8.8t		4M16-8.8t 6M24-8.8t		3M24-8.8t 7M24-8.8t				- 1			- 11			- 1			- 1			- 11	_		- 1		1M16-8.8t											- 1			1M24-8.8t			1M16-8.8t	ш			1M24-8.8t			- 11		1M20-8.8t		2M20-8.8t
x16# S355 x16# S355	5355	5355	5355	5355	5355	5355	5355	5355	5355	2355	5355	2355	2355	5355	5355	5355	5355	5355	5355	5355	5355	2322	5355	5355	5355	5355	5355	5355	2355	5355	5355	2355	5355	5355	5355	S355	2355	5355	5355	2322	2322	5355	5355	5355	2355	5355	5355	5355	5355	5355	5355	5355	5355	5355	5355
BRKSTK - Main 180x180x16# S Eerste TSSNTK 180x180x16# S	80x180x16#	30x130x12#	30x130x12#	00x100x10	.60x160x15#	.60x160x15# .60x160x15#	00×100×10	00x100x10	50×100×10	50×100×10	6x06x0	0x80x8	0x70x7	00x100x10	00x100x10	00×100×10	00x100x10	.00x100x12	.00×100×12	0x50x5	.60x160x15#	20x120x12	6×06×0	6×06×0	6×06×0	6x06x0	0x50x5	0x80x8	0x50x5	0x80x8	0x80x8	0x80x8	0xe0xe	0x70x7	9x90x0	20x120x12	0x80x8	6×06×0	0x20x2	0x80x8	0x80x8	9x09x0	9x99x0	9x90x0	00×100×10	00x100x10	Traverse - Botti 60x60x6	00×100×10	0x70x7	7×0×0	/X0/X0	0x70x7	0x80x8	Traverse - Fron 100x100x10	00x100x10
- Main 1	TSSNTK 1	e TSSNTI 1	e ISSNIII	TK - Main 1	DWSRM 1	DWSRM 1	DWSRM 1	DWSRM 1	K - Diagc 1	K - Diagc 1	K - Horiz 9	7K - CD 18	K - Diage 7	TSSNTK 1	TSSNTK 1	TSSNTK 1	TSSNTK 1	TSSNTK 1	e TSSNTK 1	e TSSNTK 5	e TSSNTK 1	e TSSNTK 1	de TSSNT19	de TSSNTI 9	de TSSNT19	de TSSNTI9	de TSSNTI 5	de TSSNT18	de TSSNTI 5	de TSSNTI 8	TK - CD 18	TK - CD 18	TK - CD 2 6	TK - TOP 7	TK - Horiz 6	TK - Bove 1	TK - Bove 8	rse - CD 15	rse - CD 27	rse - CD 48	rse - CD 58	rse - CD 76	rse - CD 86	rse - CD st	rse - Botti 1	rse - Botti 6	se - Botti 6	rse - Botti 1	Se - Fron 7	rse - Fron 7	Se - Fron 7	Traverse - Fron 70x70x7	rse - Fron 8	rse - Fron 1	rse Fron 1

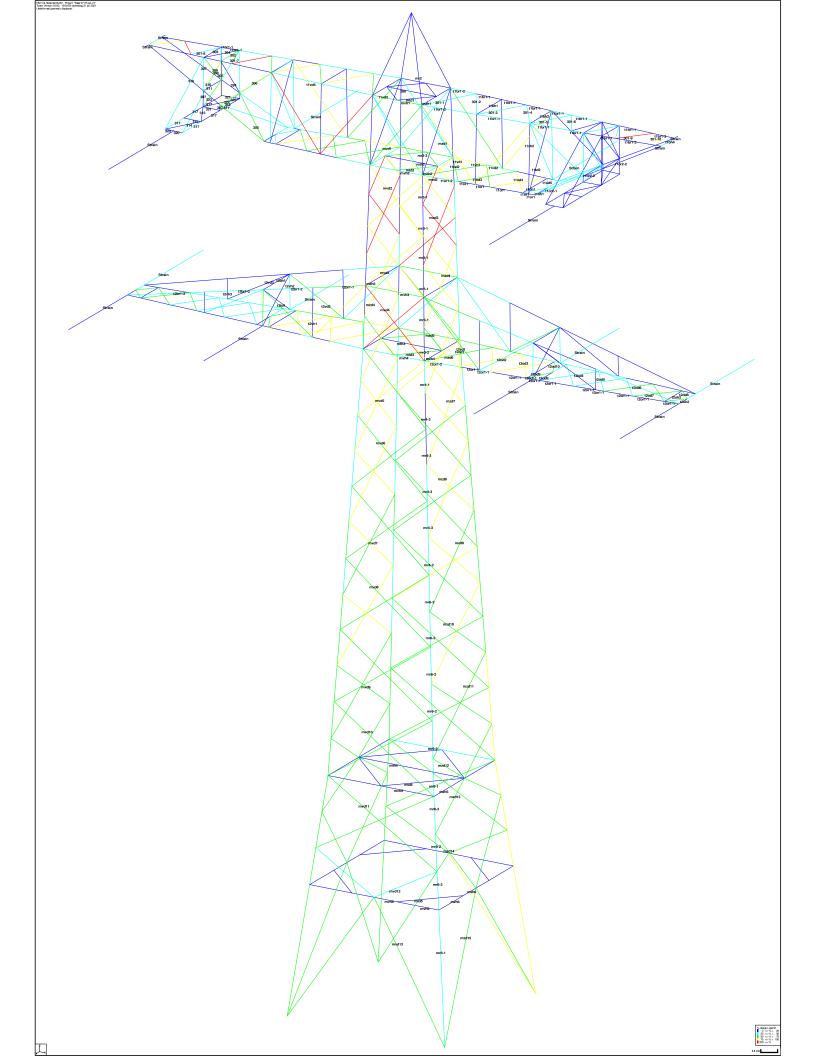
Date Author Version

Assessment of groups for strengthened mast (afkeur level)

ZW380 Oost D2.3 RSD-WDT Lijnportaal Mast 19a

_						
Opm.2						
U.C. (trek)	0.04	0.16	0.01	0.01	0,27	0.02
Stuik (trek)	52,3	52,3	52,3	52.3	52,3	52.3
Afschuif	60,3	60,3	60.3	60.3	60,3	60.3
Nettodsn.			98.8			
Trek Combinatie trek	2.3 SPLS 1a 0,9 0 Ba All o	8,6 ULS 3_135	0.6 ULS 1a_0,9_0,9_45	0,7 SPLS 1a 0,9 0,9 0 Ba	14.1 ULS 3_0,9_53,5	0.8 SPLS 1a_0 Ba Ct1
Opm,						
U.C. (druk)	0.34	60.0	0.02	0.25	0,02	0.55
tuik (druk)	20.6	70,6	20.6	20.6	20.6	20.6
Afschuiving S	60.3	60.3	60.3	60.3	60.3	60.3
			59.3			
Druk Combinatie druk	-8.8 ULS 3_135	-2.4 SPLS 1a 0 Ba Ct2	-0.9 ULS 1a_135	-9.3 ULS 3_53,5	-0.7 SPLS 1a_0 Ba All Cts	-22.8 ULS 3 0,9 53,5
eid	241	234	138	190	191	178
RLZ Slankt	1.00	1.00	1.00	1.00	1.00	1.00
RLY	1.00	1.00	1.00	1.00	1,00	1,00
RLX	1.00	1.00	1.00	1.00	1,00	1.00
Bouten	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8-8t	1M16-8.8t
Staalsoort	2355	S355	5355	5355	5355	S355
Omschrijving Profie	Traverse Top 60x60x6	Traverse - Top 60x60x6	Traverse - Top 60x60x6	Traverse - Top 60x60x6	Traverse - Top 60x60x6	Traverse - Top 60x60x6
groep						

Date Author Version


Assessment of groups for strengthened mast (verbouw level)

ZW380 Oost D2.3 RSD-WDT Lijnportaal Mast 19a

_	-	Ħ.	4	ŀ
Stuik (trek	542.2 293.1	293	176	
	307.0			
Trek Combinatie trek		265.8 SPLS 4_90 Ba Ct2		
•mdo				
k Afschuiving Stuik (druk) U.C. (druk) Opm.	0.96	0.93	0.97	
uik (druk)	423.4	423.4	176.4	
Afschuiving St	542.2	542.2	188.2	
Knik	315.3	315.3	301.9	
Druk Combinatie druk	-302.0 SPLS 4_90 Ba Ct2	-293.5 SPLS 4_0,9_90 Ba Ct2	-170.3 SPLS 4 90 Ba Ct2	
cheid	112	112	95	
RLZ Slankheid	0.55	0.55	1.00	
RLY	0.55	0.55	1.00	
RLX	0.55	0.55	1.00	
	2M24-8.8t	2M24-8.8t	1M20-8.8t	
Staalsoort	S355	S355	S355	
Omschrijving Profie	Eerste TSSNTK 100x100x12	Eerste TSSNTK 100x100x12	Eerste TSSNTK 100x100x12	
Staafgroep	213L	213T	214	

Notes

¹⁾ The bolted connections on groups 213L/T and 214 require strengthening using plates. Refer to Appendix D and E.

Assessment of groups for initial mast (afkeur level)

ZW380 Oost D2.3 RSD-MDK Winkelmast 150° Mast 97

			afschuiving, stuik															nettodsn., stuik	stuik					nettodsn, stuik																								
18.7 0.00 22.4 0.47 18.7 0.06 0.0 0.35	1.8 0.50	2 0 00 35	1.64	6 0 53	0 0.21	10 0.23	0.05	38.4 0.50	8 0.05	0.00	0.62	.8 0.46	0.00	06.0	0.20	0 0.68	5 0.33	6 1.16	6 1.13	.6 0.92	28.0 0.01	5 0.67	5 0.47	5 0 1.11	3 0.00	3 0.00	0.00	3 0.65	23.3 0.00	0.00	0.27	6 0.72	0.49	0.41	4 0.57	4 0 54	8 0.87	7 0 79	5 0.49	0.44	7 0.29	4 0.40	2 0.81	2 0.74	2 0.60	0.67	99.0	0 0.49
212	258	111	4 4 5	77 77	36	0.0	5 586	, 4	4	3,0	4.4	4	56	17	1 250	95	17.	7.	7.7	36	32	177	771	100	7	7 7	36 36	7	7 2	30.00		604	4		3,50	3 33	y 4	7	. 97.	1108	320	36	2 211	211	211	211	1782	1186
9 37. 9 37. 9 0.	3 294.	, 0. 6 75. 1 75.	8 37 8 37 7 235	7 117	6 75.	7 00.	.0 411.	8 37	8 37.	1 75	7 37.	8 37	7 75	4 117.	3 0.	6 75.	7 235.	4 117.	4 117.	1 117.	7 58.	9 176	9 176.	7 117.	1 37.	1 37.	5 37.	1 37	1 37.	117.	. 6	1 117	1 75.	1 75	9 37.	9 37	8 37.	37.	8 468	3 0.	3 352.	9 37.	5 218.	7 218	2 218. 2 218.	7 218	1 1444.5	1 1163
t,5 36.9 4,5 36.9 9,0 267.9	90 204	12 351. 4,5 332.	112 112 113 114.	5.5 154.	71 71 71 63	90 599	90 524 12 536	312 72	12 104	241 332.	712 84	12 94.8		Ct2 76	75 317	111 63	Ct1 126.	t1 76	Ct1 115.	133	2t2 65.	11 143	11 26/	212 96		35	11 60	11 46	.t1 149.	88	212 479.	212 409	332.	332	Ct2 67.	712 89	104	Ct2 104	242 880	90 866	Ct2 438.	12 89	H2 241.	196	.t1 194.	241 192	90 1024	90 1024
SPLS 1a 0,9 0,9 135 Ba All of the control of the co	ULS 3 8	kortsluitbelasting 108 kortsluitbelasting 108 ULS 3 0,9 8-	SPLS 6a_90 Ba Ct1 Ba (kortsluthelasting 108	SPLS 6a_90 Ba Ct1 Ba C	SPLS 6a 90 Ba Ct2 Ba C	ULS 3 0,9	ULS 3_0,9 kortsluitbelasting 118	SPLS 6a_90 Ba Ct1 Ba (kortsluitbelasting 10&12	SPLS 6a_90 Ba Ct2 Ba (SPLS 6a 90 Ba Ct1 Ba C	kortsluitbelasting 11812	Sa 90 Ra Ct2	2 2	ULS 3 0,9	2 0	- O	90 Ba Ct2 Ba	Ba	90 Ba Ct2 Ba	korteliithelasting 108	kortsluitbelasting 108	kortsluitbelasting 10&12 kortsluitbelasting 10&12	SPLS 6a 90 Ba Ct1 Ba (SPLS ba_90 Ba cti Ba ct2	korteliithelasting 108	kortsluitbelasting 10811	SPLS 6a_90 Ba Ct2 Ba C	SDIS 63 90 Ab All Cte Ba	SPLS 6a_90 Ba Ct1 Ba	SPLS 6a 90 Ba Ct1 Ba C SPLS 6a 90 Ba Ct2 Ba C	SPLS 6a 90 Ah Ct2 Ba C	SPLS 6a_90 Ba Ct1 Ba	12 Ba	t2 Ba	tt Ba	t2 Ba	SPLS 6a 90 Ba Ct1 Ba (ULS 3 0,9	ULS 6a 90 Ba C	h Ct2 Ba	SPLS 6a 90 Ah Ct1 Ba C SPLS 6a 90 Ba Ct2 Ba C	SPLS 6a 90 Ba Ct2 Ba	SPLS 6a_90 Ba Ct2 Ba C SPLS 6a_90 Ba Ct2 Ba C	SPLS 6a 90 Ba Ct2 Ba (ULS 3 0,9	0'0 E S10
0.0 % 10.4 10.4 1.0 1.0 94.8	102.0	10.4 7.3 26.4	61.9 27.6 8.8	36.2	11.8	140.4	134,9	18.7 knik, afschulving, stulk 0.0		23.1	23,3	17.2	0.0	9.89	63.1	38.0	41.8		knik 87.5	83.4	21-8	96.4	96.4	107.8	0.0	0.0	0.0	15.1	82,3		129.2	144.5	37.0	30.5	22.8	20.2	32.8	26.7	228.8	488.4	93.3	14.9	34.5	144.8	146.9	129.3	677.3	501,1
0.02 0.09 0.33	0.28	0.00	0.00	0.19	0.19	0.37	0.17	0.07 1.65 knik. a	0.77	0.02	0.66	0.48	0.00	0.98	0.51	0.67	0.27	0.98	1.02	0.86	0.10	0.00	0.01	0.61	0.02	0.00	0.72	0.00	0.01	0.00	0.66	0,67	0.00	0.13	0.69	0.49	0.82	0.77	0.58	0.63	0.62	0.45	0.99	0.74	0.85	0.81	0.82	0.63
34.6 34.6 0.0	432.0	155.5 155.5 172.8	60.5	129.6	86.4	0.0	831.6	51.8	90.5	172.8	509	60.5	86.4	129.6	0.0	86.4	259.2	129.6	129.6	151.2	64.8	259.2	259.2	151.2	43.2	43.2	51.8	43.2	1/2.8	151.2	0.0	151.2	172.8	172.8	51.8	51.8	60.5	60.5	1209.6	1330.6	453.6	51.8	285.1	285.1	285.1	285.1	1782.0	1425.6
37.7 37.7 37.7 0.0	294.0	75.4	37.7	117.6	75.4	0.0	581.8	37.7	37.7	75.4	37.7	37.7	75.4	117.6	0.0	75.4	235.2	117.6	117.6	117.6	37.7	176.4	176.4	117.6	37.7	37.7	37.7	37.7	37.7	117.6	0.0	117.6	75.4	75.4	37.7	37.7	37.7	37.7	468.6	1163.5	352.8	37.7	218.2	218.2	218.2	218.2	1444.5	1163.5
25.5 28.5 30.1 179.5	199.4	155.3 192.2 352.1	40.0 0.04 0.08	70.6	60.1	490.4	397.4	34.2	40.5	358.2	97.6	108.2	37.6	85.3	247.1	56.4	117.1	90.5	85.3	99.7	88.2	80.1	54.5	109.8	29.5	29.0	36.3	45.0	59.6	63.3	367.2	353.9	344.6	348.5	95.2	93.8	108.5	103.5	822.3	802.5	325.0	87.8	179.7	175.5	1/1.4	161.1	948.1	951.2
rsluitbelasting 118.12 S 3_0,9_84,5 rsluitbelasting 118.12 S 3_0,9_90	S 3 0,9 90 S 1a 0,9 0,9 84,5	LS 64_90 Ba Ct1 Ba Ct2 tslutbelasting 108.12 LS 1a_0 Ba Ct1	rtsluitbelasting 108.12	rsluitbelasting 11812 S 3 0,9 90		3	S 3_95,5 rtsluitbelasting 10812	LS 3 0,9 84,5 Ba Ct1 rtsluitbelasting 10812	LS 6a 90 Ba Ct1 Ba Ct2	LS 1a 0 Ba All Cts rtsluitbelasting 11812	LS 6a 90 Ba Ct2 Ba Ct1	rtsluitbelasting 11812	rtsluitbelasting 11&12	LS 6a_90 Ba Ct2 Ba Ct1	LS 6a 90 Ba Ct2 Ba Ct1	LS 6a_90 Ba Ct2 Ba Ct1	LS 6a_90 Ba Ct1 Ba Ct2	LS 6a_90 Ba Ct2 Ba Ct1	LS 6a 90 Ba Ct2 Ba Ct1	LS 6a_90 Ba Ct2 Ba Ct1	tsluitbelasting 10&11	6	PLS 3 0,9 90 Ba Ct2 PLS 3 0,9 90 Ba Ct2	LS 6a 90 Ba Ct1 Ba Ct2	LS 6a_90 Ba Ct1 Ba Ct2	LS 1a_0,9_0,9_0 Ba Ct1 LS 6a_90 Ba Ct1 Ba Ct2	ortsluitbelasting 10&11	200	LS 6a 90 Ba Ct2 Ba Ct1 rtsluitbelasting 10811	rtsluitbelasting 10811	LS 6a 90 Ba Ct2 Ba Ct1	LS 6a 90 Ba Ct2 Ba Ct1 LS 6a 90 Ba Ct2 Ba Ct1	LS 6a 90 Ba Ct1 Ba Ct2	LS 6a_90 Ba Ct1 Ba Ct2	LS 6a 90 Ah Ct2 Ba Ct2 LS 6a 90 Ah Ct2 Ba Ct2	LS 6a 90 Ah Ct2 Ba Ct2	LS 6a_90 An Ct2 Ba Ct2 LS 6a_90 Ba Ct1 Ba Ct2	S 6a 90 Ba Ct2	S3_90		9 5	. 2	ng ng	2	LS 6a_90 Ba Ct2 Ba Ct1 LS 6a_90 Ba Ct2 Ba Ct1	æ	5 3 95,5	53 90
153 -0.4 ko 139 -2.4 UL 132 -1.3 ko 92 -59.0 UL																				Ш		000	8.0-	\$ 6.99-	-0.5	2.4 S	-26.0 k				Ш					Ш												
t 1.00 1.00 1.00 t 0.53 0.53 0.53 t 1.00 1.00 1.00 3.00 1.00 1.00	00 1.00 1.00	00 1.00 1.00 00 1.00 1.00 00 1.00 1.00	00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	52 0.52 0.52 00 1.00 1.00	00 1 00 1 00	40 1.20	40 1.00 1.00 00 1.00 1.00	00 1 00 1 00	00 1 00 1 00	00 1 00 1 00	52 0 52 0 52	00 1.00 1.00	52 0 52 0 52	52 0 52 0 52	08 1 83 1 83	00 1 00 1 00	00 1 00 1 00	00 1 00 1 00	52 0 52 0 52	00 1.00 1.00	00 1.00 1.00	00 195 1.00	00 2.33 1.00	52 0 52 0 52	00 1.00 1.00	51 0 51 0 51 00 1 00 1 00	00 1 00 1 00	00 1.00 1.00	00 1.00 1.00	00 1.00 1.00	85 1.65 1.65	54 1.00 1.00 00 1.00 1.00	00 2.00 1.00	00 1 00 1 00	00 1 00 1 00 52 0 52 0 52	53 0 53 0 53	52 0.52 0.52	52 0 52 0 52	20 2 56 1.00	38 2.35 1.00 40 2.45 1.00	00 1.00 1.00	53 0 53 0 53	52 0 52 0 52 53 53 6 53	53 0 53 0 53	52 0.52 0.53	53 0 53 0 53	20 2.40 1.00	35 2 42 1 00
1M16-5.6t 1. 1M16-5.6t 0. 1M16-5.6t 1. 3.	5M20-5.6t 2. 4M16-5.6t 3.	ZM16-5.6t 1. ZM16-5.6t 1. ZM16-5.6t 1.	1M16-5.6t 1. 1M16-5.6t 1. 4M20-5.6t 2.	2M20-5 6t 0.	2M16-5.6t 1. 2M20-5.6t 0.	2. 2.	3M22-5.6t 2. 7M20-5.6t 1.	1M16-5.6t 1.	1M16-5.6t 1.	1M16-5.6t 1. 2M16-5.6t 2.	1M16-5.6t 0	1M16-5.6t 1.	2M16-5.6t 1	2M20-5.6t 0	3. 5M16=5.6t 1	2M16-5.6t 1.	10M20-5.6t 1.	ZM20-5.6t 1	2M20-5.6t 0.	2M20-5.6t 1.	1M20-5.6t 1.	3M20-5.6t 1	3M20-5.6t 1.	2M20-5.6t 0.	1M16-5.6t 1.	1M16-5.6t U	1M16-5.6t 1.	1M16-5.6t 1.	2M20-5.6t 1. 1M16-5.6t 1.	2M20-5.6t 1.	2.	2M20-5.6t 1.	2M16-5.6t 1.	ZM16-5.6t 2.	1M16-5.6t 1.	1M16-5.6t 0.	1M16-5.6t 0.	1M16-5.6t 0.	8M20-5.6t 1.	8M22-5.6t 2.	6M20-5.6t 2.	1M16-5.6t 0	1M16-5.6t 0. 3M22-5.6t 0.	3M22-5.6t 0.	3M22-5,6t 0. 3M22-5,6t 0.	3M22-5.6t 0	10M22-5.6t 1.	8M22-5.6t 2
50x50x4 S235 50x50x4 S235 50x50x4 S235 75x75x8 S235	75x75x8 S235 75x75x8 S235	90x90x9 5235 90x90x9 5235 120x80x10 5235	70x70x7 S235 70x70x7 S235 65x65x6 S235	60x60x6 5235 75x75x8 5235	55x55x5 5235 60x60x6 5235	120x120x11 S235	120x120x11 S235 120x120x11 S235	60x60x6 S235 70x70x7 S235	70x70x7 S235	120x80x10 5235	65x65x7 S235	65x65x7 5235	55x55x5 S235 65x65x7 <235	65x65x6 S235	UNP100 S235	55x55x5 S235	65x65x6 S235	65x65x6 S235	65x65x6 S235 65x65x6 C235	65x65x7 S235	60x60x6 S235 55x55x5 S235	75x75x8 \$235	75x75x8 5235 75x75x8 5235	70x70x7 S235 65x65x6 S235	50x50x5 S235	50x50x4 5235 50x50x5 S235	60x60x6 5235 60x60x5 5235	50x50x5 S235	90x90x8 5235 50x50x5 S235	65x65x7 S235	UNP140 S235	UNP140 S235 65x65x7 S235	120x80x10 S235	120x80x10 S235	65x65x6 5235 65x65x6 5235	65x65x6 S235	70x70x7 S235	70x70x7 S235 90x90x8 S235	150x150x14 S235	150x150x14 5235 150x150x14 5235	UNP140 S235 90v90v8 <235	65x65x6 S235	70x70x7 S235 90x90x8 S235	90x90x8 S235	90x90x8 S235 90x90x8 S235	90x90x8 S235	160x160x15:5235	160×160×15+S235
	2 17 2	t1or2-2 t1or2-1 t1bh4	/d1	7 2	F		3-3	h2 d2	vd4	h1	od2	292	th2	vd2	or1	td2	zh2	zd2	2d3	2d4	h3	br1	11-3	46.4	뒫	u l	2 5	2	າ ຕ	w 4		2 5	h2	69	4 68	9 4	12	= 5		7 m	4 4	4	7	9 ,	2 00	0	2-5	5-3

Date Author Version

Assessment of groups for initial mast (afkeur level)

ZW380 Oost D2.3 RSD-MDK Winkelmast 150° Mast 97

Vet Section Sh	241,5	241.5	155.3	155,3	155.3	65.7	241.5	54.7	241.5	155.3	1097.7	1024.1	1024.1	155.3	155.3	92.7	217.7	92.7	54.7	217.7	63.6	46.1	46.1	46.1	46,1	46.1	46.1	46.1	46.1	62.7	62.7	62.7	62.7	62.7	62.7	98.8	62.7	62.7	62.7	62.7	62.7	62.7	62.7	62.7	181.9	194.4	1739.7	62,7	62.7	98.8	62.7	142.7
Load Case (Tension)	SPLS 6a 90 Ba Ct2 Ba Ct1	SPLS 6a 90 Ba Ct2 Ba Ct1	SPLS 6a_90 Ba Ct1 Ba Ct2	SPLS 6a_90 Ba Ct1 Ba Ct2	SPLS 6a_90 Ba Ct1 Ba Ct2	ULS 3_0,9_135	01 S 3 0,9 90	ULS 1a_0,9_45	ULS 3 0,9 95,5	SPLS 6a_90 Ba Ct2 Ba Ct1	ULS 3_0,9_95,5	ULS 3_0,9_95,5	01S 3 0,9 90	SPLS 6a 90 Ba Ct1 Ba Ct2	SPLS 6a_90 Ba Ct2 Ba Ct1	0LS 3_95,5	SPLS 6a_90 Ba Ct1 Ba Ct2	ULS 3_95,5	ULS 1a 0,9 45	SPLS 6a_90 Ba Ct2 Ba Ct1	ULS 3_95,5	0F 3 0,9 90	kortsluitbelasting 11812	01 3 0,9 90	kortsluitbelasting 11&12	SPLS 1a_0,9_135 Ba Ct1	kortsluitbelasting 11812	ULS 3_84,5	SPLS 1a 0,9 0 Ba Ct1	0LS 3_0,9_90	SPLS 1a 0,9 45 Ba Ct1	kortsluitbelasting 11812	ULS 3 0,9 84,5	01°S 3 00	kortsluitbelasting 11&12	kortsluitbelasting 10&12	kortsluitbelasting 10&12	kortsluitbelasting 11812	kortsluitbelasting 11&12	kortsluitbelasting 10812	ULS 1a 0,9 0,9 84,5	ULS 1a 0,9 0,9 84,5	SPLS 1a_0,9_84,5 Ba All Cts	kortsluitbelasting 11&12	kortsluitbelasting 11812	ULS 1a_0,9_135	ULS 1a_0,9_0,9_90	kortsluitbelasting 11&12	PLS 1a 0,9 0,9 45 Ba All Cts	SPLS 1a_0,9_45 Ba Ct2	SPLS 1a 0,9 45 Ba Ct1	kortsluitbelasting 10&12
no) Tension	97,4	102.8	84.0	98.3	77.7	0.0	29.4	1,1	30.8	81.5	684.6	664.7	6962	87.2	64.9	4.8	96.3	9,2	1.2	93.4	0.2	6,1	21.2	7.4	25,1	9.0	30,2	29.9	0"3	1,4	0.5	20.0	7.8	16.6	25.2	19.1	23.3	32.4	e.	0.2	0"3	9.0	0.7	0,3	35.6	0.5	1.6	14.3	4S 6.0	1.9	8 " 0	53.9
II C (Comp) Exceedance (Com	0,64	0.75	0.64	0,63	0.53	0.00	0.23	0,05	0.29	0.54	0.82	0.77	0.82	0.61	09.0	0.05	0.71	0,11	0.05	0.77	0.00	0.66	0.22	69.0	0,22	0.74	0.01	0.01	0.90	0.50	0.46	0.00	0.02	0.12	0.47	0.79	0.02	0.47	0.00	0.00	0.01	0.02	0.03	0.00	0.01	0.41	0.01	0,00	0.52	0.20	0,53	0.31
aring (Comp)	190,1	190.1	190.1	190.1	190.1	64.8	190.1	54.0	190.1	190.1	0.0	1782.0	1782.0	190.1	190.1	83.2	237.6	83,2	54.0	237.6	86.4	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	58.8	58.8	58.8	58.8	58.8	28.8	70.6	28.8	58.8	28.8	58.8	58.8	28.8	58.8	58.8	117.6	94.1	235.2	58.8	58.8	70.6	28.8	82.3
ar (Comp) Re	145,4	145.4	145,4	145,4	145.4	58.8	145.4	28.8	145.4	145.4	0.0	1444.5	1444.5	145.4	145.4	72.7	145.4	72.7	58.8	145.4	75.4	37.7	37.7	37.7	37,7	37.7	37.7	37.7	37.7	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	90.3	60.3	60.3	60.3	60.3	60.3	94.1	60.3	188.2	60,3	60.3	60,3	60.3	60.3
Buckling She	152.4	147.8	143.4	149.3	138.7	19.0	171.1	23,1	126.3	127.3	922.6	1007.1	988.3	153.0	130.5	97.3	275.5	97,3	31.7	275.5	40.8	28.6	30.5	32.7	34.9	39.9	42.1	48.2	50.9	48.4	52.9	53.2	57.2	96.8	59.2	82.5	36.0	47.3	23.3	86.2	42.9	43.2	44.5	86.3	74.4	244.2	1602.3	48.6	46.9	52.4	47.6	63.0
nunression Load Case (Compression)	0 Ba Ct2	0 Ba Ct1	-92.3 SPLS 6a 90 Ba Ct2 Ba Ct1	-91.7 SPLS 6a_90 Ba Ct2 Ba Ct1	-73.7 SPLS 6a_90 Ba Ct2 Ba Ct1	0.0 SPLS 1a_0 Ba All Cts	-33.7 ULS 3 95,5	-1,2 ULS 1a_45	33 - 37,0 ULS 3 95,5	-68.5 SPLS 6a_90 Ba Ct1 Ba Ct2	-786.1 ULS 3_95,5	-770.9 ULS 3_95,5	-807.6 ULS 3 95,5	-89.1 SPLS 6a_90 Ba Ct2 Ba Ct1	-78.7 SPLS 6a_90 Ba Ct2 Ba Ct1	-3.9 ULS 3 0,9 95,5	-102.6 SPLS 6a_90 Ba Ct1 Ba Ct2	-8.0 ULS 3 0,9 95,5	-1.7 ULS 1a_45	-112.0 SPLS 6a_90 Ba Ct2 Ba Ct1	0.0	-18.9 kortsluitbelasting 11812	-6.6 ULS 3 0,9 90	-22.5 kortsluitbelasting 11&12	-7.7 ULS 3_0,9_84,5	-28.0 kortsluitbelasting 11812	-0.5 SPLS 1a 0,9 135 Ba Ct1	-0.4 SPLS 1a_0,9_0 Ba All Cts	-33.9 ULS 3_84,5	-24.2 kortsluitbelasting 11&12	24.3 ULS 3 84,5	0'0	-1.3 kortsluitbelasting 11&12	7 1 ULS 3 0,9 95,5	-27.7 kortsluitbelasting 11&12	-47.7 kortsluitbelasting 10&12	-0.8 SPLS 1a_0,9_0,9_45 Ba Ct2	-22.4 kortsluitbelasting 10&12	-0.1 SPLS 1a_0,9_84,5 Ba Ct2	-0.1 ULS 1a_0,9_0,9_84,5	-0.5 ULS 1a 95,5	-1.0 ULS 1a_95,5	-1.3 ULS 1a_95,5	0.0 SPLS 1a_0,9_84,5 Ba All Cts	-0.4 SPLS 1a 0,9 0,9 95,5 Ba All Cts	-24.7 kortsluitbelasting 11812	-0.9 ULS 1a_0,9_0,9_90	0'0	-24.2 kortsluitbelasting 10812	-10.7 ULS 3_95,5	-25.5 kortsluitbelasting 11&12	-18.8 kortsluitbelasting 10812
onderness Co	117	121	124	119	128	295	103	220	133	138	22	44	48	110	135	107	84	107	175	84	160	178	169	160	152	135	129	113	107	122	113	112	105	65	114	117	153	124	112	9	134	133	130	62	178	71	15	121	125	152	123	166
Rolls RIX RIY RIZ SI	0,52	t 0.52 0.52	6t 0.52 0.52	1.00 1.00	1.00	1.00	1.00 1.00	1,00	2,00	0.54	2.31 2.38	0.33	t 1.20 2.08	0.50	1.00	1.53	0.33	1,53	1.00 1.00		1,00 1,00	t 1.00 1.00	1.00	1.00	1,00 1,00	1.00	1.00 1.00	1.00	5t 1.00 1.00	3t 1.00 1.00	t 1.00 1.00	1.00	t 1.00 1.00	t 0.52 0.52	8t 0.50 0.50	1.00	1.00	8t 1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1M16-8.8t 1.00 1.00 1.00		1M16-8.8t 1.00 1.00 1.00
Steel Ouality	5235	5235	5235	5235	5235	5235	32	5235	5235	35	32	32	35	32	5235	35	35	5235	5235	35	32	32	32	35	32	32	5235	35	35	5355	5355	5355	355	5355	5355	5355	5355	5355	5355	5355	2355	5355	5355	355	S355	5355	5355	5355	5355	5355	355	5355
Profile S	.,									90x90x8 S	160×160×15; S235	160×160×15+5235	x15			70x70x7 S.	x10	70×70×7 S.	60x60x5 S.	×10							П												١	2									Ш			70×70×7 S
Group Label Description	6pvm							mtd4				Onderstuk main member	Onderstuk main member	mzd14	mvd12	mzh6		mvh6			Bovenstuk Boven Diaphram Hrz										Bovenstuk Bovenvlak Diag	Boventraverse upper horizontal (new)	Boventraverse upper horizontal (new)	Boventraverse upper CD (new)	Boventraverse lower CD (new)	Boventraverse vertical new frame	Boventraverse diag new frame	Boventraverse diag new frame	Boventraverse horiz new frame	Boventraverse under horiz new frame	Boventraverse under diag new frame	Boventraverse under diag new frame	Boventraverse under diag new frame	Boventraverse under horiz new frame	Boventraverse overhang diag new frame 80x80x8	Boventraverse overhang diag new frame 80x80x8	Boventraverse ketting connection beam HEB160	Boventraverse horiz new frame	Boventraverse diag new frame	Boventraverse diag new frame	Boventraverse diag new frame	Boventraverse front diag (new)
a long	6pvm	mzd11	mvd10	mzd12	mzd13	mth4	mzh5	mtd4	mvh5	mvd11	mr8-2	mr8-1	mr8-3	mzd14	mvd12	mzh6	mzd15	mvh6	mtd5	mvd13	280	301-1	301-2	301-3	301-4	301-5	301-6	301-9	301-10	301-7	301-8	302	303	304	305	307	308	309	311	321	312	313	314	315	316	317	320	322	323	324	325	306

stuik stuik

140.88 | 140

Date Author

Assessment of groups for strengthened mast (afkeur level)

ZW380 Oost D2.3 RSD-MDK Winkelmast 150° Mast 97

Foreign and the state of the st 9916 69 90 Ah MI Charles 69 90 Ah MI Charles 69 90 B CH 18 90 B CH 9 10&1 9 10&1 Ct2 Ba kortsluitbelasting 10 kortsluitbelasting 10 SPLS 6a_90 Ba Ct2 | Carlo | Carl | Continuation of the cont 7 SPLS 3.0,9 90 Ba Ct2 7 SPLS 3.0,9 90 Ba Ct2 8 SPLS 6a_90 Ba Ct1 Ba 0 1 SPLS 6a_90 Ba Ct1 Ba 1 SPLS 6a_90 Ba Ct1 Ba 1 SPLS 6a_90 Ba Ct1 Ba 4 SPLS 6a_90 Ba Ct1 Ba 4 SPLS 6a_90 Ba Ct1 Ba 6 SPLS 6a_90 Ba Ct1 Ba 6 SPLS 6a_90 Ba Ct1 Ba | Onest | Ones

Date Author Version

Assessment of groups for strengthened mast (afkeur level)

ZW380 Oost D2.3 RSD-MDK Winkelmast 150° Mast 97

9	
st	
ĕ	

U.C. (trek)	0.0	20.0	0.66	0.49	0.76	0.83	0.09	0.60	0.70	0.55	00.0	0.21	0.04	0.22	0,58	0.62	0.65	0.68	0.62	0.46	0.08	99.0	0.16	0.04	0.64	0.00	0,23	0.72	0.27	0.86	0.02	0.67	99'0	0.01	0.03	0.01	0.53	0.20	0.44	0.0	0.61	0.85	0.09	00.00	0.01	0.02	0.02	0.01	0.43	0.01	0.01	0.38	0.02	0.04	0.02	0.88
uik (trek)	7117	0.00	1/82.0	1188.0	140.8	140.8	140.8	140.8	140.8	140.8	33.3	140.8	27.7	140.8	140.8	0.0	1320.0	1518.0	140.8	140.8	58.7	176.0	58.7	27.7	176.0	26.0	28.0	28.0	28.0	28.0	28.0	45.8	45.8	28.0	38.1	38.1	38.1	38.1	100	100.	38.1	38.1	38.1	38.1	38.1	38.1	38.1	38.1	83.2	69.7	166.3	38.1	38.1	52.3	38.1	61.0
Afschuif St	770.7		1444.5	1163.5	145.4	145.4	145.4	145.4	145.4	145.4	58.8	145.4	58.8	145.4	145,4	0.0	1444.5	1444.5	145.4	145.4	72.7	145.4	72.7	58.8	145.4	75.4	37.7	37.7	37.7	37.7	37.7	60.3	60.3	37.7	60.3	60.3	60.3	60.3	0000	500	603	60.3	60,3	60.3	60.3	60.3	60.3	60.3	94.1	60.3	188.2	60.3	60.3	60.3	60.3	60.3
ettodsn.	1.261	7.601	1024.1	1024.1	227.7	241.5	241,5	155.3	155.3	155,3	65.7	241.5	54.7	241.5	155,3	1097.7	1024.1	1024.1	155.3	155.3	92.7	217.7	92.7	54.7	217.7	63.6	46.1	46.1	46.1	46.1	46.1	75.3	75,3	46.1	62.7	62.7	62.7	62.7	7.70	98.8	62.7	62.7	62.7	62.7	62.7	62.7	62.7	62.7	181,9	194.4	1739.7	62.7	62.7	98.8	62.7	142 7
Opm. Trek Combinatie trek	12912 SPLS 84 90 D8 C12 D8	06_8,0_6 SIN 6,820	6//3 ULS 3_0/9_90	- 0	N,	-10	102.7 SPLS 84 90 B4 Ct2 B4	Η.	71	펀	0.0 ULS 3_0,9_135	29,4 ULS 3_0,9_90	1.1 ULS 1a_0,9_45	30.8 ULS 3_0,9_95,5	81,5 SPLS 6a_90 Ba Ct2 Ba	684.6 ULS 3_0,9_95,5	664.7 ULS 3_0,9_95,5	696.1 ULS 3 0,9 90	87.2 SPLS 6a_90 Ba Ct1 Ba	64.9 SPLS 6a_90 Ba Ct2 Ba	4.8 ULS 3_95,5	96.3 SPLS 6a_90 Ba Ct1 Ba	9.2 ULS 3_95,5	1,2 ULS 1a_0,9_45	93.4 SPLS 6a_90 Ba Ct2 Ba	0.2 ULS 3_95,5	6,4 ULS 3 0,9 90	20,3 kortsluitbelasting 11&1	7,7 ULS 3_0,9_90	24,0 kortsluitbelasting 11&1	0.5 SPLS 1a_0,9_135 Ba C	30.8 kortsluitbelasting 11&1	30,0 ULS 3_84,5	0.3 SPLS 1a_0,9_0 Ba All t	1.3 ULS 3_0,9_90	0.5 SPLS 1a 0,9 45 Ba Ct	20.3 kortsluitbelasting 11&1	7,8 ULS 3 0,9 84,5	DE 6 Porteliation 110.1	19 0 kortduithelasting 1181	23.2 kortshifthelastin 1081	32.3 kortslutbelasting 1181	3.3 kortsluitbelasting 118.1	0.2 kortsluitbelasting 10&1	0,3 ULS 1a 0,9 0,9 84,5	0,6 ULS 1a 0,9 0,9 84,5	0.7 SPLS 1a_0,9_84,5 Ba ,	0.3 kortsluitbelasting 11&1	35,6 kortsluitbelasting 11&1	0.5 ULS 1a 0,9 135	1.6 ULS 1a 0,9 0,9 90	14,5 kortsluitbelasting 11&1	0.9 SPLS 1a_0,9_0,9_45 E	1,9 SPLS 1a_0,9_45 Ba Ct	0.8 SPLS 1a 0,9 45 Ba Ct	53.3 kortsluitbelasting 10&1
.C. (druk)	0.01	1100	0.82	0.63	0.72	0.78	0.25	0.64	0.63	0,53	0.00	0.23	0.05	0.29	0,54	0.82	0.77	0.82	0.61	0.60	0.05	0.71	0.11	0.05	0.77	0.00	0,63	0.23	0.66	0,23	0.76	0.01	0,01	0.90	0.51	0.46	0.00	0.02	0.12	0.40	0.02	0.47	0.00	0.00	0.01	0.02	0.03	0.00	0.01	0.41	0.01	00.00	0.52	0.21	0.54	0.30
uik (druk) U	1.02	0.00	1/82.0	1425.6	190.1	190.1	190.1	190.1	190.1	190.1	64.8	190.1	54.0	190.1	190,1	0.0	1782.0	1782.0	190 1	190.1	83.2	237.6	83.2	54.0	237.6	86.4	43.2	43.2	43.2	43.2	43.2	70.6	9.07	43.2	58.8	28.8	58.8	20.00	0 00	20.00	0 00	100	28.8	58.8	58.8	58.8	58.8	58.8	117,6	94.1	235.2	58.8	58.8	70.6	58.8	82.3
Ischulving	7.017	2	1444.5	1163.5	145,4	145.4	145.4	145.4	145.4	145,4	58.8	145.4	58.8	145.4	145,4	0.0	1444.5	1444.5	145.4	145.4	72.7	145.4	72.7	58.8	145.4	75.4	37.7	37.7	37.7	37.7	37.7	60.3	60,3	37.7	60.3	60.3	60.3	60.3	000	500.5	603	60.3	60.3	60,3	60.3	60.3	60.3	60.3	94.1	60.3	188.2	60,3	60.3	60.3	60.3	60.3
Knik	10101	1.040	948.1	951.2	161.6	15/5	147.8	143.4	149.3	138,7	19.0	171.1	23.1	126.3	127,3	955.6	1007.1	988,3	153.0	130.5	97.3	275.5	97.3	31,7	275.5	40.8	28.6	30.5	32.7	34.9	39.9	26.3	66.1	50.9	48.4	- 1		- 11					53.3	86.2	42.9	43.2	44.5	86.3	74.4	244.2	1602.3	48.6	46.9	52.4	47.6	63.0
Druk Combinatie druk	1311 3FL3 64 30 54 CL1 54	770 6 0 110 5	-//9.4 ULS 3_95,5	2 5 5 5	5PLS 68	PLS 6	-108 8 SPIS 64 90 B4 Ct2 B4	PLS 68	SPLS 68	-73.7 SPLS 6a_90 Ba Ct2 Ba	0.0 SPLS 1a_0 Ba All Cts	-33,7 ULS 3_95,5	-1.2 ULS 1a_45	-37.0 ULS 3_95,5	-68,5 SPLS 6a_90 Ba Ct1 Ba	-786.5 ULS 3_95,5	-771.2 ULS 3_95,5	-808.0 ULS 3 95,5	89 1 SPLS 6a 90 Ba Ct2 Ba	-78.7 SPLS 6a 90 Ba Ct2 Ba	3 9 ULS 3 0,9 95,5	-102.7 SPLS 6a_90 Ba Ct1 Ba	-8.0 ULS 3_0,9_95,5	-1.7 ULS 1a_45	-112.0 SPLS 6a_90 Ba Ct2 Ba	0.0	-18.1 kortsluitbelasting 118.1	-6.9 ULS 3_0,9_90	-21.5 kortsluitbelasting 1181	8 1 ULS 3 0,9 84,5	-28.5 kortsluitbelasting 11&1	-0.4 SPLS 1a_0,9_135 Ba C	0.4 SPLS 1a 0,9 0,9 0 Ba	-33.9 ULS 3_84,5	-24.7 kortsluitbelasting 118.1	-24.3 ULS 3_84,5	0.0	-1.3 Kortsluitbelasting 11&1	-7.1 ULS 3 U.9 93,3	-47 2 Vortshithelasting 1181	-0.8 SPIS 18 0 9 0 9 45 F	-22.2 kortsluitbelasting 1081	-0.1 SPLS 1a 0.9 84.5 Ba /	0.1 ULS 1a 0.9 0.9 84,5	-0.5 ULS 1a 95,5	1.0 ULS 1a 95,5	-1.3 ULS 1a 95,5	0.0 SPLS 1a 0,9 84,5 Ba /	0.4 SPLS 1a 0,9 0,9 95,5	-24.7 kortsluitbelasting 118.1	-0.9 ULS 1a 0,9 0,9 90	0'0	-24.2 kortsluitbelasting 10&1	-10,8 ULS 3_95,5	-25.5 kortsluitbelasting 11&1	-18.2 kortsluitbelasting 10&1
nkheid	110	à (<u>ر</u>	90	110	113	121	124	119	128	295	103	220	133	138	22	44								84	160	178	169	160	152	135	129	113	107	122	-		ш	ı		ш		112	9	134	133	130	62	178	71	15	121	125	152	123	166
RLZ Sia	00.0	00.7	00.1	1.00	0.52	0.52	0.52	0.52	1.00	1.00	1.00	1.00	1.00	1.00	0.54	1.00	0.33	1.00	05.0	1.00	1.00	0.33	1.00	1.00	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	70.0	0.0	001	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	2.00	1.00	1.00	1.00	1.00	1.00
Y C	0.00	75.5	2.40	2.42	0.52	0.52	0.32	0.52	1.00	1,00	1.00	1.00	1.00	2.00	0.54	2.38	0.33	2.08	0.50	1.00	1.53	0.33	1.53	1,00	0.33	1.00	1,00	1.00	1.00	1,00	1,00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	70.0	0.00	001	1.00	1.00	1.00	1,00	1.00	1,00	1,00	1,00	1,00	2.00	1,00	1,00	1.00	1.00	1.00
RLA	0.33	7.40	1.20	2.35	0.52	0.52	0.52	0.52	1.00	1.00	1.00	1.00	1.00	1.00	0.54	2,31	0.33	1.20	1.00	1.00	1.00	0.33	1.00	1.00	0.33	1.00	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.02	0.00	00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00	1.00
Bouren SM33 E CA	2M22-3-01	10 11 11 11 11	10M22 5.6t	8M22-5-61	2M22-5-6t	2M22-5-60	2M22-5.0L	2M22-5.6t	2M22-5.6t	2M22-5.6t	1M20-5.6t	2M22-5.6t	1M20-5.6t	2M22-5.6t	2M22-5,6t		10M22-5.6t	10M22-5.6t	2M22 - 5 6t	2M22-5.6t	1M22 - 5.6t	2M22 5.6t	1M22-5-6t	1M20-5.6t	2M22 - 5 6t	2M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-8-8t	1M16-8-8t	1M16-5.6t	1M16-8-8t	1M16-8-8t	1M16-8-8t	1M16-8-8t	TMTO-0-01	1M16-8-8t	1M16-8-8t	1M16-8-8t	1M16-8 ₈ t	1M16-8-8t	1M16-8-8t	1M16-8,8t	1M16-8-8t	1M16-8.8t	1M20-8.8t	1M16-8-8t	2M20-8-8t	1M16-8.8t	1M16-8-8t	1M16-8-8t	1M16-8-8t	1M16-8-8t
Stadisoort		2520			5235	5235	5233	5235	5235	5235	5235	5235	5235	5235	5235	5235			S235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	S355	S355	5235	S355	8322	S355	5355	3333	5355	5355	5355	5355	S355	8355	S355	S355	S355	S355	8355	5355	8355	8355	S355	S355	8355
Omschrijving Profie	90X90X9	VCTX00TX00T	160X160X15#	160X160X15#	8x06x06	8X06X06	90x90x9 90x40x8	8x06x06	8×06×06	8x06x06	65x65x6	8x06x06	60x60x5	8x06x06	8x06x06	Onderstuk mair 160x160x15#	Onderstuk mair 160x160x15#	Onderstuk mair 160x160x15#	8x06x06	8x06x06	70x70x7	100×100×10	70x70x7	60x60x5	100×100×10	Bovenstuk Bove 55x55x5	Bovenstuk Bove 55x55x5	Bovenstuk Bove 55x55x5	Bovenstuk Bove 55x55x5	Bovenstuk Bove 55x55x5	Bovenstuk Bove 55x55x5	Bovenstuk Bove 55x55x6	Bovenstuk Bove 55x55x6	Bovenstuk Bove 55x55x5	Bovenstuk Bove 50x50x5	Bovenstuk Bove 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boverillavelse I SOXSOXS	Boventraverse (60x60x6	Boventraverse (50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse (80x80x8	Boventraverse (80x80x8	Boventraverse HEB160	Boventraverse 50x50x5	Boventraverse (50x50x5	Boventraverse (60x60x6	Boventraverse i 50x50x5	Boventraverse 170x70x7
	60711	9	Z-QLE	mre-3	Sbvm	mzdiu	mzd11	mvd10	mzd12	mzd13	mth4	mzh5	mtd4	mvh5	mvd11	Onderstr	Onderstr	Onderstr	mzd14	mvd12	mzh6	mzd15	mvh6	mtd5	mvd13	Bovenstu	Bovenstu	Bovenstu	Bovenstu	Bovenstu	Bovenstu	Bovenstu	Bovenstu	Bovenstu	Bovenstu	Bovensti	Boventra	Boventra	Boyentic	Roventra	Roventra	Boventra	Boventra	Boventra	Boventra	Boventra	Boventra	Boventra	Boventra	Boventra	Boventra	Boventra	Boventra	Boventra	Boventra	Boventra
Staafgroep	60711	7-0111	mrb-1	mrb-3	mvd8	mzdiu	mzd11	mvd10	mzd12	mzd13	mth4	mzh5	mtd4	mvh5	mvd11	mr8=2	mr8-1	mr8=3	mzd14	mvd12	mzh6	mzd15	mvh6	mtd5	mvd13	280	301-1	301-2	301-3	301-4	301-5	301-6	301-9	301-10	301-7	301-8	302	303	200	302	308	309	311	321	312	313	314	315	316	317	320	322	323	324	325	306

Date Author Version

Assessment of groups for strengthened mast (verbouw level)

ZW380 Oost D2.3 RSD-MDK Winkelmast 150° Mast 97

.C. (trek)	0.92	00.00	0.74	0.73	0.65	0.84	0.67	0.80	0.08	0.01	0.53	0.25	0.52	0.67	0.36	0,61	0.85	60.0	0.01	0.01	0.02	0.02	0.01	0.43	0.01	0.01	0.38	0.02	0.04	0.02	0.88
Stuik (trek) U	69.7	69.7	123.3	123.3	123.3	145.5	45.8	45.8	38.1	38.1	38.1	38.1	38.1	38.1	52,3	38.1	38.1	38.1	38.1	38.1	38.1	38.1	38.1	83.2	69.7	166.3	38.1	38.1	52.3	38.1	61.0
	120.6	120.6	188.2	188.2	188.2	188.2	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60,3	60,3	60.3	60.3	60.3	60.3	60,3	60.3	60.3	94.1	60.3	188.2	60.3	60,3	60.3	60.3	60.3
Nettodsn.	163.1	163.1	131.6	198.9	131.6	131.6	75.3	75.3	62.7	62.7	62.7	62.7	62.7	62.7	8.86	62,7	62.7	62.7	62.7	62.7	62.7	62.7	62.7	181.9	194.4	1739.7	62.7	62.7	98.8	62.7	142.7
	63.8 kortsluitbelasting 10&1	0"0	91.4 SPLS 6a_90 Ba Ct2 Ba	90.3 SPLS 6a_90 Ba Ct2 Ba	79.9 SPLS 6a_90 Ba Ct2 Ba	110.3 SPLS 6a_90 Ba Ct1 Ba	30.8 kortsluitbelasting 11&1	36.4 ULS 3_84,5	3.0 ULS 3_0,9_90	0.5 SPLS 1a_0,9_45 Ba Ct:	20.3 kortsluitbelasting 11&1	9.7 ULS 3_0,9_84,5	20.0 ULS 3_90	25.6 kortsluitbelasting 11&1	19.0 kortsluitbelasting 10&1	23.2 kortsluitbelasting 10&1	32.3 kortsluitbelasting 11&1	3.3 kortsluitbelasting 11&1	0.2 ULS 1a_95,5	0.4 ULS 1a_0,9_0,9_84,5	0.7 ULS 1a_0,9_0,9_84,5	0.9 ULS 1a_0,9_0,9_84,5	0.3 kortsluitbelasting 11&1	35.6 kortsluitbelasting 11&1	0.6 ULS 1a_0,9_135	2.0 ULS 1a_0,9_0,9_90	14.5 kortsluitbelasting 11&1	0.9 SPLS 1a_0,9_0,9_45 B	1.9 SPLS 1a_0,9_45 Ba Ct:	0.8 SPLS 1a_0,9_45 Ba Ct:	53.3 kortsluitbelasting 10&1
opm.																															
.C. (druk)	0.00	0.88	09.0	0.62	0.44	0.51	0.02	0.01	0.51	0.56	0.00	0.02	0.15	0.48	0.78	0.02	0.47	0.00	0.00	0.01	0.03	0.03	0.00	0.01	0.41	0.01	0.00	0.52	0.25	0.54	0.30
iik (druk) U	94.1	94.1	205.8	205.8	205.8	205.8	70.6	20.6	58.8	58.8	58.8	58.8	58.8	58.8	20.6	58.8	58.8	58.8	58.8	58.8	58.8	58.8	58.8	117.6	94.1	235.2	58.8	58.8	20.6	58.8	82.3
fschuiving St	120.6	120.6	188.2	188.2	188.2	188.2	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	94.1	60.3	188.2	60.3	60.3	60.3	60.3	60.3
Knik A	71.6	72.4	•		_	П		П	48.4	52.9	53.2	57.2	96.8	59.2	82.5	36.0	47.3	53.3	86.2	42.9	43.2	44.5	86.3	74.4	244.2	1602.3	48.6	46.9	52.4	47.6	63.0
Druk Combinatie druk	0.0	-64.0 kortsluitbelasting 10&1	-91.9 SPLS 6a_90 Ba Ct2 Ba	-89.6 SPLS 6a_90 Ba Ct2 Ba	-64.5 SPLS 6a_90 Ba Ct1 Ba	-68.5 SPLS 6a_90 Ba Ct1 Ba	-1-1 ULS 3_0,9_90	-0.4 SPLS 1a_0,9_0,9_0 Ba	-24.7 kortsluitbelasting 11&1	-29.5 ULS 3_84,5	0.0	-1.3 kortsluitbelasting 11&1	-9.0 ULS 3_0,9_95,5	-28.1 kortsluitbelasting 11&1	-47.2 kortsluitbelasting 10&1	-0.8 SPLS 1a 0,9 0,9 45 B	-22.2 kortsluitbelasting 10&1	-0.1 SPLS 1a_0,9_84,5 Ba #	-0.1 ULS 1a_0,9_0,9_84,5	-0.6 ULS 1a_95,5	-1.3 ULS 1a 95,5	-1.5 ULS 1a_95,5	0.0 SPLS 1a_0,9_84,5 Ba /	-0-4 SPLS 1a_0,9_0,9_95,5	-24.7 kortsluitbelasting 1181	-1-1 ULS 1a_0,9_0,9_90	0.0	-24.2 kortsluitbelasting 10&1	-13.0 ULS 3_95,5	-25.5 kortsluitbelasting 11&1	-18.2 kortsluitbelasting 108.1
	183	181					129	П	122	113	112	105	65	114	117	153	124	112	62	134	133	130	62	178	71	15	121	125	152	123	166
RLZ Slankheid	1.00	1.00	1.00	0.52	0.51	0.52	1.00	1.00	1.00	1.00	1.00	1.00	0.52	0.50	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00	1.00
RLY	1.00	1.00	1.00	0.52	0.51	0.52	1.00	1.00	1.00	1.00	1.00	1.00	0.52	0.50	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00	1.00
RLX	1.00	1.00	1.00	0.52	0.51	0.52	1.00	1.00	1.00	1.00	1.00	1.00	0.52	0.50	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00	1.00
Bouten	1M16-8.8t	1M16-8.8t	2M20-8.8t	2M20-8-8t	2M20-8-8t	2M20-8.8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8-8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8-8t	1M16-8.8t	1M16-8-8t	1M16-8.8t	1M20-8.8t	1M16-8-8t	2M20-8.8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8.8t
Staalsoort	S355	S355	S355	S355	S355	5355	8355	8355	8355	S355	S355	S355	S355	S355	S355	S355	S355	5355	S355	S355	S355	S355	S355	S355	S355	S355	S355	S355	8355	S355	5355
Omschrijving Profiel	t1vd1 80x80x8	~		mzd3 70×70×7	mvd3 70x70x7	mvd4 70x70x7	Bovenstuk Bové 55x55x6	Bovenstuk Bove 55x55x6	Bovenstuk Bové 50x50x5	Bovenstuk Bové 50x50x5	Boventraverse (50x50x5	Boventraverse i 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse · 60x60x6	Boventraverse (50x50x5	Boventraverse (50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse i 50x50x5	Boventraverse i 50x50x5	Boventraverse (50x50x5	Boventraverse (80x80x8	Boventraverse (80x80x8	Boventraverse HEB160	Boventraverse 50x50x5	Boventraverse (50x50x5	Boventraverse (60x60x6	Boventraverse (50x50x5	Boventraverse (70x70x7
	ĺ		ĺ	ĺ	ĺ	ĺ				ĺ		ĺ		ĺ				ĺ			ĺ		ĺ			ĺ	ĺ				

Notes

1) The bolted connections on groups t1vd1 and t1vd2 require strengthening with plates. Refer to Appendix D and E. 2) Groups 301.7, 301-8 and 302 t/m 325 are new groups which were added for the upper conductor attachment extension.

APPENDIX C

Redundant members analysis

DNV.GL

Knikverkorters initial construction (afkeur)

2021-06-18 M H Khan 1.8 Date: Author: Version:

GT-BD	
丑	
Mast 1	

										Norma	-	Buckling	Cap.	earing		Moment			
				Stee			Length	Angle S	Slender	Force		Cap,	Bolt	Cap. N	let Section	Cap.	Highest E	Exceedance	
Posni	r. Section	Schematization	Profile	Quality		Quality	Œ	©	ness	(kN)		(kN)	KN)	(kN)	Cap. (kN)		u.c.	Type	Notes
231	Onderstuk	Enkele staaf	9'097	S235	M20	8.8	1,029	0	88	16.5	0.26	77.0	94.1	47.5	48.4	1.24	0.35		
59	Onderstuk	Enkele staaf	9'097	S235	M20	8,8	1,80	89	154	16.5	0.00	44.7		47.5	48.4		0,37		
529	Onderstuk	Enkele staaf	9'097	S235	M20	8.8	2,10	0	180	16.5	0.53	36.5		47.5	48.4		0.45		
56	Onderstuk	Enkele staaf	P 165.6	S235	M20	8,8	2,43	40	191	16.5	00'0	36.5		50.5	65.7		0.45		
25	Onderstuk	Enkele staaf	P'297	S235	M20	8.8	2,41	41	190	16.5	0.00	36,9		50.5	65.7		0.45		
24	Onderstuk	Enkele staaf	9'097	S235	M20	8,8	1,65	0	141	16.5	0.41	49.5		47.5	48.4		0,35		
23	Onderstuk	Enkele staaf	9'097	S235	M20	8.8	1,07	0	95	16.5	0.27	74.9		47.5	48.4		0,35		
22	Onderstuk	Enkele staaf	9'097	S235	M20	8,8	1,56	09	133	16.5	0.00	52.7		47.5	48.4		0,35		
42	Doorsnede A-A	Enkele staaf	L50,5	S235	M16	8,8	2,31	0	237	1.5	0.58	17.1		30,3	31,7		0.80		
43	Doorsnede A-A	Enkele staaf	L50,5	S235	M16	8,8	1,63	0	167	1.5	0.41	27.8		30,3	31,7		0,57		
40	Doorsnede A-A	Enkele staaf	1100,8	S235	M20	8,8	6,81	0	346	1.5	1.70	30,3		8'69	179.7		0,36		
41	Doorsnede A-A	Kniksteun op 0,5L	9'0Z7	S235	M20	8,8	4,65	0	218	1.5	1.16	26.9		52,4	82,9		0.68		
49	Doorsnede B-B	Enkele staaf	L75,7	S235	M20	8,8	3,18	0	217	2.5	08'0	41.0		61,1	8'96		0,35		
47	Doorsnede B-B	Kruisende staaf halverwege	L65,6	S235	M20	8,8	4,73	0	240	2.5	0.59	21,8		50.5	65.7		0,41		
000	Treesessie	Talcale chang	200	1000	MIC	0			00+		6	000		7 00	000		000		

DNV.GL

Knikverkorters initial construction (afkeur)

2021-06-18 M H Khan 1.8 Date: Author: Version:

RSB-RSD H150° Mast 11

													hear						
									-	Vormal		uckling	Cap. B	earing	-C4	Moment			
				Stee				Angle	Slender	Force	oment	Cap.	Bolt		Vet Section	Cap.	Highest	Exceedance	
Posnr.	ır. Section	Schematization	Profile	Quality	Bolt	Quality	(E)	<u></u>		(kN) (kNm)	(kN)	(kN)	(kN) C	Cap. (kN) (kNr	(kNm)	n.c.	Type	Notes
23	Onderstuk	Enkele staaf	L60,5	S235	M20	8,8		0		10.1	0.19	73.1	94,1	39.6	40,3	1,05	0,25		
21	Onderstuk	Enkele staaf	L60,5	S235	M20	8,8	1,46	99		10.1	0.00	48.0	94,1	39.6	40,3	1,05	0,25		
19	Onderstuk	Enkele staaf	L60.5	S235	M20	8.8	1.51	0	129	10.1	0.38	46.3	94.1	39.6	40.3	1.05	0,36		
18	Onderstuk	Enkele staaf	L60,5	S235	M20	8,8	1,86	42		10.1	0.00	36,3	94,1	39.6	40,3	1,05	0,28		
4	Onderstuk	Enkele staaf	L60,5	S235	M20	8,8	1,67	38		10.1	0.00	41,4	94,1	39.6	40,3	1,05	0,25		
43	Onderstuk	Enkele staaf	L60.5	S235	M20	8.8	1,13	0		10.1	0.28	60.7	94.1	39.6	40.3	1.05	0.27		
34	Doorsnede A-A	Enkele staaf	F65.6	S235	M20	8.8	3,59	0		1.7	06:0	20.3	94.1	50.5	65.7	1.46	0.62		
47	Doorsnede B-B	Enkele staaf	L60,5	S235	M20	8,8	2,24	0		1.0	0.56	28.4	94,1	39.6	40,3	1,05	0,53		
84	Doorsnede C-C	Enkele staaf	L60.5	S235	M20	8.8	2.04	0		2.8	0.51	32.2	94.1	39.6	40.3	1.05	0.49		
49	Doorsnede D-D	Enkele staaf	L60.5	S235	M20	8.8	0,98	0		2.8	0.25	8'99	94.1	39.6	40.3	1.05	0.23		
-	Dornound	Entrato otané	0 00 1	1000	CM	0	000	•		9	5	707		47.5	707	70 -	000		

DNV.GL

Knikverkorters initial construction (afkeur)

2021-06-18 M H Khan 1.8 Date: Author: Version:

RSB-RSD Lijnportaal Mast 19a

										Vorma		Suckling		earing		Moment			
				Stee			Length	Angle 5	Slender	Force N	Moment	Cap.		Cap, Ne	let Section	Cap.	Highest	Exceedance	
Posnr.	r. Section	Schematization	Profile	Quality	Bolt	Quality	Œ	⊙	ness	(kN)	(kNm)	(kN)	(kN)		Cap. (kN)	(kNm)	n.c.	Туре	Notes
K22	Onderstuk	Enkele staaf	L50,5	S355	M16	8.8	0,675	0	69	16,9	0.17	82.4	60.3	41,3	43.1	1.08	0.41		
K19	Onderstuk	Enkele staaf	L50,5	S355	M16	8,8	96'0	28	66	16.9	00'0	61.2	60.3	41,3	43.1	1.08	0.41		
K21	Onderstuk	Enkele staaf	L50,5	S355	M16	8,8	1,09	0	112	16.9	0.27	53.4	60.3	41,3	43.1	1.08	0.41		
K18	Onderstuk	Enkele staaf	L50,5	S355	M16	8,8	1,23	41	127	16.9	00'0	46.1	60.3	41,3	43.1	1.08	0.41		
K20	Onderstuk	Enkele staaf	L50,5	S355	M16	8,8	1,51	0	155	16.9	0.38	35.4	60.3	41,3	43.1	1.08	0.48		
K17	Onderstuk	Enkele staaf	L50,5	S355	M16	8,8	1,79	52	183	16.9	00'0	27.8	60.3	41,3	43.1	1.08	0.61		
D29	Horiz verband	Enkele staaf	L70.7	S355	M20	8,8	3.17	0	233	1.7	0.79	37.8	94.1	83.2	131.7	2.99	0.27		
£	Horiz verband	Kruisende staaf halverwege	8'08T	S355	M20	8,8	4,62	0	191	1.7	0.58	55.7	94.1	95.0	181.9	4.46	0.13		
¥	1e Tussenstuk	Enkele staaf	9'097	S355	M16	8,8	1,84	0	157	17.4	0.46	49.8	60.3	52,3	98'8	1.88	0,35		
K 2	1e Tussenstuk	Enkele staaf	9'09T	S355	M16	8,8	1,43	0	122	17.4	96'0	69.3	60.3	52,3	98'8	1.88	0,33		
K11	1e Tussenstuk	Enkele staaf	L50,5	S355	M16	8,8	1,13	0	116	17.4	0.28	51.3	60.3	41,3	43,1	1.08	0.42		
D51	Horiz verband	Enkele staaf	L70,7	S355	M20	8,8	1,67	0	123	11.1	0.42	94.0	94.1	83,2	131.7	2,99	0.14		
H71	Horiz verband	Kruisende staaf halverwege	L50,5	S355	M16	8,8	2,52	0	166	11.1	0.32	26.1	60.3	41,3	43,1	1,08	0.43		
K12	2e Tussenstuk	Enkele staaf	L50,5	S355	M16	8,8	66'0	0	102	9.2	0.25	59.5	60.3	41,3	43,1	1,08	0,23		
K14	2e Tussenstuk	Enkele staaf	L50,5	S355	M16	8,8	0,88	0	91	9.2	0.22	9'99	60.3	41,3	43,1	1.08	0,22		
0	A. Thomas and the	Pulled steed		1100	2000	0	010			0	000	120	000	.,,		,	000		

DNV.GL

Knikverkorters initial construction (afkeur)

2021-06-18 M H Khan 1.8 Date: Author: Version:

MDK-RSD W150° Mast 97

	^
	$\overline{}$
)	~
:	+
)	t
	2

Posnt. Section Schematization Profile Quality (m) (°) ness (M) (Notes												
Steel Stee			Exceedance													
Section Schematization Profile Quality Morial Angle Stead Force Morial Cap. Boaring Cap. Boaring Cap. Cap			Highest	n.c.	0,25	0,25	0,36	0,28	0,25	0,27	0,62	0,53	0,49	0,24	0,20	
Section Schematization Profile Quality Morial Angle Stead Force Morial Cap. Boaring Cap. Boaring Cap. Cap		Moment	Cap.	(kNm)	1,05	1,05	1,05	1,05	1,05	1,05	1,46	1,05	1,05	1,05	1,24	
Steel																
Steel Capital Schematization Profile Quality Capital Schematization Profile Capital Schematization Profile Capital Schematization Profile Capital Schematization Profile Capital Schematization Capital Schemati		Bearing	Cap.	(kN)	39.6	39.6	39.6	39.6	39.6	39.6	20'2	39'6	39.6	39'6	47.5	
Steel Section Schematization Profile Quality Bolt Quality (**) Iness (**) (Shear	Cap.	Bolt	(kN)												
Steel Charlet Steel Char		Buckling	Cap.	(kN)	73.1	48.0	46,3	36,3	41.4	60.7	20'3	28,4	32,2	66,5	78.7	
Steel			Moment	(kNm)	0.19	00'0	0,38	00'0	0.00	0.28	06'0	0.56	0.51	0.25	0.25	
Steel		Normal	Force	(kN)	10.1	10.1	10,1	10.1	10.1	10.1	1,3	1.0	2.8	2.8	2.0	
Steel			Slender	ness	9	124	129	158	142	96	283	191	174	84	85	
Steel			Angle	<u></u>	0	99	0	42	38	0	0	0	0	0	0	
Section Schematization Profile Quality Bolt Guality Guality Bolt Guality Gual			Length	Œ	0,76	1,46	1,51	1,86	1,67	1,13	3,59	2,24	2,04	0,99	66'0	
Section Schematization Profile Quality				٠	8'8	8'8	8'8	8'8	8'8			8'8	8'8	8'8	8.8	
Onderstuk Enkele staaf LG0.5 Doorsnede B-B Enkele staaf LG0.5 Doorsnede C-B Enkele staaf LG0.5					П											
Onderstuk Enkele staaf Doorsnede A-A Enkele staaf Doorsnede B-B Enkele staaf Doorsnede C-C Enkele staaf Doorsnede C-C Enkele staaf Doorsnede C-D Enkele staaf Doorsnede C-D Enkele staaf Bovenstuk Enkele staaf			Stee	Qualit	S235	S235	S235	S235	S235							
Onderstuk Enkel Doorsnede A-A Enkel Doorsnede B-B Enkel Doorsnede D-D Enkel Bovenstuk Enkel				Profile	C00.5	L60,5	L60,5	L60,5	L60,5	L60,5	P'297	L60,5	L60,5	C00.5	9'09T	
# 0000000000000000000000000000000000000				Schematization	Enkele staaf	Enkele staaf	Enkele staaf	Enkele staaf	Enkele staaf							
Posnr. 24 23 23 25 21 26 26 26 26 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26					Onderstuk	Onderstuk	Onderstuk	Onderstuk	Onderstuk	Onderstuk	Doorsnede A-A	Doorsnede B-B	Doorsnede C-C	Doorsnede D-D	Bovenstuk	
				Posnr.	24	23	25	21	27	26	16	20	25	18	251	

APPENDIX D

Shear blocks and miscellaneous calculations

Joint Strengthening

A number of bolted connections on the four structures require strengthening with plates. The purpose of the plates are to place the existing bolts in double shear, thereby increasing the shear capacity of the joints. The figures which follow show the locations which require plates. New bolts are depicted in blue and existing bolts in green.

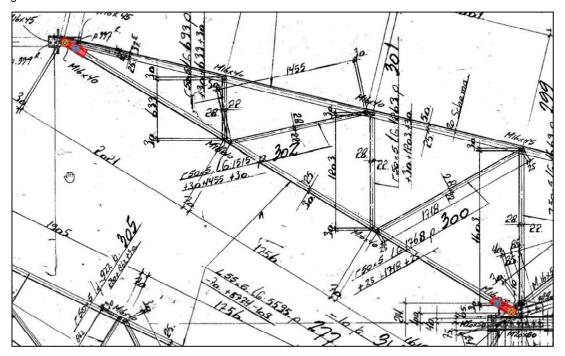


Figure D.1 Mast 1 GT-BD member P277

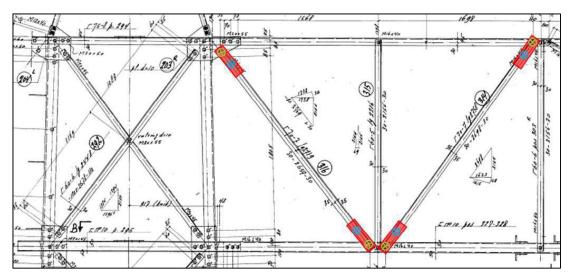


Figure D.2 Mast 11 RSB-RSD (members 314 and 316) and Mast 97 RSD-MDK (members 81 and 82).

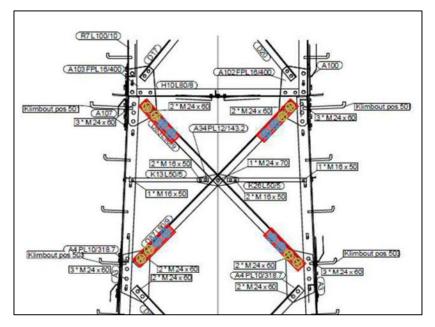


Figure D.3 Mast 19a RSD-WDT members D76, D78 and D87

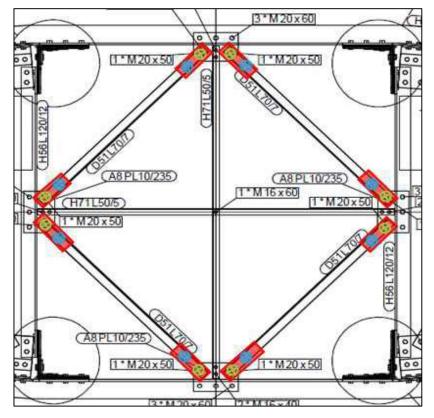


Figure D.4 Mast 19a RSD-WDT members D51

Table D.1, Table D.2 and Table D.3 summarise the net section and bearing capacity calculations for the plates.

Table D.1 Details for the members which require joint strengthening

Mast nr	Pos nr (from asset data)	Group nr (from PLS Tower)	Member size	Bolt info	Force (kN)
1	P277	110-1, 110-2, 110-3	L70x7	1xM16	83.15
11	316	T1VD1	L80x8	1xM16	62.35
11	314	T1VD2	L80x8	1xM16	62.64
19a	D51	214	L100x12	1xM20	170.32
19a	D76, D78, D87	213L/ T	L100x12	2xM24	302.00
97	81	T1VD1	L80x8	1xM16	63.91
97	82	T1VD2	L80x8	1xM16	64.13

Table D.2 Net section capacity check for the plates

Pos Nr	Force (kN)	Plate width (mm)	Plate thickness (mm)	Plate area (mm2)	Member width (mm)	Member thick (mm)	Member area (mm2)	Plate force (kN)	Bolt hole diam (mm)	Net area (mm2)	Net section cap (kN)	Check (Net section cap > plate force)
P277	83.15	70	10	700	70	7	735	40.56	18	520	134.784	ок
316	62.35	80	10	800	80	8	960	28.34	18	620	160.704	ОК
314	62.64	80	10	800	80	8	960	28.47	18	620	160.704	ок
D51	170.32	100	10	1000	100	12	1800	60.83	22	780	202.176	ок
D76, D78, D87	302.00	100	10	1000	100	12	1800	107.86	26	740	191.808	ОК
81	63.91	80	10	800	80	8	960	29.05	18	620	160.704	ОК
82	64.13	80	10	800	80	8	960	29.15	18	620	160.704	ок

 Table D.3
 Bearing capacity check for the plates

Pos Nr	Plate force (kN)	Bolt end distance (mm)	Short edge distance (mm)	Bolt hole diam (mm)	k1	Bolt diam (mm)	Alpha	Plate thickness (mm)	Bearing capacity (kN)	Check (bearing cap > plate force)
P277	40.56	30	35	18	2.50	16	0.56	10	64.00	ок
316	28.34	30	40	18	2.50	16	0.56	10	64.00	ок
314	28.47	30	40	18	2.50	16	0.56	10	64.00	ок
D51	60.83	40	50	22	2.50	20	0.61	10	87.27	ок
D76, D78, D87	107.86	45	50	26	2.50	24	0.58	10	199.38	ОК
81	29.05	30	35	18	2.50	16	0.56	10	64.00	ок
82	29.15	30	35	18	2.50	16	0.56	10	64.00	ок

Project: GT-BD150 Mast: 1 - Afkeur

<u>s</u>	<u>hear blocks</u>	NEN-EN 1993-1-1 en NEN-EN 1994-1-1	Datum:	2021-06-18
			Auteur:	TBR
			Versie:	1.4

Load			Results		
Compression	$F_{Ed,c}$	1019 kN	Compression	U.C.	0.82 < 1,00 OK
Tension	$F_{Ed,t}$	800 kN	Tension	U.C.	0.77 < 1,00 OK
Main leg					
Profile		L200.24	Capacity shear blocks	main leg	
Steel material		S235	$A_{f1} =$		6000 mm²
Cross section		9059 mm²	A _{f2} =		13392 mm²
Axial capacity	N_{pl}	2129 kN	Slope		1: 5
Width	b	200 mm	$C_A = \sqrt{(A_{f2}/A_{f1})} =$		1.49
Thickness	t	24 mm	$f_{id} = C_A \times f_{cd} =$		19.9 N/mm ²
Length in concrete		1190 mm	$F_{Rd,c} = n_c \times A_{f1} \times f_{jd} =$		837 kN
Length in concrete		1130 11111	$F_{Rd,t} = n_t \times A_{f1} \times f_{id} =$		837 kN
Shear blocks main l	ea		Rd,t — Ht X / H1 X IJd —		037 KIV
Width	b b	30 mm			
Thickness	h	30 mm	Capacity foot plate		
Length	Ľ	200 mm	k _d =		1.73 -
Welds	a	4 mm	$f_{id} = C_A \times f_{cd} =$		23.1 N/mm ²
c.t.c. separation	S	150 mm	$c = t\sqrt{(f_{yd} / 3f_{jd})} =$		59 mm
•					
Number for compr.	n _c	7 -	m* = min(c,m) =		10 mm
Number for tension	n_t	7 -	Type foot plate		Diagonally cut
			Effective for		Compr. and tension
Foot plate			$A_{p,c} =$		17531 mm²
Thickness	t	30 mm	$F_{Rd,c} = A_{p,druk} \times f_{jd} =$		405 kN
Ext. length	m	10 mm	$A_{p,t} =$		8472 mm²
Welds	a	4 mm	$F_{Rd,t} = A_{p,t} \times f_{id} =$		196 kN
Pile			Capacities		
Name		Buispaal	F _{rd,c,plate} =		405 kN
Diameter		400 mm	F _{rd,blocks,c} =		837 kN
Thickness		10 mm	$F_{rd,c} = F_{rd,blck} + F_{rd,footplate} =$		1241 kN
Cross section		12252 mm ²	U.C. compression		0.82 < 1,00 OK
Steel material		S235	Welds foot plate (see nex	v+ nago)	625 kN
Capacity		2879 kN	$F_{rd,t} = min. (welds / foot$		196 kN
				plate) =	837 kN
Concrete strength		C25/30	F _{rd,blocks,t} =	-	
			$F_{rd,t} = F_{rd,blck} + F_{rd,footplate} =$		1032 kN
Shear blocks pile			U.C. tension		0.77 < 1,00 OK
Width	b	30 mm	U.C. welds		0.66 < 1,00 OK
Thickness	h	30 mm			
Length	L	300 mm	Capacity shear blocks	pıle	0000 m2
Welds	a	4 mm	$A_{f1} =$		9000 mm ²
c.t.c. separation	S	375 mm	$A_{f2} =$		27000 mm²
Number for compr.	n_c	8 -	$C_A = \sqrt{(A_{f2}/A_{f1})} =$		1.73 -
Number for tension	n_t	8 -	$f_{jd} = k_d \times f_{cd} =$		23.1 N/mm ²
			$F_{Rd,c} = n_c \times A_{f1} \times f_{jd} =$		1663 kN
Design value concre	_	4.5	U.C. compression		0.61 < 1,00 OK
Material factor	γс	1.5	$F_{Rd,t} = n_t \times A_{f1} \times f_{jd} =$		1663 kN
Add. mat. factor	γm	1.25 -	U.C. tension		0.48 < 1,00 OK
$f_{cd} =$		13.3 N/mm ²	U.C. welds		0.61 < 1,00 OK
Steel tower stub	£	225 *** 2	"Splitting" of pile		45 °
Yield strength	f _{yd} =	235 N/mm ²	Spread of forces		· ·
Tensile strength	$f_{ud} =$	360 N/mm ²	Length force flow		1000 mm
			Splitting force	_	400 kN/m
			-	$f_{yd} =$	235 N/mm ²
			Capacity tubular pile		4700 kN/m
			U.C.		0.09 < 1,00 OK

Project: GT-BD150 Mast: 1 - Afkeur

Welds of shear blocks of main leg Out-of-plane loading

Plate		Welds		F _{t.Ed}
t =	30 mm	a =	4 mm	M _{Ed}
Grade	S235	l =	200 mm	F _{v.//.Ed}
$f_{yd} =$	235 _{N/mm²}	$\beta_w =$	0.8 -	V.77.EU
$f_u =$	360 N/mm ²	$\gamma_{M2} =$	1.25 -	F _{v,Ed}

Member forces

Factor	1.2
$F_{t,Ed} =$	0 kN
$F_{v,Ed} = F_{rd,c} / n =$	143 kN
$F_{v//,Ed} =$	0 kN
$M_{Ed} = 1/2 b / h x F_{y Ed} =$	2.15 kNm

Check		
$\sigma_{vw,Ed}$ =	239 N/mm²	≤
σ_1 =	120 N/mm²	≤

Stress components

$\sigma_1 = \tau_1 = F_{t,Ed} \sqrt{2} / 4al =$	0 N/mm²
$\sigma_1 = \tau_1 = F_{v,Ed} \sqrt{2} / 4al =$	63 N/mm²
	63 N/mm²
$b^* = b + 2/3a\sqrt{2}$	33.8 mm
$\sigma_1 = \tau_1 = 0.706 M_{Ed} / al b^* =$	56 N/mm²
$\tau_{//} = F_{v//,Ed} / 2aI =$	0 N/mm²
$\sigma_{vw,Ed} = \sqrt{(\sigma_1^2 + 3\tau_1^2 + 3\tau_{//}^2)} =$	239 N/mm²

 $f_u \, / \beta_w \gamma_{M2} =$ $0.9f_u/\gamma_{M2} =$ 360 N/mm² 259 N/mm² U.C. = 0.66 OK 0.46 OK U.C. =

Welds of shear blocks of pile

Out-of-plane loading

Plate		Welds			
t =	30 mm	a =	4 mm	F _{t,Ed}	
Grade	S235	l =	300 mm	. ↓	
$f_{yd} =$	235 N/mm ²	$\beta_w =$	0.8 -		
$f_u =$	360 N/mm ²	γ _{M2} =	1.25 -	F _{v,Ed}	
Member forces		Stress componen	its		
Factor	1.2	$\sigma_1 = \tau_1 = F_{t,Ed} \sqrt{2} / 2al =$		37 N/mm ²	
$F_{t,Ed} = 1/2 b / h \times F_{v,Ed} =$	125 kN	$\sigma_1 = \tau_1 = F_{v,Ed} \sqrt{2} / 2al =$		73 N/mm ²	
$F_{v,Ed} =$	249 kN		_	110 N/mm²	

0 kN $F_{v//,Ed} =$ $M_{Ed} =$ 0.00 kNm

 $\tau_{//} = F_{v//,Ed} / 2aI =$ 0 N/mm^2 $\sigma_{vw,Ed} = \sqrt{(\sigma_1^2 + 3\tau_1^2 + 3\tau_{//}^2)} =$ 220 N/mm² Check 220 N/mm² 360 N/mm² U.C. = 0.61 OK $\sigma_{vw,Ed} =$ $f_u/\beta_w\gamma_{M2} =$

 $\sigma_1 =$

110 N/mm² $0.9f_u/\gamma_{M2} =$ 259 N/mm² U.C. = 0.43 OK

 $\frac{\text{Welds of foot plate}}{f_u/\beta_w\gamma_{\text{M2}}} =$ 360 N/mm² Weld size a = 4 mm

Length Capacity I = 2b + 2b - t =752 mm $F_{Rd} = a \times I \times f_{w,d} / \sqrt{3} =$ **625** kN

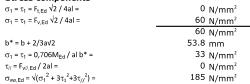
Project: RSB-RSD150 Mast: 11 - Afkeur

Shear blocks	NEN-EN 1993-1-1 en NEN-EN 1994-1-1	Datum:	2021-06-18
		Auteur:	TBR
		Versie:	1.4

Load			Results	· · · · · · · · · · · · · · · · · · ·	-
Compression	F _{Ed,c}	858 kN	Compression	U.C.	0.89 < 1,00 OK
Tension	F _{Ed,t}	745 kN	Tension	U.C.	0.86 < 1,00 OK
	,-		•		<u> </u>
Main leg					
Profile		L150.14	Capacity shear blo	cks main leg	
Steel material		S235	$A_{f_1} =$		5700 mm ²
Cross section		4030 mm ²	A _{f2} =		7000 mm ²
Axial capacity	N_{pl}	947 kN	Slope		1: 5
Width	b	150 mm	$C_A = \sqrt{(A_{f2}/A_{f1})} =$		1.11
Thickness	t	14 mm	$f_{id} = C_A \times f_{cd} =$		14.8 N/mm ²
ength in concrete	·	2440 mm	$F_{Rd,c} = n_c \times A_{f1} \times f_{id} =$		505 kN
engui in concrete		2440 11111	$F_{Rd,t} = n_t \times A_{f1} \times f_{id} =$		505 kN
hear blocks main l	og.		I Rd,t − IIt ∧ Af1 ∧ Ijd −		303 KN
Vidth	еу b	50 mm			
hickness	h	30 mm	Capacity foot plate	•	
ength	Ë	190 mm	k _d =	Ŧ	1.73 -
ength /elds	a	4 mm	_		23.1 N/mm ²
t.c. separation	a S	75 mm	$f_{jd} = C_A \times f_{cd} = c = t\sqrt{(f_{yd} / 3f_{jd})} =$		23.1 N/mm ⁻
•	•				
lumber for compr.	n _c	6 -	$m^* = min(c,m) =$		30 mm
lumber for tension	n_t	6 -	Type foot plate		Diagonally cut
			Effective for		Compr. and tension
oot plate			A _{p,c} =		19782 mm ²
hickness	t	25 mm	$F_{Rd,c} = A_{p,druk} \times f_{jd} =$		457 kN
xt. length	m	30 mm	$A_{p,t} =$		15752 mm²
/elds	а	5 mm	$F_{Rd,t} = A_{p,t} \times f_{id} =$		364 kN
			,. P/c 30		
Pile			Capacities		
ame		Buispaal	$F_{rd,c,plate} =$		457 kN
iameter		470 mm	F _{rd,blocks,c} =		505 kN
hickness		10 mm	$F_{rd,c} = F_{rd,blck} + F_{rd,footpl}$	ata =	962 kN
ross section		14451 mm ²	U.C. compression	ace	0.89 < 1,00 OK
teel material		S235	Welds foot plate (see	nevt nage)	594 kN
Capacity		3396 kN	$F_{rd,t} = min. (welds / $		364 kN
oncrete strength		C25/30		ioot piate) =	505 kN
oncrete strength		C23/30	F _{rd,blocks,t} =	_	
			$F_{rd,t} = F_{rd,blck} + F_{rd,footpl}$	ate =	869 kN
hear blocks pile	-	25	U.C. tension		0.86 < 1,00 OK
/idth	b	25 mm	U.C. welds		0.52 < 1,00 OK
hickness	h	25 mm	Comments of the second	-l: U-	
ength	L	1414 mm	Capacity shear blo	скѕ рне	35343 mm²
/elds	-	4 mm	$A_{f1} =$		_
t.c. separation	S	300 mm	$A_{f2} = \frac{1}{2} \left(\frac{1}{2} \right)^{1/2}$		106029 mm²
umber for compr.	n _c	3 -	$C_A = \sqrt{(A_{f2}/A_{f1})} =$		1.73 -
lumber for tension	n _t	3 -	$f_{jd} = k_d \times f_{cd} =$		23.1 N/mm ²
	.to atvomatt		$F_{Rd,c} = n_c \times A_{f1} \times f_{jd} =$		2449 kN
esign value concre	_	1 5	U.C. compression		0.35 < 1,00 OK
laterial factor	γc	1.5	$F_{Rd,t} = n_t \times A_{f1} \times f_{jd} =$		2449 kN
dd. mat. factor	γ_{m}	1.25 -	U.C. tension		0.30 < 1,00 OK
_d =		13.3 N/mm ²	U.C. welds		0.51 < 1,00 OK
tool towar atub			"Colittica" of -:!-		
Steel tower stub	f . =	235 NI/2	"Splitting" of pile Spread of forces		45 °
ield strength	f _{yd} =	235 N/mm ²			2215 mm
ensile strength	$f_{ud} =$	360 N/mm ²	Length force flow		
			Splitting force		168 kN/m
			Yield strength wall	$f_{yd} =$	235 N/mm ²
			Capacity tubular pile		4700 kN/m
			U.C.		0.04 < 1,00 OK

Project: RSB-RSD150 Mast: 11 - Afkeur

Welds of shear blocks of main leg Out-of-plane loading


Plate		Welds		F _{t.Ed}
t =	50 mm	a =	4 mm	M _{Ed}
Grade	S235	l =	150 mm	F _{v.//.Ed}
$f_{yd} =$	235 N/mm ²	$\beta_w =$	0.8 -	
$f_u =$	360 N/mm²	$\gamma_{M2} =$	1.25 -	F _{v,Ed}

Member forces

rielliber forces	
Factor	1.2
$F_{t,Ed} =$	0 kN
$F_{v,Ed} = F_{rd,c} / n =$	101 kN
$F_{v//,Ed} =$	0 kN
$M_{Ed} = 1/2 b / h x F_{v,Ed} =$	1.52 kNm

Check 185 N/mm² $\sigma_{vw,Ed}$ = 93 N/mm² σ_1 =

Stress components $\sigma_1 = \tau_1 = F_{t,Ed} \sqrt{2} / 4al =$

360 N/mm² 259 N/mm² U.C. = 0.52 OK $f_u/\beta_w\gamma_{M2} =$ 0.36 OK $0.9f_u/\gamma_{M2} =$ U.C. =

Welds of shear blocks of pile

Out-of-plane loading

Plate			Welds			
t =	25 mm		a =	4 mm	F _{t,Ed}	
Grade	S235		l =	1414 mm	+	7
$f_{yd} =$	235 N/mm ²		$\beta_w =$	0.8 -		
f _u =	360 N/mm²		γ _{M2} =	1.25 -		F _{v,Ed}
Member forces			Stress compor			
Factor	1.2		$\sigma_1 = \tau_1 = F_{t,Ed} \sqrt{2} / 2$	al =	31 N/n	nm²
$F_{t,Ed} = 1/2 b / h x F_{v,Ed} =$	490 kN		$\sigma_1 = \tau_1 = F_{v,Ed} \sqrt{2} / 2$	al =	61 N/n	nm²
$F_{v,Ed} =$	979 kN				92 N/n	nm²
$F_{v//,Ed} =$	0 kN				•	
$M_{Ed} =$	0.00 kNm					
			$\tau_{//} = F_{v//.Ed} / 2al =$		0 N/n	nm²
			$\sigma_{vw,Ed} = \sqrt{(\sigma_1^2 + 3\tau_1^2)^2}$	$^{2}+3\tau_{u}^{2})=$	184 N/n	
Check			- vw,Ed - (- 1	- 1//	,	
$\sigma_{vw,Ed} =$	184 N/mm ²	≤	$f_u / \beta_w \gamma_{M2} =$	360 N/mm ²	U.C. =	0.51 OK
$\sigma_1 =$	92 N/mm²	≤	$0.9f_u/\gamma_{M2} =$	259 N/mm²	U.C. =	0.35 OK

Welds of foot plate

$f_u / \beta_w \gamma_{M2} =$	•	360 N/mm ²
Weld size	a =	5 mm
Length	I = 2b + 2b - t =	572 mm
Capacity	$F_{Rd} = a \times I \times f_{w,d} / \sqrt{3} =$	594 kN

Project: RSB-RSD150 Mast: 19a - Afkeur

Shear blocks	NEN-EN 1993-1-1 en NEN-EN 1994-1-1	Datum:	2021-06-18
		Auteur:	TBR
		Versie:	1.4

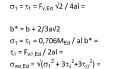
Load			Results		
Compression	$F_{Ed,c}$	919 kN	Compression	U.C.	0.84 < 1,00 OK
Toncion	_	766 LN	Toncion	II C	0.91 < 1.00.00

ompression	' Ed,c	JIJ KN	Compression	U.C.	0.04 < 1,00 OK
ension	$F_{Ed,t}$	766 kN	Tension	U.C.	0.81 < 1,00 OK
lain leg					
rofile		L180.16	Capacity shear block	ks main leg	2
teel material		S355	$A_{f1} =$		4000 mm ²
cross section		5540 mm²	$A_{f2} =$		25000 mm ²
xial capacity	N_{pl}	1967 kN	Slope		1: 5
Vidth	b	180 mm	$C_A = \sqrt{(A_{f2}/A_{f1})} =$		2.50
hickness	t	16 mm	$f_{id} = C_A \times f_{cd} =$		37.3 N/mm ²
ength in concrete		3500 mm	$F_{Rd,c} = n_c \times A_{f1} \times f_{jd} =$		448 kN
			$F_{Rd,t} = n_t \times A_{f1} \times f_{jd} =$		448 kN
hear blocks main l	'eg				
/idth	b	50 mm			
hickness	h	25 mm	Capacity foot plate		
ength	L	160 mm	$k_d =$		1.73 -
elds	a	4 mm	$f_{jd} = C_A \times f_{cd} =$		25.9 N/mm ²
.t.c. separation	s	950 mm	$c = t\sqrt{(f_{yd} / 3f_{jd})} =$		53 mm
umber for compr.	n _c	3 -	m* = min(c,m) =		30 mm
umber for tension	n _t	3 -	Type foot plate		Diagonally cut
	-		Effective for		Compr. and tension
oot plate			A _{p,c} =		24892 mm ²
hickness	t	30 mm	$F_{Rd,c} = A_{p,druk} \times f_{jd} =$		644 kN
xt. length	m	30 mm	$A_{p,t} =$		19352 mm ²
•					
elds	a	5 mm	$F_{Rd,t} = A_{p,t} \times f_{jd} =$		501 kN
ile			Capacities		
ame		Buispaal	$F_{rd,c,plate} =$		644 kN
ameter		508 mm	$F_{rd,blocks,c} =$		448 kN
ickness		10 mm	$F_{rd,c} = F_{rd,blck} + F_{rd,footplate}$	e =	1092 kN
oss section		15645 mm²	U.C. compression		0.84 < 1,00 OK
eel material		S235	· ·	Welds foot plate (see next page)	
apacity		3677 kN	$F_{rd,t} = min.$ (welds / fo		865 kN 501 kN
oncrete strength		C28/35	F _{rd,blocks,t} =	/	448 kN
		,	$F_{rd,t} = F_{rd,blck} + F_{rd,footplate}$. =	949 kN
hear blocks pile			U.C. tension	e e	0.81 < 1,00 OK
idth	b	30 mm	U.C. welds		0.67 < 1,00 OK
nickness	h	30 mm	o.c. weius		0.07 × 1,00 OK
ength	L.	1533 mm	Capacity shear block	ks nile	
elds	a	5 mm	A _{f1} =	p	45993 mm²
t.c. separation	S	200 mm	A _{f2} =		107317 mm ²
umber for compr.	n _c	2 -	$C_A = \sqrt{(A_{f2}/A_{f1})} =$		1.53 -
umber for tension	n _t	2 -	$f_{id} = k_d \times f_{cd} =$		22.8 N/mm ²
	•••	-	$F_{Rd,c} = n_c \times A_{f1} \times f_{id} =$		2098 kN
esign value concre	ete strenath		U.C. compression		0.44 < 1,00 OK
aterial factor	γ _c	1.5	$F_{Rd,t} = n_t \times A_{f1} \times f_{jd} =$		2098 kN
dd. mat. factor		1.25 -	U.C. tension		0.37 < 1,00 OK
id. IIIdi. Ideloi	γm	14.9 N/mm ²	U.C. welds		0.37 < 1,00 OK 0.48 < 1,00 OK
j –		14.9 N/MM-	o.c. weids		0.46 < 1,00 OK
teel tower stub			"Splitting" of pile		
ield strength	$f_{yd} =$	355 N/mm ²	Spread of forces		45 °
ensile strength	$f_{ud} =$	490 N/mm ²	Length force flow		3256 mm
			Splitting force		118 kN/m
			Yield strength wall	$f_{yd} =$	235 N/mm ²
			Capacity tubular pile		4700 kN/m

Project: RSB-RSD150 Mast: 19a - Afkeur

Welds of shear blocks of main leg

Out-of-plane loading


Plate		Welds		F _{tEd}
t =	50 mm	a =	4 mm	M _{Ed}
Grade	S355	l =	160 mm	F _{v.//.Ed}
$f_{yd} =$	355 N/mm ²	$\beta_w =$	0.9 -	J
$f_u =$	490 N/mm²	$\gamma_{M2} =$	1.25 -	F _{v,Ed}

Member forces

Factor	1.2	
$F_{t,Ed} =$	0	kN
$F_{v,Ed} = F_{rd,c} / n =$	179	kN
$F_{v//,Ed} =$	0	kN
$M_{Ed} = 1/2 b / h \times F_{v,Ed} =$	2.24	kNm

Check

	components
$\sigma_1 = \tau_1 =$	F _{t,Ed} √2 / 4al =

 $f_u/\beta_w\gamma_{M2} =$ $0.9f_{u}/\gamma_{M2} =$ U.C. = U.C. =

0 N/mm²

99 N/mm² 99 N/mm²

46 N/mm²

0 N/mm²

290 N/mm²

53.8 mm

0.67 OK 0.41 OK

G _{vw,Ed} =	290 N/mm ²	≤
σ_1 =	145 N/mm ²	≤

Welds of shear blocks of pile

Out-of-plane loading

Plate Welds 30 mm t = a =

Grade S235 $f_{yd} =$ 235 N/mm² 360 N/mm² $f_u =$

Member forces

ricinger forces		
Factor	1.2	
$F_{t,Ed} = 1/2 b / h \times F_{v,Ed} =$	629	kN
$F_{v,Ed} =$	1259	kN
$F_{v//,Ed} =$	0	kN
$M_{Ed} =$	0.00	kNm

Check

Capacity

$\sigma_{\text{vw,Ed}} =$	174 N/mm²	≤
$\sigma_1 =$	87 N/mm²	≤

865 kN

Stress components

$$\sigma_1 = \tau_1 = F_{t,Ed} \sqrt{2} / 2aI =$$

 $\sigma_1 = \tau_1 = F_{v,Ed} \sqrt{2} / 2aI =$

 $\tau_{//} = F_{v//,Ed} / 2al =$ $\sigma_{vw,Ed} = \sqrt{({\sigma_1}^2 + 3{\tau_1}^2 + 3{\tau_{//}}^2)} =$

 0 N/mm^2 174 N/mm²

 $f_u/\beta_w\gamma_{M2} =$ $0.9f_u/\gamma_{M2} =$ 360 N/mm² 259 N/mm²

436 N/mm²

353 N/mm²

U.C. = U.C. =

0.48 OK 0.34 OK

Welds of foot plate $f_u/\beta_w\gamma_{M2} =$ 436 N/mm² Weld size 5 mm I = 2b + 2b - t =688 mm Length $F_{Rd} = a \times I \times f_{w,d} / \sqrt{3} =$

Project: RSD-MDK150 Mast: 97 - Afkeur

Shear blocks	NEN-EN 1993-1-1 en NEN-EN 1994-1-1	Datum:	2021-06-18
		Auteur:	TBR
		Versie:	1.4

Load			Results		
Compression	$F_{Ed,c}$	787 kN	Compression	U.C.	0.82 < 1,00 OK
Tension	F _{Ed,t}	668 kN	Tension	U.C.	0.77 < 1,00 OK
			•		·
Main leg					
Profile		L150.14	Capacity shear blocks	main leg	
Steel material		S235	$A_{f1} =$	_	5700 mm ²
Cross section		4030 mm ²	A _{f2} =		7000 mm ²
Axial capacity	N _{pl}	947 kN	Slope		1: 5
Width	b	150 mm	$C_A = \sqrt{(A_{f2}/A_{f1})} =$		1.11
Thickness	t	130 mm	$f_{id} = C_A \times f_{cd} =$		14.8 N/mm ²
Length in concrete	· ·	2440 mm	g		505 kN
Length in concrete		2440 111111	$F_{Rd,c} = n_c \times A_{f1} \times f_{jd} = F_{Rd,t} = n_t \times A_{f1} \times f_{id} = 0$		505 kN
Shear blocks main le	ea .		Rd,t — Ht X Ari X Ijd —		303 KIV
Width	.9 b	50 mm			
Thickness	h	30 mm	Capacity foot plate		
Length	Ľ	190 mm	k _d =		1.73 -
Welds	a	4 mm	$f_{id} = C_A \times f_{cd} =$		23.1 N/mm ²
c.t.c. separation	S	75 mm	$c = t\sqrt{(f_{vd} / 3f_{id})} =$		23.1 N/mm 58 mm
•			. , - , - ,		
Number for compr.	n_c	6 -	m* = min(c,m) =		30 mm
Number for tension	n_t	6 -	Type foot plate		Diagonally cut
			Effective for		Compr. and tension
Foot plate			$A_{p,c} =$		19782 mm²
Thickness	t	25 mm	$F_{Rd,c} = A_{p,druk} \times f_{jd} =$		457 kN
Ext. length	m	30 mm	$A_{p,t} =$		15752 mm²
Welds	a	5 mm	$F_{Rd,t} = A_{p,t} \times f_{jd} =$		364 kN
Pile			Capacities		
Name		Buispaal	$F_{rd,c,plate} =$		457 kN
Diameter		470 mm	F _{rd,blocks,c} =		505 kN
Thickness		10 mm	$F_{rd,c} = F_{rd,blck} + F_{rd,footplate} =$	=	962 kN
Cross section		14451 mm²	U.C. compression		0.82 < 1,00 OK
Steel material		S235	Welds foot plate (see ne	ext page)	594 kN
Capacity		3396 kN	$F_{rd,t} = min.$ (welds / foot	t plate) =	364 kN
Concrete strength		C25/30	$F_{rd,blocks,t} =$		505 kN
			$F_{rd,t} = F_{rd,blck} + F_{rd,footplate} =$	=	869 kN
Shear blocks pile			U.C. tension		0.77 < 1,00 OK
Width	b	25 mm	U.C. welds		0.52 < 1,00 OK
Thickness	h	25 mm			,
Length	L	1414 mm	Capacity shear blocks	pile	
Welds	a	4 mm	$A_{f1} =$	•	35343 mm²
c.t.c. separation	S	300 mm	A _{f2} =		106029 mm ²
Number for compr.	n _c	3 -	$C_A = \sqrt{(A_{f2}/A_{f1})} =$		1.73 -
Number for tension	n _t	3 -	$f_{id} = k_d \times f_{cd} =$		23.1 N/mm ²
			$F_{Rd,c} = n_c \times A_{f1} \times f_{jd} =$		2449 kN
Design value concre	te strength		U.C. compression		0.32 < 1,00 OK
Material factor	γ _c	1.5	$F_{Rd,t} = n_t \times A_{f1} \times f_{jd} =$		2449 kN
Add. mat. factor	γm	1.25 -	U.C. tension		0.27 < 1,00 OK
$f_{cd} =$	/ m	13.3 N/mm ²	U.C. welds		0.51 < 1,00 OK
		Nymmi			-,
Steel tower stub			"Splitting" of pile		
Yield strength	$f_{yd} =$	235 N/mm ²	Spread of forces		45 °
Tensile strength	$f_{ud} =$	360 N/mm ²	Length force flow		2215 mm
			Splitting force		151 kN/m
			Yield strength wall	$f_{yd} =$	235 N/mm ²
				•	*
			Capacity tubular pile		4700 kN/m

RSD-MDK150 Project: 97 - Afkeur Mast:

Welds of shear blocks of main leg Out-of-plane loading

Plate		Welds		F _{t.Ed}
t =	50 mm	a =	4 mm	M _{Ed}
Grade	S235	l =	150 mm	F _{v.//.Ed}
$f_{yd} =$	235 N/mm ²	$\beta_w =$	0.8 -	
$f_u =$	360 N/mm²	$\gamma_{M2} =$	1.25 -	F _{v,Ed}

Member forces

Factor	1.2
$F_{t,Ed} =$	0 kN
$F_{v,Ed} = F_{rd,c} / n =$	101 kN
$F_{v//,Ed} =$	0 kN
$M_{Ed} = 1/2 b / h x F_{v,Ed} =$	1.52 kNm

Check

$\sigma_{\text{vw,Ed}}$ =	185 N/mm ²	≤
σ_1 =	93 N/mm ²	≤

 $f_u/\beta_w\gamma_{M2} =$

 $0.9f_u/\gamma_{M2} =$

0 N/mm² 60 N/mm²
60 N/mm ²
60 N/mm ²
53.8 mm
33 N/mm ²
0 N/mm ²
185 N/mm ²

U.C. =

U.C. =

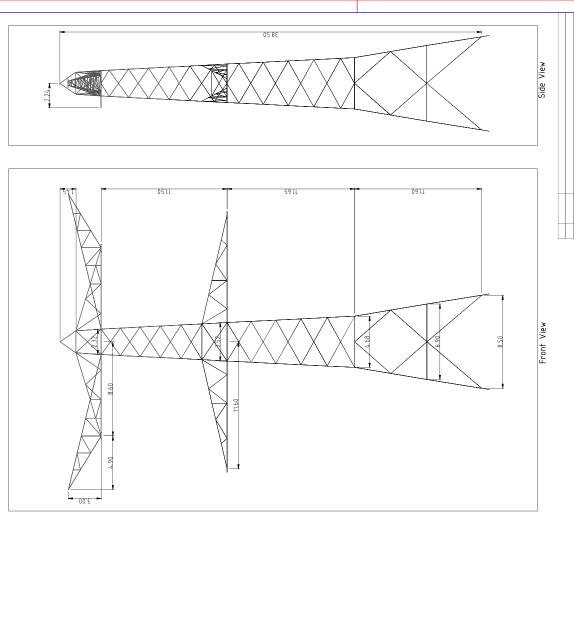
0.52 OK

0.36 OK

360 N/mm² 259 N/mm²

Welds of shear blocks of pile
Out-of-plane loading

		Welds			
25 mm		a =	4 mm	$F_{t,Ed}$	1
S235		l =	1414 mm	•	,
235 N/mm ²		$\beta_w =$	0.8 -		
360 N/mm ²		γ_{M2} =	1.25 -		F _{v,Ed}
1.2		$\sigma_1 = \tau_1 = F_{t,Ed} \sqrt{2} /$	′ 2al =	31 N/I	mm²
490 kN				61 N/I	mm²
979 kN				92 N/I	mm²
0 kN				·	
0.00 kNm					
		$\tau_{//} = F_{v//,Ed} / 2al =$		0 N/	mm²
		$\sigma_{vw, Ed} = \sqrt{(\sigma_1^2 + 3)}$	$\tau_1^2 + 3\tau_{II}^2$) =	184 N/	mm²
		, , , ,	- "	,	
184 N/mm ²	≤	$f_u/\beta_w\gamma_{M2} =$	360 N/mm ²	U.C. =	0.51 OK
92 _{N/mm²}	≤	$0.9f_u/\gamma_{M2} =$	259 N/mm²	U.C. =	0.35 OK
	\$235 235 N/mm ² 360 N/mm ² 1.2 490 kN 979 kN 0 kN 0.00 kNm	\$235 235 N/mm² 360 N/mm² 1.2 490 kN 979 kN 0 kN 0.00 kNm	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$


Welds of foot plate

$f_u / \beta_w \gamma_{M2} =$	•	360 N/mm ²
Weld size	a =	5 mm
Length	I = 2b + 2b - t =	572 mm
Capacity	$F_{Rd} = a \times I \times f_{w,d} / \sqrt{3} =$	594 kN

APPENDIX E

Drawings

|--|

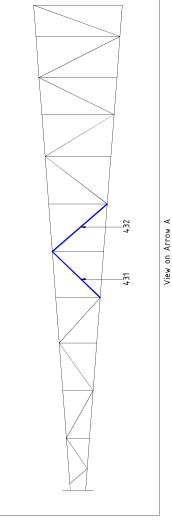
Notes and legend:

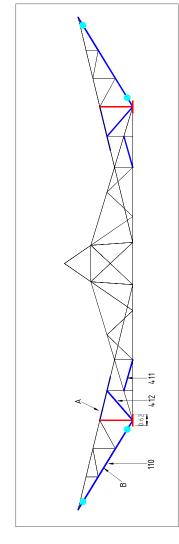
- New redundants according to drawing

- Size for new redundants is L50x50x5

All changes are symmetrical unless oth

- Material quality t ≤ 16mm S355.0


- Material quality t > 16mm S355.2

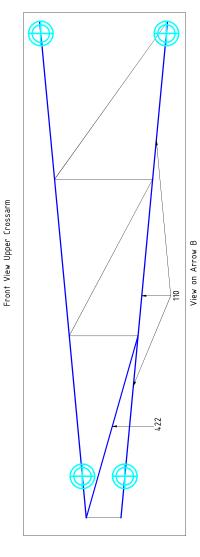

- Bott quality 8.8 rolled

New member

Profile exchanged

451

452


453

677

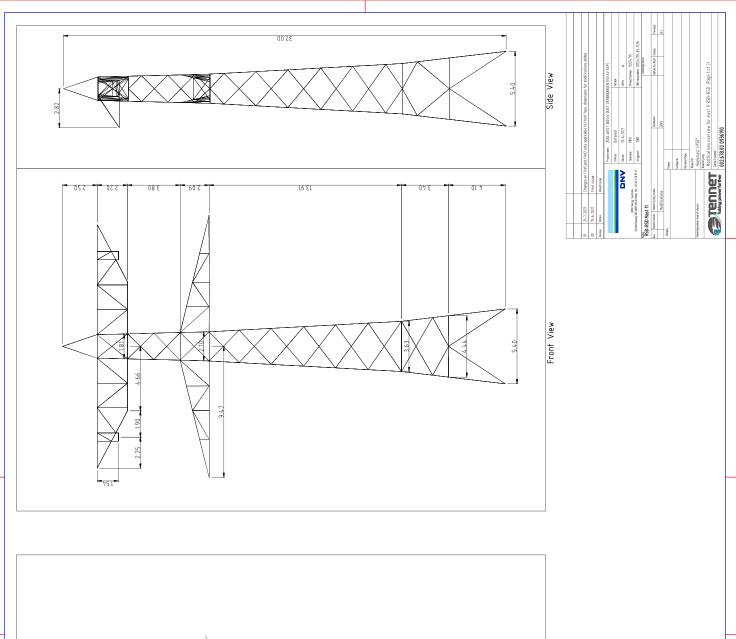
-05

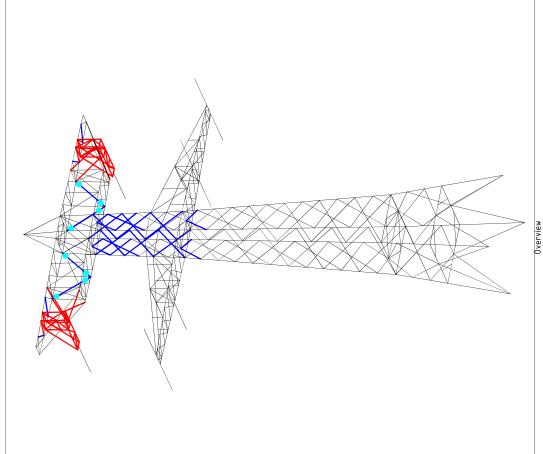
Towards crossarm

Detail A

Notes and legend:

Notes and legend:


Note vedundants excelling to drawing


Note of the new redundants is 1580-508.5

Other changes societies of the fallow

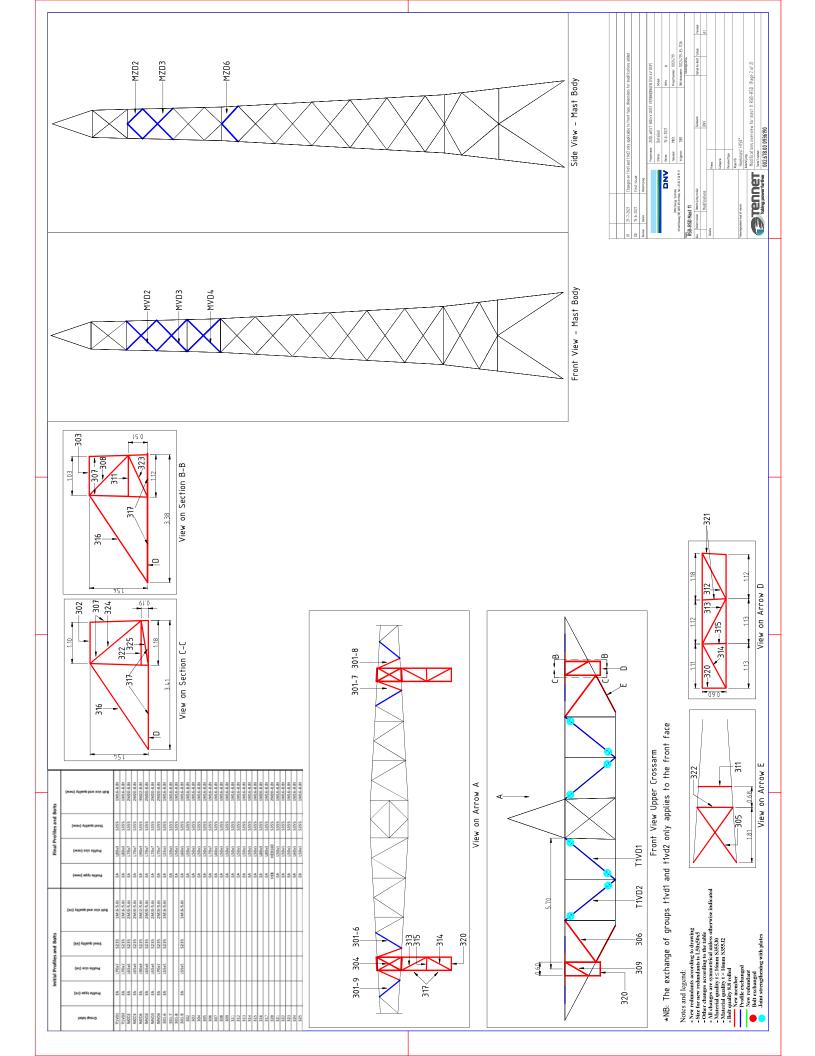
All changes are symmetrical unites other.

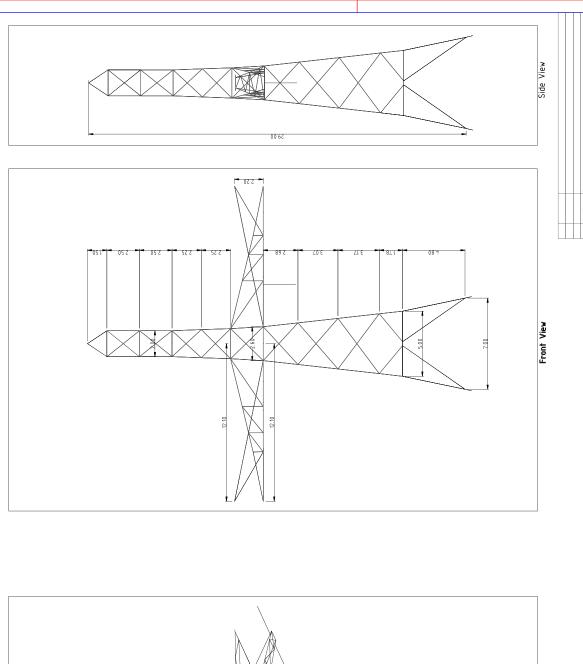
Nativated quality (1 > forma SSSSA)

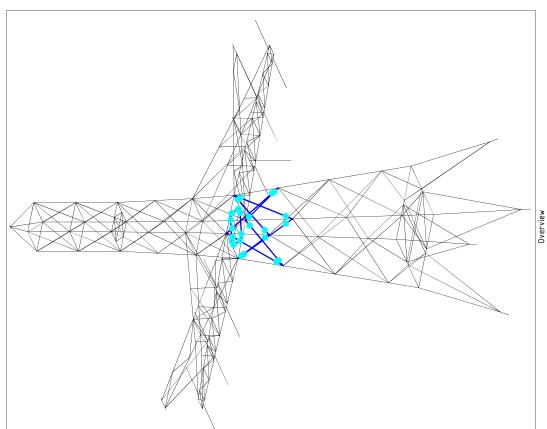
Notes and legend:
- New redundants according to drawing
- Size for new redundants is L50x50x5

Unter changes according to the Table
All changes are symmetrical unless
otherwise indicated
Material quality t≤16mm \$355,10

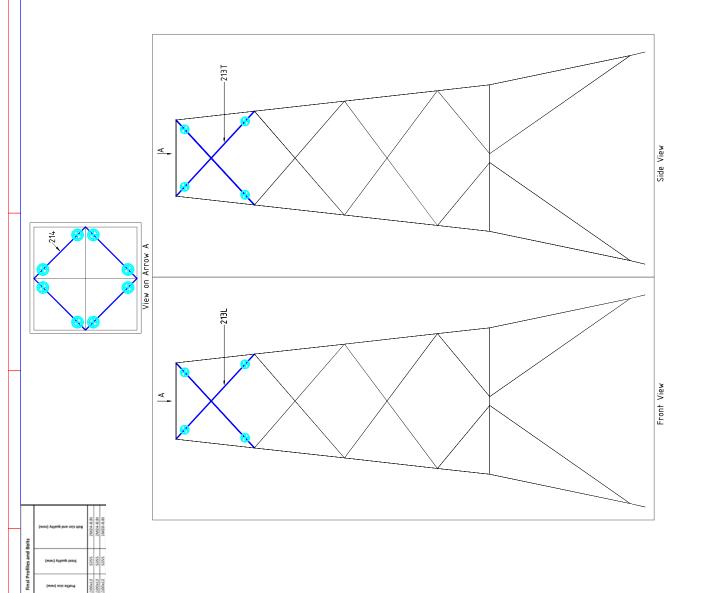
olt quality Sa rolled


New member


Profile exchanged

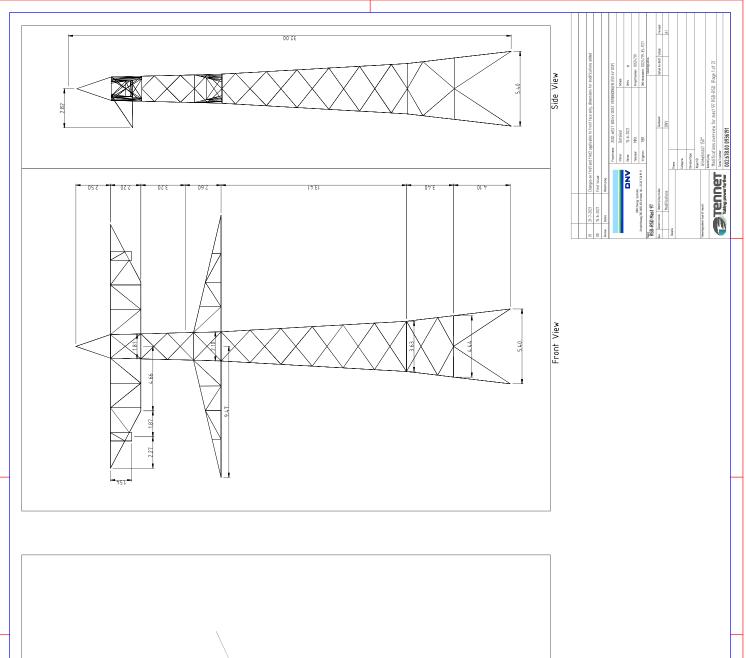

New redundant

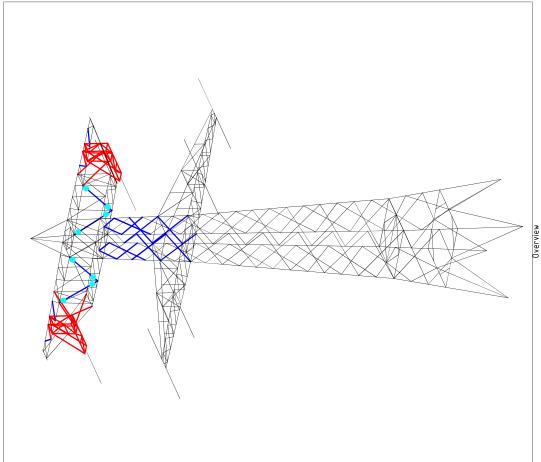
Profile exchanged

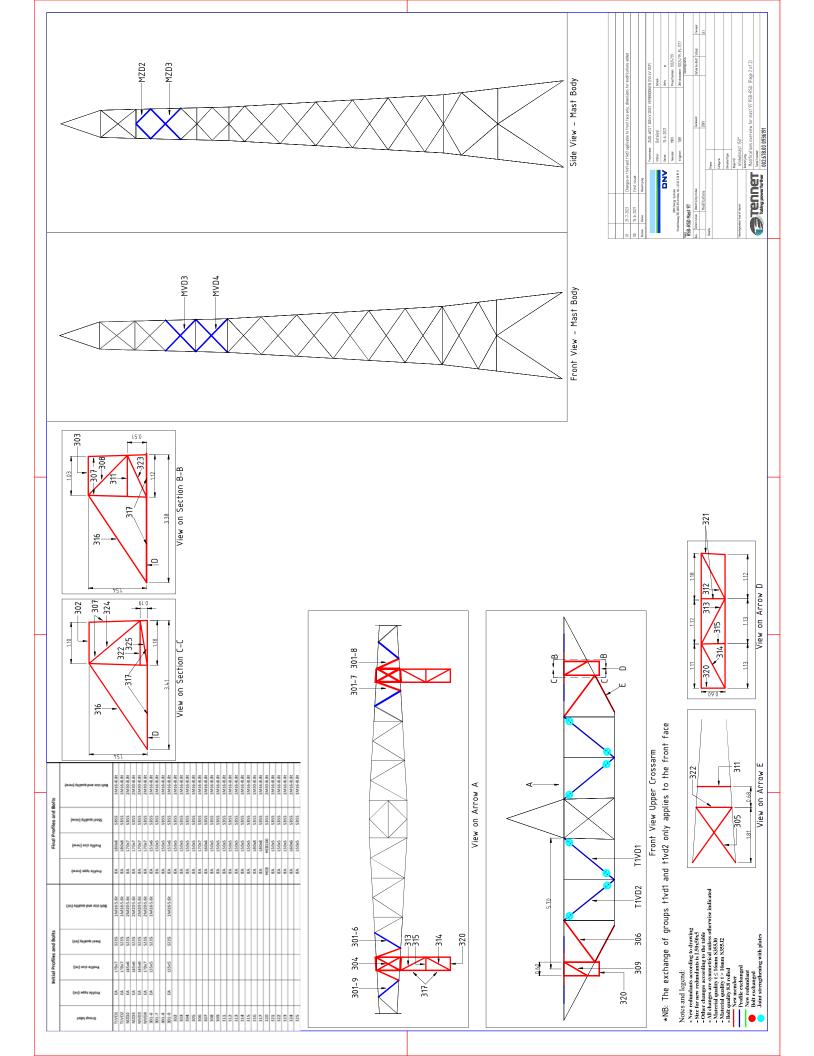

New redundant
Bolt exchanged
Joint strengthening with plates

ANO

Initial Profiles and Bolts


otes and legend:


New redundants according to drawing


State for the state of the s

Size for new redundants is LS0x50x5
Other changes according to the table
All changes are symmetrical unless otherwise

New member
Profile exchanged
New redundant
Bolt exchanged

About DNV

DNV is a global quality assurance and risk management company. Driven by our purpose of safeguarding life, property and the environment, we enable our customers to advance the safety and sustainability of their business. We provide classification, technical assurance, software and independent expert advisory services to the maritime, oil & gas, power and renewables industries. We also provide certification, supply chain and data management services to customers across a wide range of industries. Operating in more than 100 countries, our experts are dedicated to helping customers make the world safer, smarter and greener.