Reconstructies 150 kV 150 kV OSP 1 (ten zuiden van 150 kV station Geertruidenberg)

B.13 Mastrapportage

ZUID-WEST-OOST

Rapport Mastverzwaringen Permanente OSP's 150 kV

TenneT TSO B.V.

Report No.: 21-0980, Rev. 2

Meridian doc. No.: 002.678.00 0934582

Date: 2021-07-29

DATUM: 20-09-2021
STATUS TENNET: DEFINITIEF
REVISIE TENNET: 1.0

Project name: Zuid-West-Oost

Report title: Rapport Mastverzwaringen Permanente OSP's 150 kV

Customer: TenneT TSO B.V.,

Customer contact:

Date of issue: 2021-07-29 Project No.: 10124719

Organisation unit: TDT

Meridian doc.no..: 002.678.00 0934582 Report No.: 21-0980, Rev. 2 Energy Systems DNV Netherlands B.V. Utrechtseweg 310-B50 6812 AR Arnhem

Tel: +31 26 356 9111

The Netherlands

Registered Arnhem 09006400

Copyright © DNV 2021. All rights reserved. Unless otherwise agreed in writing: (i) This publication or parts thereof may not be copied, reproduced or transmitted in any form, or by any means, whether digitally or otherwise; (ii) The content of this publication shall be kept confidential by the customer; (iii) No third party may rely on its contents; and (iv) DNV undertakes no duty of care toward any third party. Reference to part of this publication which may lead to misinterpretation is prohibited.

DNV Distribution:

- □ Open
- □ Internal use only
- □ Commercial in confidence
- □ Confidential*
- Secret
- *Specify distribution: -

Rev. No.	Date	Reason for Issue	Prepared by	Verified by	Approved by
0	2021-06-18	First issue			
1	2021-07-23	RFA comments addressed			
2	2021-07-29	RFA comments round 2			

Table of contents

1	INTRO	DUCTION	1
1.1	Introdu	ıction	1
1.2	Goal a	nd scope of this report	1
1.3	Relate	d documents	1
2	CALC	JLATIONS	2
2.1	Metho	dology	2
3	RESU	LTS	4
3.1	GT-BE	Tower 1	4
3.2	RSB-F	SD Tower 11	9
3.3	RSD-V	VDT Tower 19a	14
3.4	RSD-N	MDK Tower 97	18
4	REFE	RENCES	23
Appendix Appendix Appendix Appendix Appendix	B C D	Conductor loads PLS-tower output Redundant members analysis Shear blocks and miscellaneous calculations Drawings	

1 INTRODUCTION

1.1 Introduction

To increase the future capacity of electricity transmission, it is necessary to upgrade the transmission grid by building new and modifying existing high voltage connections.

It is for this reason the client (OG) intends to build a new 380 kV line between Rilland and Tilburg and to modify the existing 380 kV and 150 kV lines in the vicinity of the new line. This upgrading is part of the program "Zuid-West-Oost" and consists of the following designs related to the D2.3 component of the program:

Design permanent interfaces (OSP's, "opstijgpunten") to connect to underground 150 kV cable connections at the following locations:

- Geertruidenberg Breda, tower 1 (GT-BD150)
- Roosendaal Borchwerf, tower 11 (RSD–RSB150)
- Roosendaal Borchwerf Woensdrecht, tower 19a (RSB-WDT150)
- Roosendaal Moerdijk tower 97 (RSD-MDK150).

This report concerns the existing towers which will interface to the permanent underground cable connections. The towers have been analyzed based on the applicable loads resulting from the droppers to the cable connections and the existing line spans. Based on the analyses, modifications to the existing tower have been developed which will ensure the towers are able to accommodate the new loading situations. The modifications have been kept to a minimum (where possible) without comprising the foreseen longevity of the structures. As a basis of design, the NEN 8700 standard is used.

1.2 Goal and scope of this report

The goals of this study are to determine whether the tower types described in this report are suitable to interface with the permanent underground cable connection and what modifications, if any, are required to ensure suitability.

After modifications have been applied, the ability of the system to fulfil the applicable requirements will be verified.

1.3 Related documents

1.3.1 Verification & validation plan

For details relating to the verification and validation of requirements, refer to 21-0978 "Verificatie en validatie tijdelijke OSP's" (meridian nr: 002.678.00 0935198, 21-0978).

1.3.2 BO-phase1

In the report "D2.2 Ondersteuning Basisontwerp 150 kV Opstijgpunten" [1] an investigation into the various OSP locations was conducted. The investigation focused on aspects such as internal clearances, E and M fields and basic structural calculations.

2 CALCULATIONS

2.1 Methodology

2.1.1 Introduction

In the previously submitted report regarding the permanent OSPs [1], the structures were analysed on verbouwniveau only. For the DO phase, the structures were first analysed on afkeumiveau and any failing members were then replaced and assessed according to verbouwniveau. This report expands on the structural analysis from the BO report [1] by proposing modifications to resolve the over-utilisations exhibited by certain tower members.

2.1.2 Starting points

The calculations are executed based on the starting points as included in Table 1.

Table 1 Calculation starting points

	Code	NEN-EN50341-2-15:2019
General	Wind zone	III
General	Terrain category	II (onbebouwde omgeving)
	Reduction factor cdir	1,00
	Consequence class	CC2-0
Initial situation	Reliability level	Afkeur CC2-0
	Reference period	30 years
	Consequence class	CC2
Situation after modifications	Reliability level	Verbouw
	Reference period	50 years

2.1.3 Process steps

The process required to determine whether tower reinforcements are required or not consists of the following steps:

- Step 1: Test the existing tower (Init) on "Afkeur"
- Step 2: Define the required reinforcements when the initial tower does not fulfill the "Afkeur" criterion (Def. Aanp.)
- Step 3: Testing (only) the prescribed modifications (AanP) on "Verbouw"
- Step 4: Test the complete tower including reinforcements (Initi + Aanp) on "Afkeur"

The process described above is represented in Figure 1.

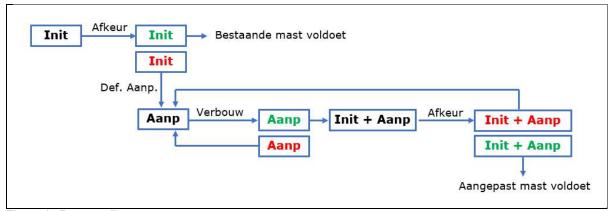


Figure 1 Process diagram

2.1.4 Conductor loads

The calculations have been performed with the conductor loads program developed by DNV. For the conductor loads of the droppers a separate calculation sheet was used. Short circuit loads were determined based on the IEC-standard. The results of the load calculations have been included in Appendix A.

2.1.5 Reaction forces on foundation

The reaction forces on the foundation have been calculated using PLS Tower which considers all possible load cases from conductors in the span and the droppers including short-circuit loads.

2.1.6 Modelling

Based on the received as-built information, the towers were modelled in PLS-Tower. Only the main elements were modelled. Profiles such as redundant members which are not critical for load support were excluded and checked separately. The angle profiles including the bolted connections were modelled and checked in PLS-Tower. Checking of detailed connections such as gusset plates is not included in the scope of work.

The conductor loads from the aforementioned conductor loads programs were used as input for the calculations. For the short circuit loads, a separate calculation was performed. The parameters and results of this calculation can be found on the first page of Appendix A.

Diagonals in the front-, rear and side planes of the tower have been grouped and the check of these members is performed per group. In case one of the elements in the group is overloaded, the resulting upgrades apply for all members in the group.

3 RESULTS

3.1 GT-BD Tower 1

3.1.1 Tower outline

The tower outline from the received asset data is included in Figure 2.

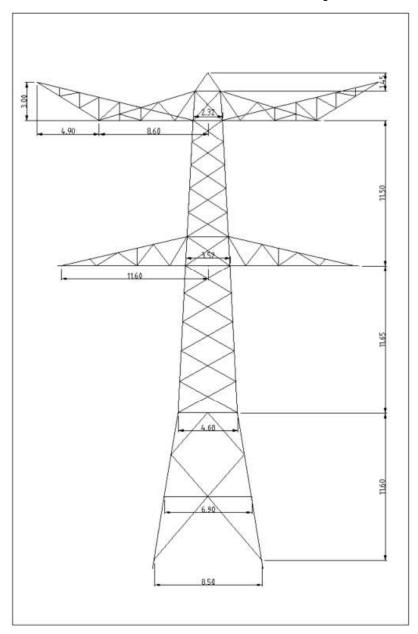


Figure 2 Tower outline for tower 1 GT-BD

The construction drawings provided by TenneT did not include workshop drawings for the onderstuk and bovenstuk of type E1. The onderstuk and bovenstuk drawings of the H1 were then used. This was more conservative since the H1 uses smaller members than the E1. According to the drawings the crossarms of the H1 and E1 are the same. The calculations showed that the mast body was not critical and only modifications on the crossarms were required. It is still advisable to perform field measurements and thereafter analyse the exact structure.

3.1.2 Tower details

Table 2 summarises the wind and weight span parameters for tower 1 GT-BD.

Table 2 Tower details for tower 1 GT-BD

	Tower number	Tower type	Line Angle (°)	Back span (m) (line side)	Ahead span (m) (OSP side)
Ī	1	E1	180	263	Varies per phase between 1 and 5m

3.1.3 Tower analysis

The results of the analysis for tower 1 GT-BD with the loads calculated according to "afkeurniveau" are depicted in Figure 3 below. It should be noted that the results obtained during the BO analysis were more conservative since the BO calculations only considered the verbouw level. Even though the BO analysis was more conservative, more modifications are now required for mast 1 due to the increase in the extension length. In the BO phase the extension was 0.75m long but this has now been increased to 1.5m.

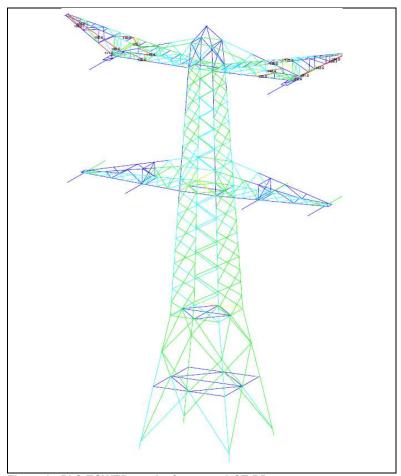


Figure 3 PLS-TOWER results for tower 1 GT-BD

The results of the analysis of the angle profiles, redundant members and main leg column anchors have been included in Table 3.

Table 3 Summary of performed checks for tower 1

Check of	Evaluation	Referentie
Profiles	NOK	Figure 3
Redundants	OK	Appendix C
Shear blocks	OK	Appendix D

3.1.4 Modifications

This section proposes tower reinforcements to ensure the tower fulfils the "afkeurniveau" loads. The proposal contains the following measures:

- Replacement of diagonals in the upper crossarm
- Strengthening of joints in the upper crossarm using plates
- Addition of new crossing diagonals in the upper crossarm (designed to withstand verbouw level)
- Addition of new members to outwardly extend the attachment point of the insulator in the upper crossarm.

3.1.5 Strengthening

As per the group summary outputs in Appendix B, the bracing members indicated in blue in Figure 4 are to be replaced.

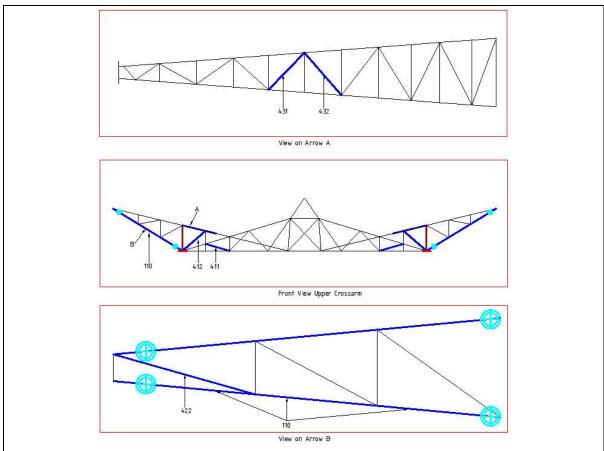


Figure 4 Members to be replaced in the upper crossarm of tower 1 GT-BD

For member 110, replacement has been chosen as the preferred upgrade instead of doubling. The presence of bracing on both planes makes it difficult to attach a double member. When executing the exchange, the earthwire should be temporarily attached to the opposite end of the crossarm while the bracing on the top plane of the crossarm remains intact. In this way the members can be exchanged one by one.

As per Figure 4, member 110 requires joint strengthening using plates (cyan circles, refer to Appendix E). The joint calculations for member 110 were performed based on 1 existing bolt. It should be noted that the schematic drawing of mast 1 shows 2 bolts but the workshop drawing of the upper crossarm shows 1 bolt. To be conservative, the calculation in Appendix D should remain until field measurements can provide clarity.

Due to the proximity of the OSP to the tower, the attachment point for the upper conductor is to be outwardly extended by 2.24m as measured from the centre line of the tower on the side view. The main beams of the extension will be attached to the existing pairs of parallel beams that connect the current strain insulator. Refer to Appendix E for more details.

To facilitate the extension of the upper conductor attachment point, new bracings are required. Figure 5 depicts the position of the conductor attachment extension and the bracings required. A schematic of the connection between the new modification and the existing crossarm is shown in Figure 6. Further details are available in Appendix E

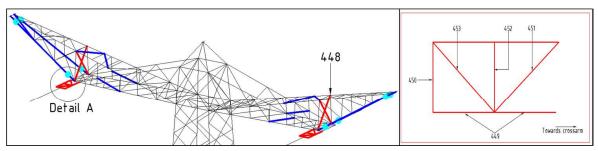


Figure 5 Bracing arrangement for upper conductor attachment point

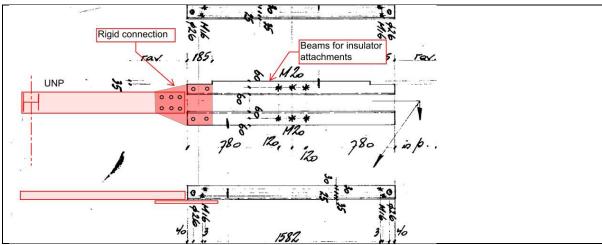


Figure 6 Connection between the modified conductor attachment and the existing crossarm

Table 4 provides an overview of the weight of profiles required for the strengthening of tower 1. The weight of plates is not included in the calculation.

Table 4 Weight of profiles required for modifications on tower 1

Group Label	Profile ini.	Material ini.	Bolts ini.	Profile new	Material new	Bolts new	Mitigation	Number	Length (m)	Weight (kg)
411	50x50x5	S235	1M16-5.6t	60x60x6	S355	1M16-8.8t	Profile exchanged	4	1.77	38.58
412	50x50x5	S235	1M16-5.6t	50x50x5	S355	1M16-8.8t	Profile exchanged	4	2.15	32.59
422	50x50x5	S235	1M16-5.6t	55x55x6	S355	1M16-8.8t	Profile exchanged	2	2.19	21.56
431	50x50x5	S235	1M16-5.6t	55x55x6	S355	1M16-8.8t	Profile exchanged	2	1.90	18.74
432	50x50x5	S235	1M16-5.6t	60x60x6	S355	1M16-8.8t	Profile exchanged	2	1.74	18.96
448				50x50x5	S355	1M16-8.8t	Profile added	4	2.24	33.96
449				UNP160	S355	2M20-8.8t	Profile added	2	3.00	113.23
450				HEB160	S355	2M20-8.8t	Profile added	2	0.62	53.06
451				50x50x5	S355	1M16-8.8t	Profile added	2	0.99	7.53
452				50x50x5	S355	1M16-8.8t	Profile added	2	0.62	4.70
453				50x50x5	S355	1M16-8.8t	Profile added	2	1.00	7.55
110-1	55x55x6	S235	1M16-5.6t	70x70x7	S355	1M16-8.8t	Profile exchanged	4	1.84	54.58
110-2	55x55x6	S235		70x70x7	S355		Profile exchanged	4	1.82	53.99
110-3	55x55x6	S235	1M16-5.6t	70x70x7	S355	1M16-8.8t	Profile exchanged	4	2.12	62.89
										521.93

3.2 RSB-RSD Tower 11

3.2.1 Tower outline

The tower outline based on the received asset data is included in Figure 7. The asset data did not include a tower outline drawing so Figure 7 is based on the dimensions in the individual section drawings.

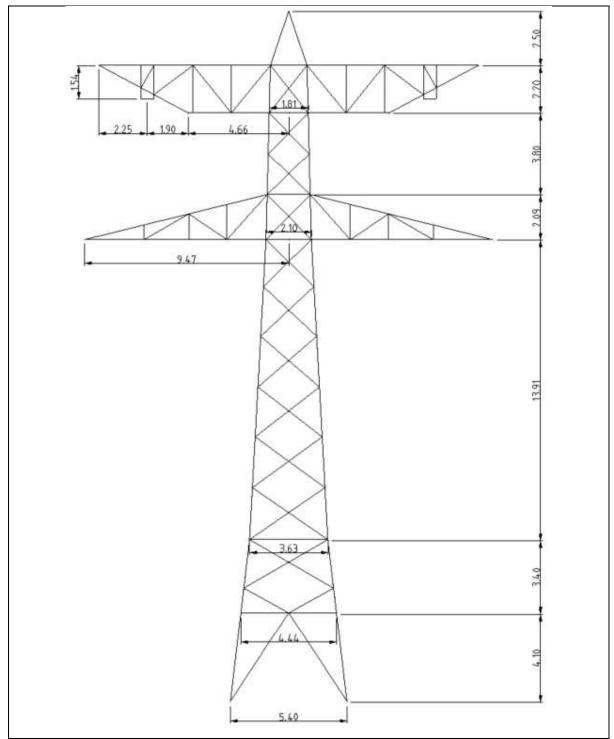


Figure 7 Tower outline for tower 11 RSB-RSD

3.2.2 Tower details

Table 5 summarises the wind and weight span parameters for tower 11 RSB-RSD.

Table 5 Tower details for tower 11 RSB-RSD

Tower number	Tower type	Line Angle (°)	Back span (m) (line side)	Ahead span (m) (OSP side)
11	H150°	152	229.1	Varies per phase between 1 and 5m

3.2.3 Tower analysis

The results of the analysis for tower 11 RSB-RSD with the loads calculated according to "afkeurniveau" are depicted in Figure 8 below. It should be noted that the results obtained during the BO analysis were more conservative since the BO calculations only considered the verbouw level.

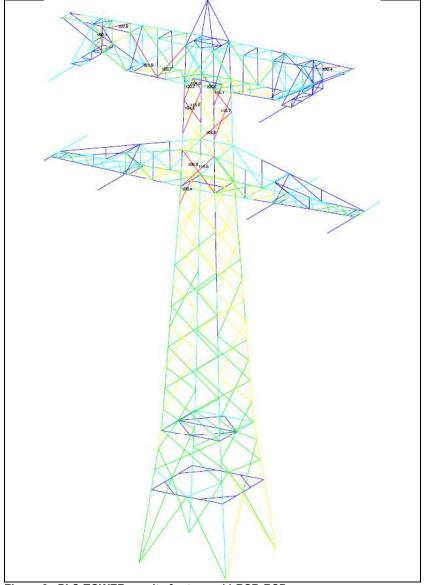


Figure 8 PLS-TOWER results for tower 11 RSB-RSD

The results of the analysis of the angle profiles, redundant members and main leg column anchors have been included in Table 6.

Table 6 Summary of performed checks for tower 11

Check of	Evaluation	Referentie
Profiles	NOK	Figure 3
Redundants	OK	Appendix C
Shear blocks	OK	Appendix D

3.2.4 Modifications

This section proposes tower reinforcements to ensure the tower fulfils the "afkeurniveau" loads. The proposal contains the following measures:

- Replacement of diagonals in the upper crossarm
- Strengthening of joints in the upper crossarm using plates
- Replacement of crossing diagonals on the front and side faces in the upper section of the mast body between the two crossarms
- Addition of a frame to outwardly extend the attachment point of the insulator in the upper crossarm (designed to withstand verbouw level).

3.2.5 Strengthening

As per the group summary outputs in Appendix B, the bracing members indicated in blue in Figure 9 and Figure 10 are to be replaced.

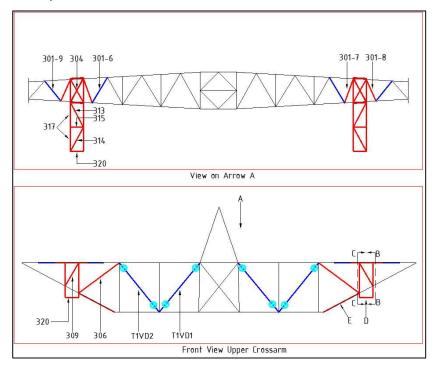


Figure 9 Members to be replaced in the upper crossarm of tower 11 RSB-RSD

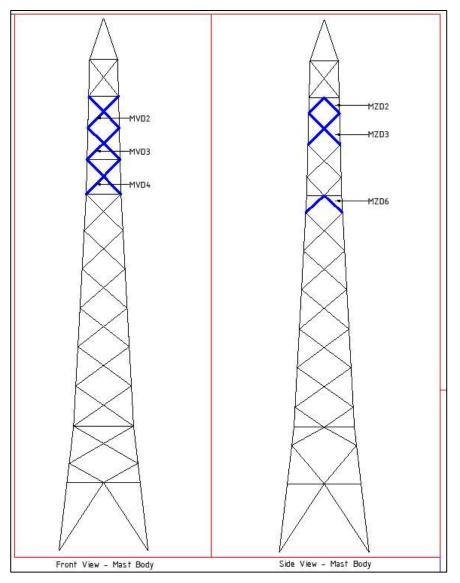


Figure 10 Crossing diagonals to be replaced in the upper section of the mast body

Internal bracings are required to secure the extension frame on the upper conductor attachment point. The bracings shown in Figure 11 should be installed at the locations of sections B-B and C-C from Figure 9.

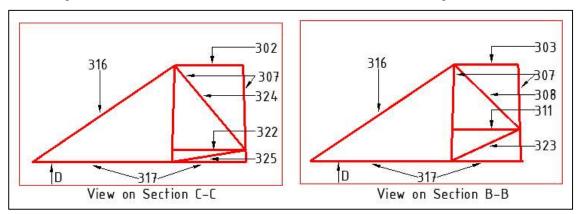


Figure 11 Internal bracing arrangements for the extension frame on the upper crossarm

Refer to Appendix E for further details on the new bracings which are to be installed.

Table 7 provides an overview of the weight of profiles required for the strengthening of tower 11. The weight of plates is not included in the calculation.

Table 7 Weight of profiles required for modifications on tower 11

Group Label	Profile ini.	Material ini.	Bolts ini.	Profile new	Material new	Bolts new	Mitigation	Number	Length (m)	Weight (kg)
302				50x50x5	S355	1M16-8.8t	Profile added	2	1.10	8.30
303				50x50x5	S355	1M16-8.8t	Profile added	2	1.03	7.81
304				50x50x5	S355	1M16-8.8t	Profile added	4	1.22	18.50
305				50x50x5	S355	1M16-8.8t	Profile added	4	2.22	33.66
306				70x70x7	S355	1M16-8.8t	Profile exchanged	4	2.27	67.22
307				60x60x6	S355	1M16-8.8t	Profile added	8	1.54	67.31
308				50x50x5	S355	1M16-8.8t	Profile added	2	1.48	11.22
309				50x50x5	S355	1M16-8.8t	Profile added	4	1.20	18.12
311				50x50x5	S355	1M16-8.8t	Profile added	2	1.09	8.26
312				50x50x5	S355	1M16-8.8t	Profile added	2	1.30	9.85
313				50x50x5	S355	1M16-8.8t	Profile added	2	1.29	9.78
314				50x50x5	S355	1M16-8.8t	Profile added	2	1.27	9.60
315				50x50x5	S355	1M16-8.8t	Profile added	2	0.60	4.55
316				80x80x8	S355	1M20-8.8t	Profile added	4	2.78	107.71
317				80x80x8	S355	1M16-8.8t	Profile added	2	6.79	131.81
320				HEB160	S355	2M20-8.8t	Profile added	2	0.60	51.35
321				50x50x5	S355	1M16-8.8t	Profile added	4	0.60	9.10
322				50x50x5	S355	1M16-8.8t	Profile added	2	1.18	8.91
323				50x50x5	S355	1M16-8.8t	Profile added	2	1.22	9.25
324				60x60x6	S355	1M16-8.8t	Profile added	2	1.77	19.25
325				50x50x5	S355	1M16-8.8t	Profile added	2	1.20	9.06
301-6	55x55x5	S235	1M16-5.6t	55x55x6	S355	1M16-8.8t	Profile exchanged	2	1.38	13.55
301-7				50x50x5	S355	1M16-8.8t	Profile added	2	1.19	9.02
301-8				50x50x5	S355	1M16-8.8t	Profile added	2	1.10	8.32
301-9	55x55x5	S235	1M16-5.6t	60x60x6	S355	1M16-8.8t	Profile exchanged	2	1.20	13.02
mvd2	65x65x6	S235	2M20-5.6t	70x70x7	S355	2M20-8.8t	Profile exchanged	4	2.66	78.85
mvd3	65x65x6	S235	2M20-5.6t	70x70x7	S355	2M20-8.8t	Profile exchanged	4	2.73	80.84
mvd4	70x70x7	S235	2M20-5.6t	70x70x7	S355	2M20-8.8t	Profile exchanged	4	2.93	86.89
mzd2	65x65x6	S235	2M20-5.6t	70x70x7	S355	2M20-8.8t	Profile exchanged	4	1.33	39.45
mzd3	65x65x6	S235	2M20-5.6t	70x70x7	S355	2M20-8.8t	Profile exchanged	4	2.69	79.83
mzd6	90x90x8	S235	3M22-5.6t	90x90x9	S355	3M22-8.8t	Profile exchanged	4	1.51	73.24
t1vd1	70x70x7	S235	1M16-5.6t	80x80x8	S355	1M16-8.8t	Profile exchanged	2	2.85	55.29
t1vd2	70x70x7	S235	1M16-5.6t	80x80x8	S355	1M16-8.8t	Profile exchanged	2	2.83	54.91
										1213.82

3.3 RSD-WDT Tower 19a

3.3.1 Tower outline

The tower outline from the received asset data is included in Figure 12.

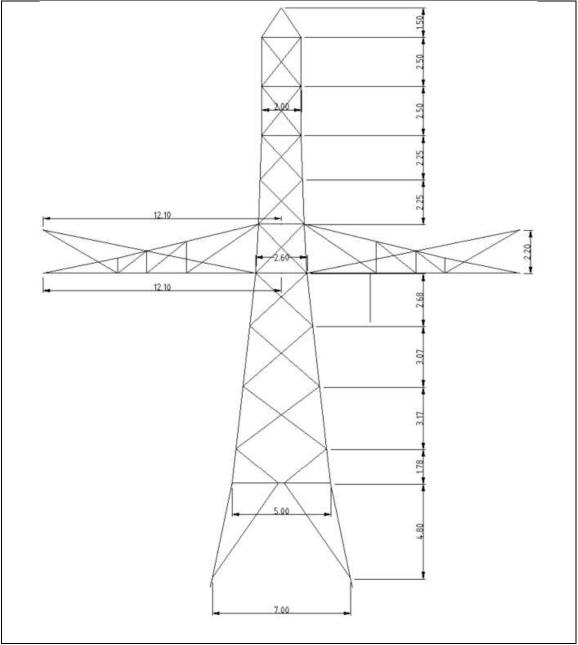


Figure 12 Tower outline for tower 19a RSD-WDT

The structure was modelled with S355 steel quality. This assumption was used after consulting with TenneT and the basis for the assumption is that the tower was constructed during/ after 2010. A workshop drawing of one of the tower components was also provided by TenneT which indicated that the steel material was S355.

Mast 19a currently exists as a "dual-mast" tower with a bridge connecting the two sides. The bridge and the mast which is furthest from the portaal at Borchwerf will be removed resulting in a singular tower as shown in Figure 12. For the purposes of the structural calculations, the bridge and adjacent mast were not considered.

3.3.2 Tower details

Table 8 summarises the wind and weight span parameters for tower 19a RSD-WDT.

Table 8 Tower details for tower 19a RSD-WDT

Tower number	Tower type	Line Angle (°)	Back span (m) (line side)	Ahead span (m) (OSP side)
19a Lijnportaal		Lijnportaal 143 110		Varies per phase between 1 and 2m

3.3.3 Tower analysis

The results of the analysis for tower 19a with the loads calculated according to "afkeurniveau" are depicted in Figure 13 below.

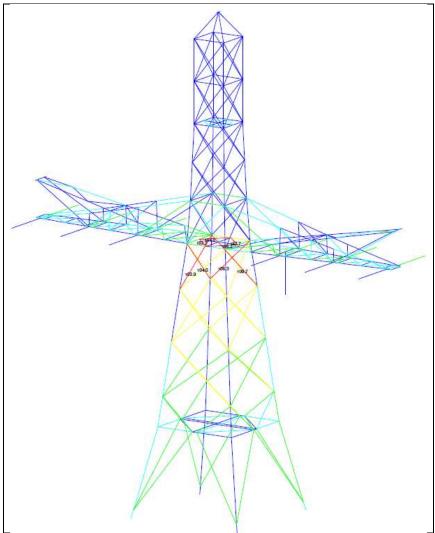


Figure 13 PLS-TOWER results for tower 19a RSD-WDT

The results of the analysis of the angle profiles, redundant members and main leg column anchors have been included in Table 9.

Table 9 Summary of performed checks for tower 19a

Check of	Evaluation	Referentie
Profiles	NOK	Figure 3
Redundants	OK	Appendix C
Shear blocks	OK	Appendix D

3.3.4 Modifications

This section proposes tower reinforcements to ensure the towers fulfill the "afkeurniveau" loads. The proposal contains the following measures:

- Replacement of crossing diagonals in the tower body beneath the crossarm
- Strengthening of crossing diagonal joints using plates
- Replacement of diagonals in the body diaphragm of the crossarm

Provision will have to be made for a dropper attachment point at the crossarm. No new extension frames are required for this structure as for the towers 1, 11 and 97.

3.3.5 Strengthening

As per the group summary outputs in Appendix B, the bracing members indicated in blue in Figure 14 are to be replaced.

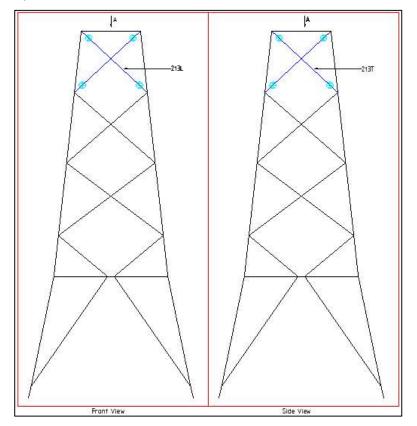


Figure 14 Crossing diagonals to be replaced in the body of mast 19a

At location where the crossarm meets the tower body, the diagonal bracing in the diaphragm is to be replaced as shown in Figure 15.

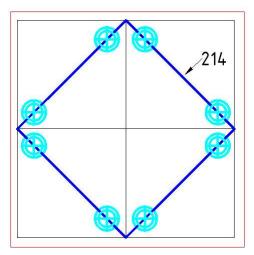


Figure 15 Diagonal bracing in the diaphragm to be replaced

Table 10 provides an overview of the weight of profiles required for the strengthening of tower 19a. The weight of plates is not included in the calculation.

Table 10 Weight of profiles required for modifications on tower 19a

Group Label	Profile ini.	Material ini.	Bolts ini.	Profile new	Material new	Bolts new	Mitigation	Number	Length (m)	Weight (kg)
213L	100x100x10	S355	2M24-8.8t	100x100x12	S355	2M24-8.8t	Profile exchanged	4	3.96	283.40
213T	100x100x10	S355	2M24-8.8t	100x100x12	S355	2M24-8.8t	Profile exchanged	4	3.96	283.40
214	70x70x7	S355	1M20-8.8t	100x100x12	S355	1M20-8.8t	Profile exchanged	4	1.84	131.64
										698.45

3.4 RSD-MDK Tower 97

3.4.1 Tower outline

The tower outline based on the received asset data is included in Figure 16. The asset data did not include a tower outline drawing so Figure 16 is based on the dimensions in the individual section drawings.

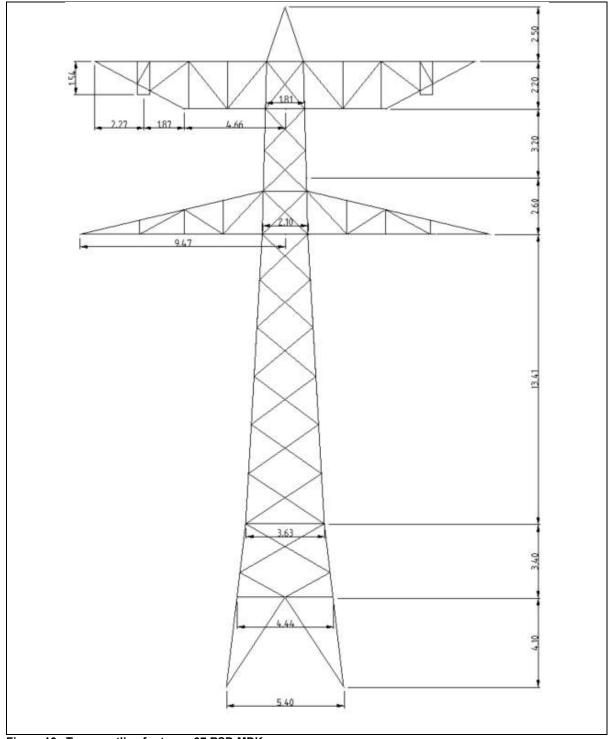


Figure 16 Tower outline for tower 97 RSD-MDK

3.4.2 Tower details

Table 11 summarises the wind and weight span parameters for tower 97 RSD-MDK.

Table 11 Tower details for tower 97 RSD-MDK

Tower number	Tower type	Line Angle (°)	Back span (m) (line side)	Ahead span (m) (OSP side)
97	W150°	169	323	Varies per phase between 1 and 5m

3.4.3 Tower analysis

The results of the analysis for tower 97 RSD-MDK with the loads calculated according to "afkeurniveau" are depicted in Figure 17 below.

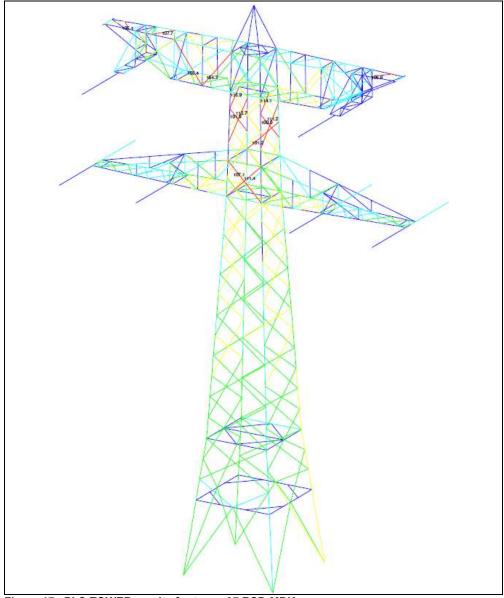


Figure 17 PLS-TOWER results for tower 97 RSD-MDK

The results of the analysis of the angle profiles, redundant members and main leg column anchors have been included in Table 12.

Table 12 Summary of performed checks for tower 97

Check of	Evaluation	Referentie
Profiles	NOK	Figure 3
Redundants	OK	Appendix C
Shear blocks	OK	Appendix D

3.4.4 Modifications

This section proposes tower reinforcements to ensure the tower fulfils the "afkeurniveau" loads. The proposal contains the following measures:

- Replacement of diagonals in the upper crossarm
- Strengthening of joints in the upper crossarm using plates
- Replacement of crossing diagonals on the front and side faces in the upper section of the mast body between the two crossarms
- Addition of a frame to outwardly extend the attachment point of the insulator in the upper crossarm (designed to withstand verbouw level).

3.4.5 Strengthening

As per the group summary outputs in Appendix B, the bracing members indicated in Figure 18 and Figure 19 are to be replaced.

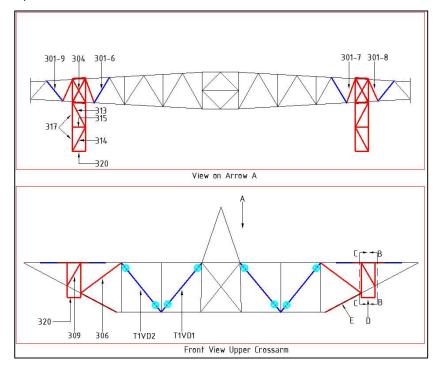


Figure 18 Members to be replaced in the upper crossarm of tower 97 RSD-MDK

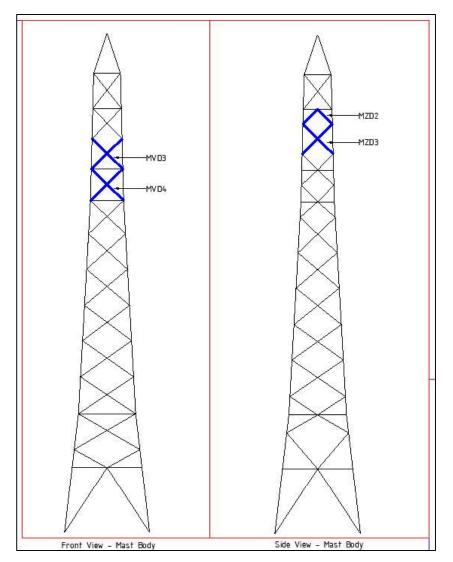


Figure 19 Crossing diagonals to be replaced in the upper section of the mast body

Internal bracings are required to secure the extension frame on the upper conductor attachment point. The bracings shown in Figure 20 should be installed at the locations of sections B-B and C-C from Figure 18.

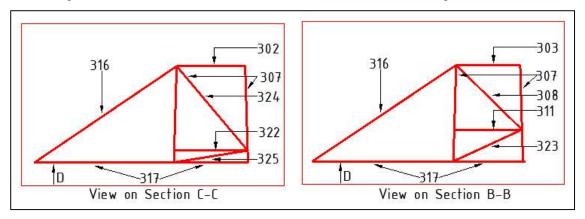


Figure 20 Internal bracing arrangements for the extension frame on the upper crossarm

Refer to Appendix E for further details on the new bracings which are to be installed.

Table 13 provides an overview of the weight of profiles required for the strengthening of tower 97. The weight of plates is not included in the calculation.

Table 13 Weight of profiles required for modifications on tower 97

Group Label	Profile ini.	Material ini.	Bolts ini.	Profile new	Material new	Bolts new	Mitigation	Number	Length (m)	Weight (kg)
302				50x50x5	S355	1M16-8.8t	Profile added	2	1.10	8.30
303				50x50x5	S355	1M16-8.8t	Profile added	2	1.03	7.81
304				50x50x5	S355	1M16-8.8t	Profile added	4	1.22	18.50
305				50x50x5	S355	1M16-8.8t	Profile added	4	2.22	33.66
306				70x70x7	S355	1M16-8.8t	Profile added	4	2.27	67.22
307				60x60x6	S355	1M16-8.8t	Profile added	8	1.54	67.31
308				50x50x5	S355	1M16-8.8t	Profile added	2	1.48	11.22
309				50x50x5	S355	1M16-8.8t	Profile added	4	1.20	18.12
311				50x50x5	S355	1M16-8.8t	Profile added	2	1.09	8.26
312				50x50x5	S355	1M16-8.8t	Profile added	2	1.30	9.85
313				50x50x5	S355	1M16-8.8t	Profile added	2	1.29	9.78
314				50x50x5	S355	1M16-8.8t	Profile added	2	1.27	9.60
315				50x50x5	S355	1M16-8.8t	Profile added	2	0.60	4.55
316				8x08x08	S355	1M20-8.8t	Profile added	4	2.78	107.71
317				80x80x8	S355	1M16-8.8t	Profile added	2	6.79	131.81
320				HEB160	S355	2M20-8.8t	Profile added	2	0.60	51.35
321				50x50x5	S355	1M16-8.8t	Profile added	4	0.60	9.10
322				50x50x5	S355	1M16-8.8t	Profile added	2	1.18	8.91
323				50x50x5	S355	1M16-8.8t	Profile added	2	1.22	9.25
324				60x60x6	S355	1M16-8.8t	Profile added	2	1.77	19.25
325				50x50x5	S355	1M16-8.8t	Profile added	2	1.20	9.06
301-6	55x55x5	S235	1M16-5.6t	55x55x6	S355	1M16-8.8t	Profile exchanged	2	1.38	13.55
301-7				50x50x5	S355	1M16-8.8t	Profile added	2	1.19	9.02
301-8				50x50x5	S355	1M16-8.8t	Profile added	2	1.10	8.32
301-9	55x55x5	S235	1M16-5.6t	55x55x6	S355	1M16-8.8t	Profile exchanged	2	1.20	11.76
mvd3	65x65x6	S235	2M20-5.6t	70x70x7	S355	2M20-8.8t	Profile exchanged	4	2.73	80.84
mvd4	70x70x7	S235	2M20-5.6t	70x70x7	S355	2M20-8.8t	Profile exchanged	4	2.93	86.89
mzd2	65x65x6	S235	2M20-5.6t	70x70x7	S355	2M20-8.8t	Profile exchanged	4	1.33	39.45
mzd3	65x65x6	S235	2M20-5.6t	70x70x7	S355	2M20-8.8t	Profile exchanged	4	2.69	79.83
t1vd1	70x70x7	S235	1M16-5.6t	80x80x8	S355	1M16-8.8t	Profile exchanged	2	2.85	55.29
t1vd2	70x70x7	S235	1M16-5.6t	80x80x8	S355	1M16-8.8t	Profile exchanged	2	2.83	54.91
										1060.47

4 REFERENCES

- [1] 002.678.00 0678980 20-0423 D2.2 Ondersteuning Basisontwerp 150 kV Opstijgpunten.
- [2] 002.678.00 0935199 21-0981 Verificatie en validatie ontwerpeisen permanente OSP's.

APPENDIX A

Conductor loads

Number of loops	Number of Different Scenarios Considered	12				S	hort Circ	Short Circuit Force Calculations	e Calcu	ations				
			10	Mast 1 GT-BD 12	11	Mast 10	Mast 11 RSD-WDT150	11	Mast 10	Mast 19a RSD-RSB150	11	Ма 10	Mast 97 MDK-RSD150	11
	Name of the Span / Location / Scenario													
CT_min CT_max CT_10	Conductor Bundle Tension of dropper at specified min, temp (N) Conductor Bundle Tension of dropper at specified max, temp (N) Conductor Bundle Tension of dropper at 10°C (10)		0009	0009	0009	3000	3000	3000	3000	3000	3000	3000	3000	3000
SHORT CIRCUIT CURRENT PARAMETERS I'K Short Circuit TK1 Duration of It	NT PARAMETERS Short Circuit Current Duration of the current flow (9)		30000	30000	30000	30000	30000	30000	30000	30000	30000	30000	30000	30000
SYSTEM PARAMETERS. A freq k r - tau	Factor for calculation of the first current flow System Frequency Factor for calculation of peak short-circuit current Time Constant of the network		1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044	1,81 50 1,81 0,044
CONDUCTOR PARAMETERS Can Mat Can Mat cth (m^4/(A^22*s) mis mis E E Can Mat Can	Conductor Palention	AC A	ACSR 224/20E A ACSR 2.24/20E A A A A A A A A A A A A A A B A A A A	ACSR 224/20E A/ ACSR ACSR A/CSR A/CS	ACSR 224/20E ACSR ACSR ACSR ACSR ACSR ACSR 0,078-19 0,0203 0,745158 1,244E-10 5,00E-07 5,00E-07	ACSR 224/20E A ACSR 2.75R ACSR ACSR ACSR 0,0203 0,0203 0,744158 2,44E+10 5,00E+07	ACSR 224/20E A A CSR A CSR A A C	ACSR 224/20E 1 ACSR ACSR 0,028 0,0203 0,744158 2,44E-10 7,44E+10 5,00E+07	Bobolink acsr ACSR 1,70E-19 0,0362 2,457696228 7,76E-04 7,79E+10 5,00E+07	Bobolink acsr 7ACSR 1,70E-19 0,0362 2,457569228 7,76E-04 7,79E+10 5,00E+07	Bobolink acsr ACSR 1,70E-19 0,0362 2,45769628 7,76E-04 7,79E+10 5,00E+07	ACSR 224/20E ACSR 1,70E-19 0,7745158 2,44E-04 7,44E+10 5,00E+07	ACSR 224/20E ACSR 1,70E-19 0,0203 0,7745158 2,44E-04 7,44E+10 5,00E+07	ACSR 224/20E ACSR 1/20E-19 0,0203 0,7745158 2,44E-04 7,44E+10 5,00E+07
PRA AND BUNDLE GEOMETRY 1	Abred 50 subconductors in Bundle Abred 50 subconductors in Bundle Centre line Distance between plase conductors Centre line Distance between Sub-conductors Centre line Distance between Sub-conductors Central line Distance between Sub-conductors Central control in Constance between Sub-conductors Central control in Constance between Sub-conductors Central control in Constance between Sub-conductor in Span Central control in Constance in Central Centra		4 4 65 5.73 0.4 6.5 2.3 65 14.4 2.2 2.2 2.2 4.65 4.65 4.65 4.65 4.65 4.65 4.65 4.65	4 4 65 2 59 6 25 9 6 25 9 6 25 9 6 25 9 6 25 9 6 25 9 6 25 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 4 4 4 4 65 3.19 3.19 0.4 4 65 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 4/5 4/64 0.4 0.4 12.7 12.7 2 2 2 2 2 2 2 2 3 13.7 13.7 13.7	2 4/5 2665 0.4 2.8 5.6 2.0 5.0	2 4,5 2,72 2,72 0,4 2,171 12,7 12,7 2,0 2,0 2,0 3,7 12,7 12,7 12,7 12,7 12,7	2 4,65 3,2 3,2 0,4 4,65 6,4 4,65 6,4 6,4	2 4.65 0.4 15.7 15.7 15.7 15.7 15.7 16.4 16.5 16.4	2 4,65 4,65 0,4 15,7 4,65 6,4 15,7 15,7 15,7 16,6 4,65 6,4	2 4/75 4/75 6/99 0,44 4/75 12.1 2 2 2 2 2 2 2 2 2 2 4/75 15.5 3 4/75 15.5 2 1.5 2 2 2 4/75 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8	2 475 288 288 475 475 475 475 475 475 475 475 475 475	2 4.75 4.75 0.4 1.55 4.75 12.1 2 2 2 2 2 2 2 1.55 4.75 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.
CALCULATION RESULTS	Check if force should be calculated as a dropper or main conductor. Check validity of chapter 6.3		Cakulate as dropper Valid	Calculate as dropper Invalid	Calculate as C dropper	Calculate as dropper Valid	Calculate as dropper Invalid	Calculate as dropper Valid	Calculate as dropper Invalid	Calculate as dropper Invalid	Calculate as dropper Invalid	Calculate as dropper Valid	Calculate as dropper Invalid	Calculate as dropper
Short Circuit Force using Winimum Temperature	R. d., Short Circuit Force of one phase (N) as main conductor R. d., Short Circuit Force of one phase (N) as dropper R. d., Short Corn Force of one phase (N) as dropper Peji.d., Pinch Force of one phase (N) as dropper Peji.d., Pinch Force of one phase (N) as dropper De., Mouinum Horizontal Displacement (m) Ann., Distance between the midpoints of the two phases - Minimum air dearance (m) (m)		7078 2319 17010 0	12220 14839 22453 0	9006 4166 17010 0	5263 2322 16293 0	10565 9574 29023 0	7847 3961 16293 0	3413 826 8910 0	3413 826 8910 0	3413 826 8910 0	4846 1838 15568 0,00	9576 7794,4 29594 0,00	7532 3385 15568 0,00
Short Circuit Force using. Maximum. Temperature	R.d. Short Circuit Ferce of one phase (it) as main conductor R.d. Short Circuit Ferce of one phase (it) as dropper R.d. Short Circuit Ferce of one phase (it) as dropper Filed, Pinch Force one phase (it) as dropper		7078 2319 17010 0	12220 14839 22453 0	9006 4166 17010 0	5263 2322 16293 0	10565 9574 29023 0	7847 3961 16293 0	3413 826 8910 0	3413 826 8910 0	3413 826 8910 0	4845,87 1838,34 15568,28 0,00	9575,67 7794,41 29594,10 0,00	7531,67 3384,99 15568,28 0,00
Short Circuit Force Using JOST	P. E. d. Short Circuit Force of one phase (N) as main conductor (10) R. d. Short Circuit Force of one phase (N) as dropper (10) R. d. Short Circuit Force of cone phase (N) as dropper (10) Fig. d. Finch Force of cone phase (N) as dropper (10) Fig. d. Finch Force of cone phase (N) as dropper (10) E. M. Roammun Horizontal Origide-ement (10) E. M. Roammun Horizontal Origide-ement (10) annin, Distance between the midpoints of the two phases - Minmum air clearning (10)		7078 2319 17010 0	12220 14839 22453 0	9006 4166 17010 0	5263 2322 16293 0	10565 9574 29023 0	7847 3961 16293 0	3413 826 8910 0	3413 826 8910 0	3413 826 8910 0	4846 1838 15568 0	9576 7794 29594 0	7532 3385 15568 0
	Shart Circuit force to be applied (N) (W)		17010	22453	17010	16293	29023	16293	8910	8910	8910	15568	29594	15568

Inhoud

- Uitgangspunten
- Mastconstructie
- Tussenresultaten
- Belastingen initiëel
- Belastingen na aanpassing
p. 15

Gegevens

Norm NEN-EN50341-2-15:2019

Initieel

Gevolgklasse CC2 Betrouwbaarheidsniveau Afkeur Referentieperiode 30 jaar

Na aanpassing

Gevolgklasse CC2
Betrouwbaarheidsniveau Verbouw
Referentieperiode 50 jaar

Windgebied III
Windsnelheid 24,5 m/s
Terreincategorie II
Reductie factor Cdir 1,00
IJsgebied B

MasttypeHoekmastMasthoogte38,5 mMax. veldlengte263 mLijnhoek180°Trekparameter1100 m

Wind span 134 m EDS Weight span 486 m Min. Weight span 112 m Max. Weight span 3426 m

0.0	2021-07-28			
ISSUE	DATE	REVISION	CHK'D	APP'D
	·			

Client:

Title:

Berekening masttype H1

JOB No.	-	DATE	-
DRAWN	-	CHKD	-
DESIGN	-	APPD	-

Document name:

ZWO380 D2.2 OSP Mast 1_H1_1_Report.pdf

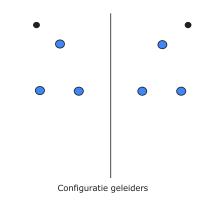
Project number:

Project client number:

0.0

ZWO380 D2.2 OSP Mast 1

Project: Tower: Number:


Auteur: TBR Geleiderbelastingen Versie: v11.9

Algemeen

Angelieeri Benaming Masttype Aantal circuits Configuratie Aantal bliksemgeleiders Н1 Hoekmast 2-circuit-donau

Uitgangspunten

NEN-EN50341-2-15:2019 Norm Gevolgklasse initieel Betrouwbaarheidsniveau initieel Afkeur CC2-0 30 jaar CC2 Verbouw 50 jaar III Referentieperiode initieel Gevolgklasse na aanpassing Betrouwbaarheidsniveau na aanpassing Referentieperiode na aanpassing Windgebied Windsnelheid (m/s) 24,5 m/s II Terreincategorie Reductiefactor c_{dir} IJsgebied fasegeleider IJsgebied bliksemgeleider 1,00 В

Geleiders Back

Spanning	Geleider Back	Bundel Ba	IJsgebied	Toeslag gewicht	Toeslag diameter	Intrekwaarden P _{back}
150 kV	ACSR 20/224	4	В	2 %	2 %	1100
150 kV	ACSR 20/224	4	В	2 %	2 %	1100
	ACSR 30/52 PETREL	1	Α	2 %	2 %	1600
	ACSR 30/52 PETREL	1	Α	2 %	2 %	1600
	150 kV	Back 150 kV ACSR 20/224 150 kV ACSR 20/224 ACSR 20/224 ACSR 30/52 PETREL	Back Ba 150 kV ACSR 20/224 4 150 kV ACSR 20/224 4 ACSR 20/224 4 ACSR 30/52 PETREL 1	Back Ba 150 kV ACSR 20/224 4 B 150 kV ACSR 20/224 4 B ACSR 30/52 PETREL 1 A	Spailing Selected Sunder Dispersive Gewicht	Spalling Selected Back Ba Gewicht diameter

Geleiders Ahead							
Omschrijving	Spanning	Geleider	Bundel	IJsgebied	Toeslag	Toeslag	Intrekwaarden
		Ahead	Ah		gewicht	diameter	P _{ahead}
Circuit 1	150 kV	ACSR 20/224	4	В	2 %	2 %	50
Circuit 2	150 kV	ACSR 20/224	4	В	2 %	2 %	50
Bliksemdraad 1		Niet aanwezig	1	Α	2 %	2 %	1600
Bliksemdraad 2		Niet aanwezig	1	Α	2 %	2 %	1600

Isolatoren	(1)			
Omschrijving	Ophanging	Gewicht	Lengte	Windopp.
		[kN]	[m]	[m ²]
Circuit 1	Afspanketting	2,50	4,50	1,00
Circuit 2	Afspanketting	2,50	4,50	1,00
Bliksemdraad 1	Afspanketting	0,10	0,20	0,10
Bliksemdraad 2	Afspanketting	0,10	0,20	0,10

Eigenschappen gelden voor geheel van de isolatorset

Ophanghoogte en positie in mast

					Positie in mast	
Circuits	Aandui	ding Nummer	Ophanghoogte	Aangrijppunt	Horizontale afstand	
Circuit 1	10	150ct1f1	24,0 m	24,0 m	11,6 m	
Circuit 1	11	150ct1f2	24,0 m	24,0 m	5,6 m	
Circuit 1	12	150ct1f3	35,5 m	35,5 m	8,6 m	
Circuit 2	20	150ct2f1	24,0 m	24,0 m	-5,6 m	
Circuit 2	21	150ct2f2	24,0 m	24,0 m	-11,6 m	
Circuit 2	22	150ct2f3	35,5 m	35,5 m	-8,6 m	
Bliksemdraad 1	1	bl1	38,5 m	38,5 m	13,5 m	
Bliksemdraad 2	3	bl2	38,5 m	38,5 m	-13,5 m	

28-7-2021 2 van 21

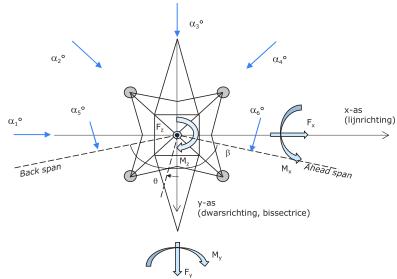
ZWO380 D2.2 OSP Mast 1 H1 1

Project: Tower: Number:

Hoogteaanpassing naastgelegen masten (aanpassing wind- en weight span)

	Back	Ahead	
Verhoging voor windbelasting	0,0 m	0,0 m	(positief: omhoog)
Verlaging voor verticale belasting	0,0 m	0,0 m	(negatief: omlaag, grotere weight span)
Verlaging: Niet in 0,9EG-combinaties			

Hoogteafwijking mastbeeld naastgelegen masten en richtingsverandering t.o.v. Lijnrichting


mooglearwijking mas	tbeelu liaa	atgeregen ma	sten en n	iciidiigsverandei iii	ig t.o.v. Lijiii itiitii	19	
			Hoogte	everschil	Richtingsvera	ndering	
Circuits	Aanduiding	Nummer	∆h_back	∆h_ahead	Δy_back Δy	_ahead	
Circuit 1	10	150ct1f1	0,0	-23,7 m	0,0	-2,4 m	
Circuit 1	11	150ct1f2	0,0	-23,7 m	0,0	-1,4 m	
Circuit 1	12	150ct1f3	0,0	-35,2 m	0,0	-1,9 m	
Circuit 2	20	150ct2f1	0,0	-23,7 m	0,0	1,4 m	
Circuit 2	21	150ct2f2	0,0	-23,7 m	0,0	2,5 m	
Circuit 2	22	150ct2f3	0,0	-35,2 m	0,0	1,9 m	
Bliksemdraad 1	1	bl1	1,2	0,0 m	0,0	0,0 m	
Bliksemdraad 2	3	bl2	1,2	0,0 m	0,0	0,0 m	

Lijn- en mastgegevens

Lijii cii iiidstgegevens				
		Back	Ahead	
		263,0	5,0 m	
Ruling span $\sqrt{(\Sigma L^3/\Sigma L)}$		303,0	5,0 m	
Lijnhoek	β	180 °		
Rotatie mast t.o.v. bissectrice	θ	-3 °		
Vaklengte		1798	5 m	
Hoogte onderkant mast t.o.v. ma	aaiveld	0,5 m		
Beschouwde windrichtingen	α_1	0 °		
Windrichtingen volgens:	α_2	135 °		
Geleiderbelastingen	α_3	45 °		
	α_4	93 °		
	α_5	75 °		
	α_6	105 °		

Windrichtingen gelden t.o.v. hoofdrichting mastconstructie, niet t.o.v. bissectrice.

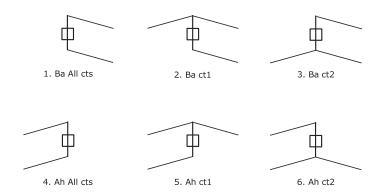
Windrichtingen en positieve richtingen belastingen

Beschouwd aantal windrichtingen	
1a	6
3	6
4	1
6	1
Overig	1

28-7-2021 3 van 21

ZWO380 D2.2 OSP Mast 1 H1 1

Project: Tower: Number:


Geleiderafval

		SPLS			kelzijdige trek	5a - gele	iderbreuk
		Aanw.	Afw.	Aanw.	Afw.	Aanw.	Afw.
Circuit 1	150ct1f1	1	0	1	0	1	0
Circuit 1	150ct1f2	1	0	1	0	1	0
Circuit 1	150ct1f3	1	0	1	0	1	0
Circuit 2	150ct2f1	0	1	1	0	1	0
Circuit 2	150ct2f2	0	1	1	0	1	0
Circuit 2	150ct2f3	0	1	1	0	1	0
Bliksemdraad 1	bl1	1	0	1	0	1	0
Bliksemdraad 2	bl2	0	1	1	0	1	0

Belastingsituaties SPLS

Beschouwde situaties SPLS: 1 t/m 6, alle mogelijke situaties.

Principe belastingssituaties:

Belastingsituaties 5a. Geleiderbreuk

Beschouwde situaties geleiderbreuk 5a: 1 en 2, alle mogelijke situaties.

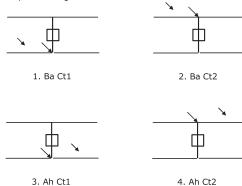
Principe belastingssituaties:

28-7-2021 4 van 21

Project: ZWO380 D2.2 OSP Mast 1

Tower: H1 Number: 1

Belastingsituaties 6. Bouw- en onderhoud

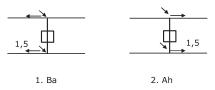

Onder 6a wordt de belasting door aanwezigheid lijnwagen of lijnfiets in combinatie met puntlast op traverse in rekening gebracht. Combinatie 6b bevat geen belastingen in geleider of op traverse. Deze combinatie is toegevoegd om te kunnen combineren met separate controle bordessen etc. De situaties worden in ULS en in iedere SPLS-situatie (in geval van hoekmast) toegepast.

	Fase	Bliksem
Lijnwagen	3,0 kN	2,0 kN
Puntlast op traverse	1,0 kN	1,0 kN

Beschouwde situaties bouw- en onderhoud 6a: 1 en 2, uitgangspunt is symmetrie tussen back / ahead.

Aanwezigheid lijnwagen: Circuit, belasting tegelijk aanwezig in alle geleiders per circuit.

Principe belastingssituaties:


Belastingsituaties 8. Lijndansen als statische belasting

Geleider			
Steunmast fase	0,866 W	1,5 W	
Steunmast bliksem	1,5 EDS	1,5 W	
Hoekmast fase en bliksem	1.5 EDS	1.5 W	

Beschouwde situaties lijndansen 8: Geen (bestaande constructie)

Belasting tegelijk aanwezig in alle geleiders van het circuit.

Principe belastingssituaties:

Belastingcombinatie 8. Lijndansen als dynamische belasting

Alleen van toepassing op hoek- en eindmasten

Belasting bestaat uit EDS-trekbelasting in één van de geleiders aan één zijde van de mast Door gebruiker via het belastingsspectrum van tabel 4.11/NL.1 om te zetten naar spanningspectrum

28-7-2021 5 van 21

ZWO380 D2.2 OSP Mast 1

Project: Tower: Н1 Number:

Mastconstructie

Eigenschappen

Masttype Hoekmast H1 0,5 m 38,5 m 270,0 kN Mastbenaming Voetplaat t.o.v. maaiveld Masthoogte t.o.v. voetplaat Gewicht mast

x-ri. 8,50 0,160 y-ri. 8,50 m 0,160 -Breedte en helling mast bij fundatie Pootsprei Helling van de randstijl Factor spatkracht 1,3 -1,3

Berekening windbelasting

Dynamische invloed G_T 1,00 (Masthoogte < 60 m)

(A1C1sin^2(phi)+A2C2cos^2(phi)) (A1C1sin^2(phi)+A2C2cos^2(phi)) Windbelasting overhoeks op mastlichaam evenredig met: Windbelasting overhoeks op traverse evenredig met:

(1+0,2sin^2(2phi)) (1+0,2sin^2(2phi)) 0,4 Vergroting wind overhoeks mastlichaam Vergroting wind overhoeks traverse

Factor wind evenwijdig t.o.v. haaks op traverse

Eigenschappen mastsecties langsrichting (vooraanzicht, yz-vlak)

		,	, ,						
Omschrijving	h	b_1	b_2	∆h	Δ_{x}	A_0	A_1	$\chi = A_1/A_0$	C_t
	[m]	[m]	[m]	[m]	[m]	[m ²]	[m ²]	[-]	
Broekstuk	5,00	8,50	6,90	5,00	0,160	38,50			3,96
Eerste tussenstuk	11,60	6,90	4,68	6,60	0,168	38,21			3,96
Tweede tussenstuk	18,80	4,68	3,96	7,20	0,050	31,10			3,96
Bovenstuk 1	27,45	3,96	3,07	8,65	0,051	30,40			3,96
Bovenstuk 2	37,05	3,07	2,00	9,60	0,056	24,34	-0,50	-0,02	4,08
Topstuk	38,50	2,00		1,45		1,45	0,50	0,34	2,38
Ondertraverse	23,25	9,85		2,30		11,33			3,96
Boventraverse	34,75	12,35		2,30		14,20			3,96

Eigenschappen mastsecties d	warsrichting (zi	jaanzicht, >	(z-vlak)						
Omschrijving	h	b_1	b_2	∆h	Δ_{x}	A_0	A_1	$\chi = A_1/A_0$	C_{t}
	[m]	[m]	[m]	[m]	[m]	[m²]	[m ²]	[-]	
Broekstuk	5,00	8,50	6,90	5,00	0,160	38,50			3,96
Eerste tussenstuk	11,60	6,90	4,68	6,60	0,168	38,21			3,96
Tweede tussenstuk	18,80	4,68	3,96	7,20	0,050	31,10			3,96
Bovenstuk 1	27,45	3,96	3,07	8,65	0,051	30,40			3,96
Bovenstuk 2	37,05	3,07	2,00	9,60	0,056	24,34	-0,50	-0,02	4,08
Topstuk	38,50	2,00		1,45		1,45	0,50	0,34	2,38
Ondertraverse	23,25	9,85		2,30		11,33			3,96
Boventraverse	34,75	12,35		2,30		14,20			3,96

NB: oppervlakte traverse dwarsrichting wordt in berekening gereduceerd.

28-7-2021 6 van 21

ZWO380 D2.2 OSP Mast 1

Project: Tower: Number: H1

Windoppervlak feeders telecominstallaties

Onderdeel Broekstuk A (m²/m)Δh Factor

Eerste tussenstuk Tweede tussenstuk Bovenstuk 1 Bovenstuk 2

Invoer antennes

Omschrijving Antenne top h (m) $C_f(m)$ A (m²)

Antenne o.t.

Belastingen mastsectie langsrichting (x-richting) per windrichting

Omschrijving	p_w	F _{x1}	F_{x2}	F _{x3}	F _{x4}	h _{ef}	M_{y1}	M_{y2}	M_{y3}	M_{y4}
	[kN/m ²]	[kN]	[kN]	[kN]	[kN]	[m]	[kNm]	[kNm]	[kNm]	[kNm]
Broekstuk	0,70	0,0	0,0	0,0	0,0	2,5	0,0	0,0	0,0	0,0
Eerste tussenstuk	0,70	0,0	0,0	0,0	0,0	8,3	0,0	0,0	0,0	0,0
Tweede tussenstuk	0,81	0,0	0,0	0,0	0,0	15,2	0,0	0,0	0,0	0,0
Bovenstuk 1	0,92	0,0	0,0	0,0	0,0	23,1	0,0	0,0	0,0	0,0
Bovenstuk 2	1,01	-2,1	1,7	-1,7	0,1	32,3	-66,4	56,4	-56,4	3,5
Topstuk	1,05	1,3	-1,1	1,1	-0,1	37,8	47,4	-40,2	40,2	-2,5
Ondertraverse	0,93	0,0	0,0	0,0	0,0	24,0	0,0	0,0	0,0	0,0
Boventraverse	1,04	0,0	0,0	0,0	0,0	35,5	0,0	0,0	0,0	0,0
Totaal		-0.8	0.7	-0.7	0.0		-19,0	16,1	-16,1	1.0
TOLAAT		-0,6	0,7	-0,7	0,0		-19,0	10,1	-10,1	1,0

Belastingen mastsectie dwarsrichting (y-richting) per windrichting

Omschrijving	p_w	F_{y1}	F_{y2}	F_{y3}	F _{x4}	h_{ef}	$M_{\times 1}$	M_{x2}	M_{x3}	M_{x4}
	[kN/m ²]	[kN]	[kN]	[kN]	[kN]	[m]	[kNm]	[kNm]	[kNm]	[kNm]
Broekstuk	0,70	0,0	0,0	0,0	0,0	2,5	0,0	0,0	0,0	0,0
Eerste tussenstuk	0,70	0,0	0,0	0,0	0,0	8,3	0,0	0,0	0,0	0,0
Tweede tussenstuk	0,81	0,0	0,0	0,0	0,0	15,2	0,0	0,0	0,0	0,0
Bovenstuk 1	0,92	0,0	0,0	0,0	0,0	23,1	0,0	0,0	0,0	0,0
Bovenstuk 2	1,01	0,0	-1,7	-1,7	-2,1	32,3	0,0	-56,4	-56,4	-66,1
Topstuk	1,05	0,0	1,1	1,1	1,3	37,8	0,0	40,2	40,2	47,5
Ondertraverse	0,93	0,0	0,0	0,0	0,0	24,0	0,0	0,0	0,0	0,0
Boventraverse	1,04	0,0	0,0	0,0	0,0	35,5	0,0	0,0	0,0	0,0

Resulterende belastingen vanuit mastconstructie incl. antenne zonder geleiders niveau fundatie (kar. waarde)

Belasting / windrichting F _x F _y F _z M _x M _y M _z [kN] [kN] [kN] [kNm] [kNm] [kNm] Permanente belasting 0 0 270 0 0 0 Windrichting 0° -1 0 0 0 -19 0 Windrichting 135° 1 -1 0 -16 16 0 Windrichting 45° -1 -1 0 -16 -16 0 Windrichting 93° 0 -1 0 -19 1 0								
Permanente belasting 0 0 270 0 0 0 Windrichting 0° -1 0 0 0 -19 0 Windrichting 135° 1 -1 0 -16 16 0 Windrichting 45° -1 -1 0 -16 -16 0	Belasting / windrichting	F _x	F _y	F _z	M _x	M _y	M_z	
Windrichting 0° -1 0 0 -19 0 Windrichting 135° 1 -1 0 -16 16 0 Windrichting 45° -1 -1 0 -16 -16 0		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	
Windrichting 135° 1 -1 0 -16 16 0 Windrichting 45° -1 -1 0 -16 -16 0	Permanente belasting	0	0	270	0	0	0	
Windrichting 45° -1 -1 0 -16 -16 0	Windrichting 0°	-1	0	0	0	-19	0	
	Windrichting 135°	1	-1	0	-16	16	0	
Windrichting 93° 0 -1 0 -19 1 0	Windrichting 45°	-1	-1	0	-16	-16	0	
	Windrichting 93°	0	-1	0	-19	1	0	

-0,7

28-7-2021 7 van 21

Project: Tower: Number:

Tussenresultaten geleiderbelastingen

Ge			

Circuit	Geleider	Diameter	Α	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Circuit 2	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Bliksemdraad 1	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05
Bliksemdraad 2	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05

Geleiders ahead

Circuit	Geleider	Diameter	Α	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Circuit 2	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Bliksemdraad 1	Niet aanwezig					
Bliksemdraad 2	Niet aanwezig					

Verticale belasting back

rendere bendeting be							
Circuit	Bundel	Toeslag	$W_{z,G}$	IJsgebied	Formule	$W_{z,ijs}$	W _{z,ijs,bundel}
	[-]	[%]	[N/m]			[N/m]	[N/m]
Circuit 1	4	2	31,0	В	4+0,2d	8,1	32,3
Circuit 2	4	2	31,0	В	4+0,2d	8,1	32,3
Bliksemdraad 1	1	2	3,8	А	15+0,4d	19,7	19,7
Bliksemdraad 2	1	2	3,8	Α	15+0,4d	19,7	19,7

Verticale belasting ahe	ad						
Circuit	Bundel	Toeslag	$W_{z,G}$	IJsgebied	Formule	$W_{z,ijs}$	W _{z,ijs,bundel}
	[-]	[%]	[N/m]			[N/m]	[N/m]
Circuit 1	4	2	31,0	В	4+0,2d	8,1	32,3
Circuit 2	4	2	31,0	В	4+0,2d	8,1	32,3
Bliksemdraad 1	1	2		Α	15+0,4d		
Bliksemdraad 2	1	2		A	15+0,4d		

Isolatoren									
Geleider	G _{isolator}	Aantal	$F_{v,iso}$	Lengte	Windopp. W	/indhoogte	Stuwdruk	Vormfactor	$F_{h,iso}$
	[kN]	-	[kN]	[m]	[m ²]	[m]	[kN/m ²]	[-]	[kN]
150ct1f1	2,50	1	2,5	4,5	1,0	24,45	0,93	1,2	1,12
150ct1f2	2,50	1	2,5	4,5	1,0	24,45	0,93	1,2	1,12
150ct1f3	2,50	1	2,5	4,5	1,0	35,95	1,04	1,2	1,25
150ct2f1	2,50	1	2,5	4,5	1,0	24,45	0,93	1,2	1,12
150ct2f2	2,50	1	2,5	4,5	1,0	24,45	0,93	1,2	1,12
150ct2f3	2,50	1	2,5	4,5	1,0	35,95	1,04	1,2	1,25
bl1	0,10	1	0,1	0,2	0,1	38,95	1,06	1,2	0,13
bl2	0,10	1	0,1	0,2	0,1	38,95	1,06	1,2	0,13

28-7-2021 8 van 21

Project: ZWO380 D2.2 OSP Mast 1 Tower: H1 Number: 1

Windbelasting back

willapelastili											
	hoogte										
Geleider	wind	Stuwdruk	G_{c_dwars}	G_{c_trek}	C_c	$d_{toeslag}$	w_y	$W_{y,vak}$	D _{ijs,toeslag}	$W_{y,ijs}$	W _{y,ijs,vak}
	[m]	[kN/m²]	[-]	[-]	[-]	[mm]	[N/m]	[N/m]	[mm]	[N/m]	[N/m]
150ct1f1	19,2	0,87	0,64	0,49	1,20	20,75	54,9	42,7	40,2	106,3	82,8
150ct1f2	19,2	0,87	0,64	0,49	1,20	20,75	54,9	42,7	40,2	106,3	82,8
150ct1f3	30,7	1,00	0,68	0,53	1,20	20,75	67,1	52,3	40,2	130,1	101,4
150ct2f1	19,2	0,87	0,64	0,49	1,20	20,75	54,9	42,7	40,2	106,3	82,8
150ct2f2	19,2	0,87	0,64	0,49	1,20	20,75	54,9	42,7	40,2	106,3	82,8
150ct2f3	30,7	1,00	0,68	0,53	1,20	20,75	67,1	52,3	40,2	130,1	101,4
bl1	35,9	1,04	0,69	0,54	1,20	11,99	10,3	8,1	55,2	47,6	37,1
bl2	35,9	1,04	0,69	0,54	1,20	11,99	10,3	8,1	55,2	47,6	37,1

Windbelasting ahead											
	hoogte										
Geleider	wind	Stuwdruk	G_{c_dwars}	G_{c_trek}	C_c	$d_{toeslag}$	w_y	$W_{y,vak}$	$D_{ijs,toeslag}$	$W_{y,ijs}$	$W_{y,ijs,vak}$
	[m]	[kN/m²]	[-]	[-]	[-]	[mm]	[N/m]	[N/m]	[mm]	[N/m]	[N/m]
150ct1f1	12,6	0,76	0,60	0,96	1,20	20,75	45,0	72,7	40,2	87,2	141,0
150ct1f2	12,6	0,76	0,60	0,96	1,20	20,75	45,0	72,7	40,2	87,2	141,0
150ct1f3	18,3	0,85	0,63	0,97	1,20	20,75	53,7	82,7	40,2	104,1	160,3
150ct2f1	12,6	0,76	0,60	0,96	1,20	20,75	45,0	72,7	40,2	87,2	141,0
150ct2f2	12,6	0,76	0,60	0,96	1,20	20,75	45,0	72,7	40,2	87,2	141,0
150ct2f3	18,3	0,85	0,63	0,97	1,20	20,75	53,7	82,6	40,2	104,1	160,2
bl1	38,9	1,06	0,70	0,98							
bl2	38,9	1,06	0,70	0,98							

28-7-2021 9 van 21

Project: ZWO380 D2.2 OSP Mast 1 Masttype: H1 Mast: 1

Auteur: Versie: TBR Geleiderbelastingen

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

ULS (bezwijks	terkte)	NEN-EN50	341-2-15:20	19				
Belastingsgeval	omschrijving	Temp	γg	γ _G		γQ		γ̈́a
		°C	$G_{k,mast}$	$G_{k,geleider}$	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,05	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,12	0,00	0,0
ULS 3	Wind+ijs	-5°	1,05	1,05	0,00	0,34	0,97	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,00	0,34	0,97	0,0
ULS 4	Koude+wind	-20°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,00	0,22	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,05	1,05	1,20	0,22	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 7	Permanent	10°	1,15	1,15	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijks	sterkte, enkel voor hoekmasten:	afwezigheid geleid	ers)	γ _G	γQ			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,05	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,05	1,05	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,05	1,05	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,05	1,05	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,0	0,24	0,0	0,0
SLS (controle	van de vervormingen, vermoeiir	ng, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	0,94	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,28	0,88	
SLS 4	Wind	-20°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen Aantal belastingcombinaties ULS Aantal belastingcombinaties SPLS Aantal belastingcombinaties SLS Aantal knooplasten 6 52 210 15 4432

28-7-2021 10 van 21

Project: ZW Masttype: H1 Mast:

- Samenvattingstabellen geleiderbelastingen
 In de onderstaande vier tabellen is weergegeven:
 De maximale geleiderbelasting in het globale assenstelsel, gesplitst in aandeel van back en ahead span
- De alledaagse (EDS) waarden van de gecombineerde geleiderbelasting (ba+Ah) in het globale assenstelsel met in het lokale assenstelsel de maximaal optredende trekkracht.

 Componenten Fx en Fy als absolute waarde

 De alledaagse (EDS) waarden van de gecombineerde geleiderbelastingen (Ba+Ah) met bijbehorende trekkrachten
- Controle op uplift, waar een negatieve waarde duidt op uplift

Maximale waarden voor back en ahead span

	Fx_ba	Fx_ah	Fy_ba	Fy_ah	Fz_ba	Fz_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	-26,4	0,0	1,0	0,1	3,8	1,1
bl2	-26,4	0,0	1,0	0,1	3,8	1,1
150ct1f1	-73,3	13,5	6,3	0,8	11,2	71,6
150ct1f2	-73,3	14,2	6,3	0,8	11,2	71,5
150ct1f3	-75,8	13,9	7,6	0,8	11,2	105,2
150ct2f1	-73,3	13,7	6,3	4,7	11,2	71,3
150ct2f2	-73,3	12,6	6,3	7,2	11,2	71,3
150ct2f3	-75,8	13,3	7,6	5,9	11,2	104,8

Min. Weight s	pan (m)	Max. Weight span (m)					
Weight spar Co	mbinatie1	Weight spar Combinatie1					
Geleider	SLS 1a	SLS 4	SLS 7		Geleider	ULS 1a	ULS 3
bl1	117,7	123,0	124,2		bl1	124,3	126,6
bl2	117,7	123,0	124,2		bl2	124,3	126,6
150ct1f1	382,0	2347,3	370,5		150ct1f1	732,0	579,5
150ct1f2	371,8	2345,4	370,5		150ct1f2	739,8	581,5
150ct1f3	494,8	3424,6	485,5		150ct1f3	1133,0	825,3
150ct2f1	376,3	2341,2	370,5		150ct2f1	738,6	581,2
150ct2f2	373,3	2341,0	370,5		150ct2f2	709,8	573,9
150ct2f3	504,0	3419,0	486,0		150ct2f3	1116,6	821,4

Omhullende weight span over alle combinaties (incl. 0,9 combinaties)

Voor alle geleiders

Max. weight span 3424,6 m Min. weight span 114,7 m Wind / Weight span verhouding

25,557 -0,856 -

28-7-2021 11 van 21

Project: ZWO380 D2.2 OSP Mast 1 Masttype: H1 Mast: 1

Maximale waarden back+ahead span Maximale waarden trekkracht geleider

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	26,4	1,3	3,8	-26,4	0,0
bl2	26,4	1,3	3,8	-26,4	0,0
150ct1f1	67,8	6,7	71,6	-73,1	14,6
150ct1f2	67,4	6,7	71,5	-73,1	14,5
150ct1f3	69,9	7,5	105,2	-75,6	14,6
150ct2f1	67,8	8,7	71,3	-73,1	14,5
150ct2f2	68,5	9,0	71,3	-73,1	14,5
150ct2f3	70,4	10,4	104,8	-75,6	14,5

EDS-belastingen geleiders

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	0,0	0,0	0,6	-6,1	0,0
bl2	0,0	0,0	0,6	-6,1	0,0
150ct1f1	1,4	-0,6	9,9	-34,1	1,6
150ct1f2	1,5	-0,3	9,9	-34,1	1,6
150ct1f3	1,5	-0,5	13,5	-34,1	1,6
150ct2f1	1,5	0,5	9,9	-34,1	1,6
150ct2f2	1,3	0,8	9,9	-34,1	1,6
150ct2f3	1.4	0.6	13.5	-34.1	1.6

Controle uplift SLS-wind

		Fz_ba	Fz_ah
Combinat	tie: Geleider	[kN]	[kN]
SLS 4	bl1	0,0	0,0
	bl2	0,0	0,0
	150ct1f1	0,0	0,0
	150ct1f2	0,0	0,0
	150ct1f3	0,0	0,0
	150ct2f1	0,0	0,0
	150ct2f2	0,0	0,0
	150ct2f3	0,0	0,0

28-7-2021 12 van 21

Project: ZWO380 D2.2 OSP Mast 1 Masttype: H1 Mast: 1

Auteur: Versie: TBR Geleiderbelastingen

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

ULS (bezwijks	terkte)	NEN-EN50	341-2-15:20	19				
Belastingsgeval	omschrijving	Temp	γ _G	γ _G	γο			γ _a
		°C	$G_{k,mast}$	$G_{k,qeleider}$	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,15	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,40	0,00	0,0
ULS 3	Wind+ijs	-5°	1,15	1,15	0,00	0,42	1,30	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,00	0,42	1,30	0,0
ULS 4	Koude+wind	-20°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,00	0,28	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,15	1,15	1,30	0,28	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 7	Permanent	10°	1,30	1,30	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijks	SPLS (Bezwijksterkte, enkel voor hoekmasten: afwezigheid geleid			γ _G	γq			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,15	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,15	1,15	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,15	1,15	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,15	1,15	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,0	0,24	0,0	0,0
SLS (controle van de vervormingen, vermoeiing, EDS)								
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	1,00	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,30	1,00	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen Aantal belastingcombinaties ULS Aantal belastingcombinaties SPLS Aantal belastingcombinaties SLS Aantal knooplasten 6 52 210 15 4432

28-7-2021 16 van 21

Project: ZW Masttype: H1 Mast:

- Samenvattingstabellen geleiderbelastingen
 In de onderstaande vier tabellen is weergegeven:
 De maximale geleiderbelasting in het globale assenstelsel, gesplitst in aandeel van back en ahead span
- De alledaagse (EDS) waarden van de gecombineerde geleiderbelasting (ba+Ah) in het globale assenstelsel met in het lokale assenstelsel de maximaal optredende trekkracht.

 Componenten Fx en Fy als absolute waarde

 De alledaagse (EDS) waarden van de gecombineerde geleiderbelastingen (Ba+Ah) met bijbehorende trekkrachten
- Controle op uplift, waar een negatieve waarde duidt op uplift

Maximale waarden voor back en ahead span

	Fx_ba	Fx_ah	Fy_ba	Fy_ah	Fz_ba	Fz_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	-32,1	0,0	1,3	0,2	4,1	1,1
bl2	-32,1	0,0	1,3	0,2	4,1	1,1
150ct1f1	-87,0	13,6	8,1	0,8	13,1	72,3
150ct1f2	-87,0	14,3	8,1	0,8	13,1	72,1
150ct1f3	-90,1	14,0	9,8	0,8	13,1	106,0
150ct2f1	-87,0	13,8	8,1	4,7	13,1	71,9
150ct2f2	-87,0	12,7	8,1	7,2	13,1	71,8
150ct2f3	-90,1	13,3	9,8	5,9	13,1	105,5

Min. Weight	t span (m)	Max. Weight span (m)		
Weight spar Combinatie1				Weight spar Combinatie1
Geleider	SLS 1a	SLS 4	SLS 7	Geleider ULS 1a ULS 3
bl1	117,2	123,0	124,2	bl1 124,4 127,0
bl2	117,2	123,0	124,2	bl2 124,4 127,0
150ct1f1	383,4	2348,1	370,5	150ct1f1 797,0 564,8
150ct1f2	371,9	2345,9	370,5	150ct1f2 805,8 566,7
150ct1f3	495,9	3425,9	485,5	150ct1f3 1243,9 803,1
150ct2f1	377,0	2341,3	370,5	150ct2f1 804,5 566,4
150ct2f2	373,6	2341,0	370,5	150ct2f2 771,7 559,2
150ct2f3	506,1	3419,0	486,0	150ct2f3 1225,4 799,2

Omhullende weight span over alle combinaties (incl. 0,9 combinaties)

Voor alle geleiders

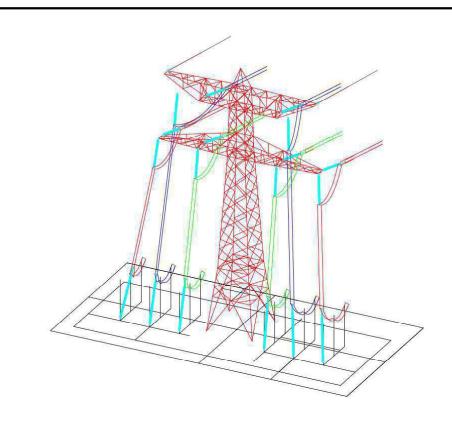
Wind / Weight span verhouding Max. weight span 3425,9 m 25,566 -Min. weight span 0,835 -111,9 m

28-7-2021 17 van 21

Project: ZWO380 D2.2 OSP Mast 1 Masttype: H1 Mast: 1

Maximale waarden back+ahead span Maximale waarden trekkracht geleider

Fx	Fy	Fz	Ft_ba	Ft_ah
[kN]	[kN]	[kN]	[kN]	[kN]
32,1	1,5	4,1	-32,0	0,0
32,1	1,5	4,1	-32,0	0,0
80,6	7,8	72,3	-86,8	14,7
80,1	8,7	72,1	-86,8	14,6
83,2	9,8	106,0	-89,8	14,7
80,6	11,1	71,9	-86,8	14,6
81,4	11,5	71,8	-86,8	14,6
83,8	13,2	105,5	-89,8	14,6
	[kN] 32,1 32,1 80,6 80,1 83,2 80,6 81,4	[kN] [kN] 32,1 1,5 32,1 1,5 80,6 7,8 80,1 8,7 83,2 9,8 80,6 11,1 81,4 11,5	[kN] [kN] [kN] 32,1 1,5 4,1 32,1 1,5 4,1 80,6 7,8 72,3 80,1 8,7 72,1 83,2 9,8 106,0 80,6 11,1 71,9 81,4 11,5 71,8	[kN] [kN] [kN] [kN] 32,1 1,5 4,1 -32,0 32,1 1,5 4,1 -32,0 80,6 7,8 72,3 -86,8 80,1 8,7 72,1 -86,8 83,2 9,8 106,0 -89,8 80,6 11,1 71,9 -86,8 81,4 11,5 71,8 -86,8


EDS-belastingen geleiders

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	0,0	0,0	0,6	-6,1	0,0
bl2	0,0	0,0	0,6	-6,1	0,0
150ct1f1	1,4	-0,6	9,9	-34,1	1,6
150ct1f2	1,5	-0,3	9,9	-34,1	1,6
150ct1f3	1,5	-0,5	13,5	-34,1	1,6
150ct2f1	1,5	0,5	9,9	-34,1	1,6
150ct2f2	1,3	0,8	9,9	-34,1	1,6
150ct2f3	1.4	0.6	13.5	-34.1	1.6

Controle uplift SLS-wind

	·	Fz_ba	Fz_ah
Combinat	ie:Geleider	[kN]	[kN]
SLS 4	bl1	0,0	0,0
	bl2	0,0	0,0
	150ct1f1	0,0	0,0
	150ct1f2	0,0	0,0
	150ct1f3	0,0	0,0
	150ct2f1	0,0	0,0
	150ct2f2	0,0	0,0
	150ct2f3	0,0	0,0

28-7-2021 18 van 21

Inhoud

- Uitgangspunten p. 2
- Mastconstructie p. 6
- Tussenresultaten p. 8
- Belastingen initiëel p. 10
- Belastingen na aanpassing p. 15

Gegevens

Norm NEN-EN50341-2-15:2019

Initieel

Gevolgklasse CC2-0 Betrouwbaarheidsniveau Afkeur Referentieperiode 30 jaar

Na aanpassing

Gevolgklasse CC2
Betrouwbaarheidsniveau Verbouw
Referentieperiode 50 jaar

Windgebied III
Windsnelheid 24,5 m/s
Terreincategorie II
Reductie factor Cdir 1,00
IJsgebied B

Masttype Hoekmast Lijnhoek 180°

0.0	2021-06-18			
ISSUE	DATE	REVISION	CHK'D	APP'D

Client:

Title:

Verticale geleiders H1

JOB No.	-	DATE	-
DRAWN	-	CHKD	-
DESIGN	-	APPD	-

Document name:

ZWO380 D2.2 OSP Mast 1_H1_1_Report.pdf

Project number:

Project client number:										
—					1					
ا م.م ا										
0.0								ı		

Project: Tower: Н1 Number:

Auteur: Geleiderbelastingen afloper Versie: v1.9

Algemeen Benaming Masttype Aantal circuits Configuratie Aantal bliksemgeleiders H1 Hoekmast 2 2-circuit-donau

Uitgangspunten

Norm NEN-E
Gevolgklasse initieel
Betrouwbaarheidsniveau initieel
Referentieperiode initieel
Gevolgklasse na aanpassing
Betrouwbaarheidsniveau na aanpassing
Referentieperiode na aanpassing
Windaahied NEN-EN50341-2-15:2019 CC2-0 Afkeur CC2-0 30 jaar CC2 Verbouw 50 jaar Windgebied III 24,5 m/s II Windsnelheid (m/s) Terreincategorie Reductiefactor c_{dir} IJsgebied fasegeleider 1,00 B 0 IJsgebied bliksemgeleider

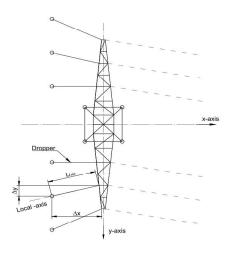
Geleiders

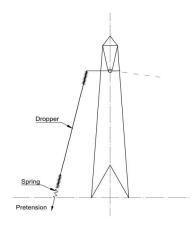
Omschrijving	Spanning	Geleider Back	Bundel Ba	IJsgebied	Toeslag gewicht	Toeslag diameter	
Circuit 1	150 kV	ACSR 20/224	4	В	2 %	2 %	
Circuit 2	150 kV	ACSR 20/224	4	В	2 %	2 %	
Bliksemdraad 1		Niet aanwezig	0	0	0 %	0 %	0
Bliksemdraad 2		Niet aanwezig	0	0	0 %	0 %	0

Isolatoren	(1)			
Omschrijving	Ophanging	Gewicht	Lengte	Windopp.
		[kN]	[m]	[m²]
Circuit 1	Afspanketting	1,50	4,50	1,00
Circuit 2	Afspanketting	1,50	4,50	1,00
Bliksemdraad 1	0	0,00	0,00	0,00
Bliksemdraad 2	0	0,00	0,00	0,00

Eigenschappen gelden voor geheel van de isolatorset 1.

Ophanghoogte en positie in mast


Circuits	Nummer	Aanduiding	Ophanghoogte	Aangrijppunt
Circuit 1	10	150ct1f1	24,0 m	24,0 m
Circuit 1	11	150ct1f2	24,0 m	24,0 m
Circuit 1	12	150ct1f3	35,5 m	35,5 m
Circuit 2	20	150ct2f1	24,0 m	24,0 m
Circuit 2	21	150ct2f2	24,0 m	24,0 m
Circuit 2	22	150ct2f3	34,5 m	34,5 m
Bliksemdraad 1	1	bl1	0,0 m	0,0 m
Bliksemdraad 2	3	b l 2	0,0 m	0,0 m


18-6-2021 2 van 13

Project: Tower: Number: Н1

Principe hoekmast met aflopers

Top view tower

Side view tower

Hoogteafwijking mastbeeld naastgelegen masten en richtingsverandering t.o.v. Lijnrichting

		Hoogteverschil	Richtingsverar	ndering	Lokaal ∆x Ler	ngte overspanning	
Nummer	Aanduiding	∆h	Δy	Δx	Lhor	L	
10	150ct1f1	23,7 m	-2,4	6,0	6,5	24,5 m	
11	150ct1f2	23,7 m	-1,4	5,1	5,3	24,2 m	
12	150ct1f3	35,2 m	-1,9	4,2	4,6	35,4 m	
20	150ct2f1	23,7 m	1,4	5,3	5,4	24,3 m	
21	150ct2f2	23,7 m	2,5	5,7	6,2	24,5 m	
22	150ct2f3	35,2 m	1,9	4,1	4,5	35,5 m	
1	bl1	0,0 m	0,0	0,0	0,0	0,0 m	
3	b l 2	0,0 m	0,0	0,0	0,0	0,0 m	
	10 11 12 20 21	10 150ct1f1 11 150ct1f2 12 150ct1f3 20 150ct2f1 21 150ct2f2 22 150ct2f3 1 bl1	Nummer Aanduiding Δh 10 150ct1f1 23,7 m 11 150ct1f2 23,7 m 12 150ct1f3 35,2 m 20 150ct2f1 23,7 m 21 150ct2f2 23,7 m 22 150ct2f3 35,2 m 1 bl1 0,0 m	Nummer Aanduiding Δh Δy 10 150ct1f1 23,7 m -2,4 11 150ct1f2 23,7 m -1,4 12 150ct1f3 35,2 m -1,9 20 150ct2f1 23,7 m 1,4 21 150ct2f2 23,7 m 2,5 22 150ct2f3 35,2 m 1,9 1 bl1 0,0 m 0,0	Nummer Aanduiding Δh Δy Δx 10 150ct1f1 23,7 m -2,4 6,0 11 150ct1f2 23,7 m -1,4 5,1 12 150ct1f3 35,2 m -1,9 4,2 20 150ct2f1 23,7 m 1,4 5,3 21 150ct2f2 23,7 m 2,5 5,7 22 150ct2f3 35,2 m 1,9 4,1 1 bl1 0,0 m 0,0 0,0	Nummer Aanduiding Δh Δy Δx Lhor 10 150ct1f1 23,7 m -2,4 6,0 6,5 11 150ct1f2 23,7 m -1,4 5,1 5,3 12 150ct1f3 35,2 m -1,9 4,2 4,6 20 150ct2f1 23,7 m 1,4 5,3 5,4 21 150ct2f2 23,7 m 2,5 5,7 6,2 22 150ct2f3 35,2 m 1,9 4,1 4,5 1 bl1 0,0 m 0,0 0,0 0,0	Nummer Aanduiding Δh Δy Δx Lhor L 10 150ct1f1 23,7 m -2,4 6,0 6,5 24,5 m 11 150ct1f2 23,7 m -1,4 5,1 5,3 24,2 m 12 150ct1f3 35,2 m -1,9 4,2 4,6 35,4 m 20 150ct2f1 23,7 m 1,4 5,3 5,4 24,3 m 21 150ct2f2 23,7 m 2,5 5,7 6,2 24,5 m 22 150ct2f3 35,2 m 1,9 4,1 4,5 35,5 m 1 bl1 0,0 m 0,0 0,0 0,0 0,0 m

Voorspanning en veerstijfheid

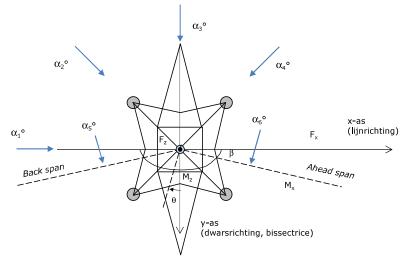
	Voorspa		Voorspanning	Veerstijfheid	Effectieve rekstijfheid
Circuits	Nummer	Aanduiding	F _{pr}	k	EA _{fict}
Circuit 1	10	150ct1f1	6,0 kN	1000 kN/m	11940 kN/m
Circuit 1	11	150ct1f2	6,0 kN	1000 kN/m	11940 kN/m
Circuit 1	12	150ct1f3	6,0 kN	1000 kN/m	18610 kN/m
Circuit 2	20	150ct2f1	6,0 kN	1000 kN/m	11940 kN/m
Circuit 2	21	150ct2f2	6,0 kN	1000 kN/m	11940 kN/m
Circuit 2	22	150ct2f3	6,0 kN	1000 kN/m	18636 kN/m
Bliksemdraad 1	1	bl1	0,0 kN	0 kN/m	kN/m
Bliksemdraad 2	3	bl2	0,0 kN	0 kN/m	kN/m

De effectieve rekstijfheid is bepaald met de invloed van de veerstijfheid Deze is berekend door de optelling van de reciproke waarden van de veerstijfheid van geleider en veer.

18-6-2021 3 van 13

Project: ZWO380 D2.2 OSP Mast 1

Project: Z\
Tower: H3
Number: 1


Lijn- en mastgegevens

Deze invoer is opgenomen voor beschouwde windrichtingen en komt overeen met invoer geleiderbelastingen voor de mast

Lijnhoek Rotatie mast t.o.v. bissectrice	$_{\theta}^{\beta}$	180 ° -3 °
Hoogte onderkant mast t.o.v. m	aaiveld	0,5 m
Beschouwde windrichtingen	α_1	0 °
Windrichtingen volgens:	α_2	45 °
Geleiderbelastingen	α_3	93 °
_	α_4	135 °
	α_5	75 °
	αε	105 °

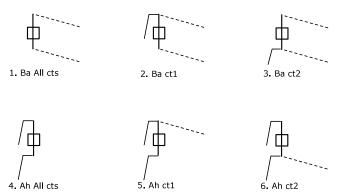
 α_6 105 ° Windrichtingen gelden t.o.v. hoofdrichting mastconstructie, niet t.o.v. bissectrice.

Windrichtingen en positieve richtingen belastingen

Beschouwd	aanta	windrichtingen	
1a			(
3			(
4			
6			(
Overig			1

18-6-2021 4 van 13

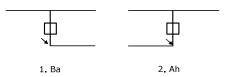
Project: Tower: Number:


Geleiderafval

		SPLS	SPLS - torsie		kelzijdige trek	5a - gele	iderbreuk
		Aanw.	Afw.	Aanw.	Afw.	Aanw.	Afw.
Circuit 1	150ct1f1	1	0	1	0	1	0
Circuit 1	150ct1f2	1	0	1	0	1	0
Circuit 1	150ct1f3	1	0	1	0	1	0
Circuit 2	150ct2f1	0	1	1	0	1	0
Circuit 2	150ct2f2	0	1	1	0	1	0
Circuit 2	150ct2f3	0	1	1	0	1	0
Bliksemdraad 1	bl1	1	0	1	0		0
Bliksemdraad 2	bl2	0	1	1	0		0

Belastingsituaties SPLS

Beschouwde situaties SPLS: $1\,\mathrm{t/m}$ 6, alle mogelijke situaties. Geleiderbelastingen naar volgende mast geen onderdeel van deze berekening.


Principe belastingssituaties:

Belastingsituaties 5a. Geleiderbreuk

Beschouwde situaties geleiderbreuk 5a: 1 en 2, alle mogelijke situaties.

Principe belastingssituaties:

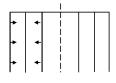
18-6-2021 5 van 13

Project: ZWO380 D2.2 OSP Mast 1

Project: ZW Tower: H1 Number: 1

Belastingsituaties 6. Bouw- en onderhoud

Onder 6a wordt de belasting door aanwezigheid lijnwagen of lijnfiets in combinatie met puntlast op traverse in rekening gebracht. Combinatie 6b bevat geen belastingen in geleider of op traverse. Deze combinatie met 20% wind is geschikt voor controle stijgpunt in combinatie met kortsluitbelastingen.


	Fase	Bliksem
Lijnwagen (nvt.)	0,0 kN	0,0 kN
Puntlast op traverse	1,0 kN	1,0 kN

Belastingsituaties 8. Kortsluiting

Principe belastingssituaties:

Kortsluitkrachten

(Zie separate berekening)

Geleider	w _{z,G} Kortsluitkra		F _×	F _v	F_z
	[N/m]	[kN]	[kNĴ	[kN]	[kN]
10	150ct1f1	17,0	4,2	-1,7	16,4
11	150ct1f2	17,0	3,6	-1,0	16,6
12	150ct1f3	22,5	2,6	-1,2	22,3
20	150ct2f1	17,0	3,7	1,0	16,6
21	150ct2f2	17,0	4,0	1,7	16,4
22	150ct2f3	22,5	2,6	1,2	22,3
1	bl1				
3	hl2				

Belastingcombinaties kortsluiting

Belastingcombinatie
ULS 8 Kortsluiting 10-11
ULS 8 Kortsluiting 10-12
ULS 8 Kortsluiting 11-12
ULS 8 Kortsluiting 20-21
ULS 8 Kortsluiting 20-22
ULS 8 Kortsluiting 21-22

18-6-2021 6 van 13

Project: ZWO380 D2.2 OSP Mast 1

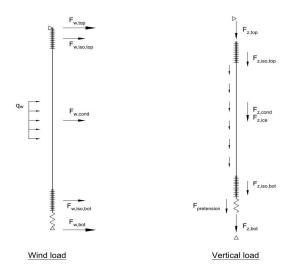
Project: Z Tower: H Number: 1

Tussenresultaten geleiderbelastingen

Geleiders

ociciacio						
Circuit	Geleider	Diameter	Α	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Circuit 2	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Bliksemdraad 1	Niet aanwezig					
Bliksemdraad 2	Niet aanwezig					

Verticale belasting


Circuit	Bundel	Toeslag	W	z,G	IJsgebied	Formule	$W_{z,ijs}$	W _{z,ijs,bunde} l	
	[-]	[%]	[N	\/m]			[N/m]	[N/m]	
Circuit 1		4	2	31,0	В	4+0,2d	-	8,1 32,	,3
Circuit 2		4	2	31,0	В	4+0,2d		8,1 32,	.,3
Bliksemdraad 1		0	0		C				
Bliksemdraad 2		0	0		C	ı			

Schema voor berekenen horizontale en verticale belasting

Horizontale belasting wordt bepaald voor de wind tegen de geleider en isolatoren boven en onder.

De horizontale component als gevolg van de scheefstand van de afloper wordt per belastingscombinatie apart bepaald De verticale krachten gelden alleen voor de EDS-conditie zonder externe belastingen en temperatuursverandering

De berekeningen zijn weergegeven op het volgende blad.

18-6-2021 7 van 13

Project: ZW0 Tower: H1 Number: 1

Isolatoren					Boven		C	Onder		
Geleider	G _{isolator}	Lengte	Windopp.	Vormfactor \	Vindhoogte	Stuwdruk	F _{h,iso} W	'indhoogte	Stuwdruk	$F_{h,iso}$
	[kN]	[m]	[m ²]	[-]	[m]	[kN/m²]	[kN]	[m]	[kN/m²]	[kN]
150ct1f1	1,50	4,5	1,0	1,2	22,20	0,91	1,09	3,05	0,49	0,59
150ct1f2	1,50	4,5	1,0	1,2	22,20	0,91	1,09	3,05	0,49	0,59
150ct1f3	1,50	4,5	1,0	1,2	33,70	1,02	1,23	3,05	0,49	0,59
150ct2f1	1,50	4,5	1,0	1,2	22,20	0,91	1,09	3,05	0,49	0,59
150ct2f2	1,50	4,5	1,0	1,2	22,20	0,91	1,09	3,05	0,49	0,59
150ct2f3	1,50	4,5	1,0	1,2	32,70	1,01	1,22	2,00	0,49	0,59
bl1	0,00	0,0	0,0	1,2	0,50	0,49		0,50	0,49	
bl2	0,00	0,0	0,0	1,2	0,50	0,49		0,50	0,49	

Horizontale belasting

norizontale	belasting										
	hoogte										
Geleider	wind	Stuwdruk	G_c	C_c	$d_{toeslag}$	W_y	$D_{ijs,toeslag}$	$W_{y,ijs}$	F _{w,geleider}	F _{w,boven}	F _{w,onder}
	[m]	[kN/m²]	[-]	[-]	[mm]	[N/m]	[mm]	[N/m]	[kN]	[kN]	[kN]
150ct1f1	12,6	0,76	0,96	1,20	20,75	72,3	40,2	140,2	0,53	1,6	1,1
150ct1f2	12,6	0,76	0,96	1,20	20,75	72,3	40,2	140,2	0,53	1,6	1,1
150ct1f3	18,4	0,86	0,97	1,20	20,75	82,3	40,2	159,5	1,08	2,3	1,7
150ct2f1	12,6	0,76	0,96	1,20	20,75	72,3	40,2	140,2	0,53	1,6	1,1
150ct2f2	12,6	0,76	0,96	1,20	20,75	72,3	40,2	140,2	0,53	1,6	1,1
150ct2f3	17,4	0,84	0,96	1,20	20,75	80,7	40,2	156,5	1,06	2,3	1,6
bl1	0,5	0,49	0,79								
bl2	0,5	0,49	0,79								

 $\begin{tabular}{ll} \textbf{Verticale belasting} \\ \textbf{Formules:} & F_{z,top} = F_{z,iso,top} + F_{z,cond} + F_{z,iso,bot} + F_{pr} \\ & F_{t,mid} = F_{z,cond}/2 + F_{z,iso,bot} + F_{pr} \\ & F_{z,bot} = -F_{pr} \\ \end{tabular}$ $\begin{aligned} \mathsf{L}_{\text{geleider}} &= \Delta \mathsf{h} - 2 \mathsf{L}_{\text{iso}} \\ \mathsf{F}_{\text{z,cond}} &= \mathsf{L}_{\text{cond}} \times \mathsf{w}_{\text{z}} \end{aligned}$

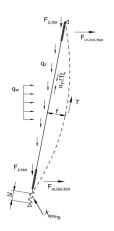
Geleider	$W_{z,G}$	$W_{z,ijs}$	L _{geleider}	$F_{z,iso}$	$F_{z,gel}$	$F_{z,ijs}$	Pretension	F _{z,boven}	$F_{t,mid}$	F _{z,onder}
	[N/m]	[N/m]	[m]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
150ct1f1	31,0	32,3	14,7	1,5	0,5	0,5	6,0	9,5	7,7	-6,0
150ct1f2	31,0	32,3	14,7	1,5	0,5	0,5	6,0	9,5	7,7	-6,0
150ct1f3	31,0	32,3	26,2	1,5	0,8	0,8	6,0	9,8	7,9	- 6,0
150ct2f1	31,0	32,3	14,7	1,5	0,5	0,5	6,0	9,5	7,7	- 6,0
150ct2f2	31,0	32,3	14,7	1,5	0,5	0,5	6,0	9,5	7,7	- 6,0
150ct2f3	31,0	32,3	26,2	1,5	0,8	0,8	6,0	9,8	7,9	- 6,0
bl1			0,0				0,0			
bl2			0,0				0,0			

18-6-2021 8 van 13

Project: Masttype: Mast:

Auteur: Versie: TBR Geleiderbelastingen v1.9

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar


ULS (bezwijksterkte)		NEN-EN5	0341-2-15:20	019				
Belastingsgeval	omschrijving	Temp	lγ _G	γ _G		γο		γa
		°C	G _{k,mast}	G _{k,geleider}	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,05	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,12	0,00	0,0
ULS 3	Wind+ijs	-5°	1,05	1,05	0,00	0,34	0,97	0,0
ULS 3_0,9	Wind+ijs 0,9	- 5°	0,90	1,05	0,00	0,34	0,97	0,0
ULS 4	Koude+wind	-20°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,00	0,22	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,05	1,05	1,20	0,22	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 7	Permanent	10°	1,15	1,15	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (E	SPLS (Bezwijksterkte, enkel voor hoekmasten: afwezigheid geleid			γ _G	γ _Q			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,05	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,	9 Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,05	1,05	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,05	1,05	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,05	1,05	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,0	0,24	0,0	0,0
SLS (c	controle van de vervormingen, vermoeiir	ıg, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	0,94	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,28	0,88	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen	6
Aantal belastingcombinaties ULS	57
Aantal belastingcombinaties SPLS	210
Aantal belastingcombinaties SLS	15
Aantal knooplasten	4512

Schematisation

De trekkracht in de afloper wordt bepaald met de toestandsvergelijking voor een gekromde kabel.

In de rekstijfheid van de kabel is de invloed van de veer verdisconteerd.

18-6-2021 9 van 13

Project: Masttype: Mast:

- Tabellen met geleiderbelastingen

 In de onderstaande drie tabellen is weergegeven:

 De trekkracht per belastingcombinatie en de bijbehorende zeeg en veerverlenging

 De geleiderbelastingen in het lokale assenstelsel voor het onderste bevestigingspunt

 De maximale waarden voor de reacties onder en boven in het globale assenstelsel

Trekkracht, zeeg en veerverlenging

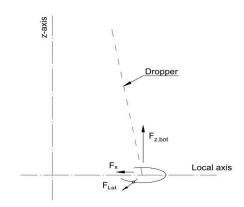
Geleider	Combinatie	Zeeg [m]	Veer- verlengin g [m	veer- verlengin g [m]	rek- kracht initieel [kN]	Trek- kracht [kN]
150ct1f1	SLS 1a	0,47	0,009	0,017	7,7	17,0
	SLS 3	0,35	0,008	0,016	7,9	15,6
	SLS 4	0,17	0,007	0,014	7,7	14,4
	SLS 6	0,24	0,002	0,010	7,7	9,9
	SLS 7	0,20	0,000	0,008	7,7	7,7
	ULS 1a	0,49	0,011	0,019	8,2	18,5
	ULS 3	0,37	0,009	0,016	8,4	16,5
	ULS 4	0,18	0,007	0,015	8,2	14,6
	ULS 6b	0,28	0,003	0,011	8,2	10,9
150ct1f2	SLS 1a	0,44	0,009	0,017	7,7	16,9
	SLS 3	0,32	0,008	0,015	7,9	15,4
	SLS 4	0,14	0,007	0,015	7,7	14,6
	SLS 6	0,21	0,002	0,010	7,7	9,8
	SLS 7	0,17	0,000	0,008	7,7	7,7
	ULS 1a	0,47	0,011	0,018	8,2	18,4
	ULS 3	0,34	0,009	0,016	8,4	16,3
	ULS 4	0,15	0,007	0,015	8,2	14,8
	ULS 6b	0,25	0,003	0,011	8,2	10,9
150ct1f3	SLS 1a	0,63	0,015	0,023	7,9	23,0
	SLS 3	0,44	0,013	0,021	8,3	20,6
	SLS 4	0,17	0,012	0,020	7,9	19,7
	SLS 6	0,28	0,004	0,012	7,9	12,1
	SLS 7	0,14	0,000	0,008	7,9	7,9
	ULS 1a	0,68	0,017	0,025	8,4	25,3
	ULS 3	0,48	0,014	0,022	8,8	22,0
	ULS 4	0,19	0,012	0,020	8,4	20,0
	ULS 6b	0,32	0,005	0,013	8,4	13,2

Controle iteratieproces

Geleider	Iteratie
bl1	0
bl2	0
150ct1f:	ОК
150ct1f	OK
150ct1f:	OK
150ct2f:	OK
150ct2f	OK
150ct2f:	ОК

18-6-2021 10 van 13

Project: Masttype: Mast:

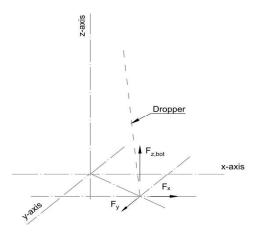

Belastingen in lokale richting geleider

De belastingen op het onderste bevestigingspunt voor het dimensioneren van de ondersteuningsconstructie

De richting van de laterale kracht wordt bepaald door de windrichting en kan in alle richtingen aangrijpen.

De resulterende horizontale kracht kan worden afgeleid uit de vectoriële optelling van de kracht in x-richting en laterale kracht.

	Fx,lok,bot	Flat,bot	Fz_bot
Combinatie1	[kN]	[kN]	[kN]
SLS 1a	4,7	1,1	-15,3
SLS 3	4,3	0,5	-13,6
SLS 4	3,9	0,2	-12,6
SLS 6	2,7	0,2	- 8,2
SLS 7	2,1	0,0	-6,0
ULS 1a	5,1	1,3	-16,7
ULS 3	4,5	0,5	-14,4
ULS 4	4,0	0,3	-12,8
ULS 6b	3,0	0,3	-9,1
SLS 1a	3,8	1,1	-15,2
SLS 3	3,5	0,5	-13,5
SLS 4	3,3	0,2	-12,9
SLS 6	2,2	0,2	-8,1
SLS 7	1,7	0,0	-6,0
ULS 1a	4,1	1,3	-16,5
ULS 3	3,7	0,5	-14,2
ULS 4	3,3	0,3	-13,0
ULS 6b	2,4	0,3	- 9,0
SLS 1a	3,0	1,6	-21,1
SLS 3	2,7	0,8	-18,3
SLS 4	2,6	0,3	-17,8
SLS 6	1,6	0,3	-10,2
SLS 7	1,0	0,0	- 6,0
ULS 1a	3,3	1,9	-23,3
ULS 3	2,9	0,9	- 19,6
ULS 4	2,6	0,4	-18,0
ULS 6b	1,7	0,4	-11,2


18-6-2021 11 van 13

Project: Masttype: Mast:

Maximale waarden in globale assenstelsel

De maximale waarden van de verticale kracht en de resulterende horizontale kracht per belastingcombinatie Zowel voor het bovenste als het onderste bevestigingspunt

eleider	Combinatie	Fx_top [kN]	Fy_top [kN	Fz_top [kN]	Fx_bot [kN]	Fy_bot [kN]	Fz_bo [kN
150ct1f1	SLS 1a	4,9	0,1	18,8	-5,4	0,0	-15,3
	SLS 3	3,4	0,0	17,5	-4,6	0,0	-13,6
	SLS 4	3,3	0,0	16,1	-3,8	0,0	-12,0
	SLS 6	2,2	0,0	11,6	-2,7	0,0	-8,
	SLS 7	1,7	0,0	9,5	-2,1	0,0	-6,
	ULS 1a	5,6	0,3	20,3	-5,9	0,0	-16,
	ULS 3	3,7	0,0	18,5	-4,9	0,0	-14,
	ULS 4	3,4	0,0	16,4	-3,9	0,0	-12,
	ULS 6b	2,3	0,0	12,7	- 3,2	0,0	-9,
	ULS 7	1,7	0,0	9,9	- 2,2	0,0	-5,
150ct1f2	SLS 1a	4,6	0,8	18,6	-4,7	0,0	-15,
	SLS 3	3,0	0,0	17,3	-4,0	0,0	-13,
	SLS 4	2,9	0,0	16,4	-3,3	0,0	-12,
	SLS 6	1,9	0,0	11,6	-2,3	0,0	-8,
	SLS 7	1,5	0,0	9,5	-1,8	0,0	-6,
	ULS 1a	5,2	1,0	20,2	- 5,2	0,0	-16
	ULS 3	3,3	0,0	18,3	-4,3	0,0	-14
	ULS 4	2,9	0,0	16,6	-3,4	0,0	-13
	ULS 6b	2,0	0,0	12,7	-2,7	0,0	-9,
	ULS 7	1,5	0,0	9,8	-1,9	0,0	-5,
150ct1f3	SLS 1a	4,7	1,1	24,9	-4,1	0,0	-21,
	SLS 3	3,0	0,0	22,9	-3,2	0,0	-18
	SLS 4	2,2	0,0	21,6	-2,4	0,0	-17
	SLS 6	1,3	0,0	14,0	-1,5	0,0	-10
	SLS 7	0,8	0,0	9,8	-1,0	0,0	- 6
	ULS 1a	5,4	1,4	27,3	-4,6	0,0	- 23
	ULS 3	3,3	0,1	24,4	-3,5	0,0	-19,
	ULS 4	2,2	0,0	22,0	-2,4	0,0	-18,
	ULS 6b	1,7	0,0	15,2	-1,9	0,0	-11,
	ULS 7	0,8	0,0	10,2	-1,0	0,0	-5,
150ct2f1	SLS 1a	4,7	2,5	18,1	-4,8	-0,7	-14
	SLS 3	3,0	1,4	16,7	-4,0	-0,6	- 12,
	SLS 4	3,0	1,0	15,9	-3,4	-0,4	- 12,
	SLS 6	1,8	0,8	10,8	-2,3	-0,2	- 7,
	SLS 7	1,5	0,3	9,5	-1,9	-0,4	- 6,
	ULS 1a	5,4	2,9	19,7	-5,3	-0,8	-16,

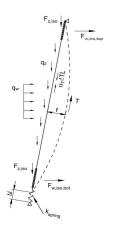
18-6-2021 12 van 13

Project: ZWO380 D2.2 OSP Mast 1 Masttype: H1 Mast: 1

Mast:	1						
150ct2f1	ULS 3	3,3	1,5	17,7	-4,3	-0,6	-13,6
	ULS 4	3,0	1,1	16,1	-3,4	-0,4	-12,5
	ULS 6b	1,9	0,8	12,2	-2,8	-0,4	-8,6
	ULS 7	1,5	0,3	9,8	-2,0	-0,4	-5,9
150ct2f2	SLS 1a	4,9	3,1	17,9	-5,1	-1,4	-14,4
	SLS 3	3,1	1,9	16,5	-4,3	-1,1	-12,6
	SLS 4	3,2	1,6	15,4	-3,6	-1,1	-12,0
	SLS 6	1,9	1,1	10,4	-2,4	-0,6	- 7,0
	SLS 7	1,7	0,6	9,5	-2,1	-0,8	-6,0
	ULS 1a	5,6	3,6	19,4	-5,7	-1,5	-15,8
	ULS 3	3,4	2,1	17,4	-4,6	-1,2	-13,3
	ULS 4	3,2	1,6	15,7	-3,7	-1,0	-12,0
	ULS 6b	2,0	1,2	12,0	-3,0	-0,8	-8,4
	ULS 7	1,7	0,6	9,9	-2,2	-0,8	-5,9
150ct2f3	SLS 1a	4,8	3,4	24,2	-4,1	-1,1	-20,4
	SLS 3	3,0	1,9	21,9	- 3,2	-0,9	-17,4
	SLS 4	2,2	1,4	21,2	-2,4	-0,6	-17,4
	SLS 6	1,2	1,0	13,0	-1,4	-0,2	-9,2
	SLS 7	0,8	0,3	9,8	-1,1	-0,4	-6,0
	ULS 1a	5,5	3,9	26,5	-4,6	-1,2	-22,5
	ULS 3	3,4	2,2	23,4	-3,4	-1,0	-18,6
	ULS 4	2,2	1,4	21,5	-2,4	-0,5	-17,5
	ULS 6b	1,7	1,1	14,5	-1,9	-0,6	-10,5
	ULS 7	0,8	0,3	10,2	-1,1	-0,4	-5,8

18-6-2021 13 van 13

Project: Masttype: Mast:


Auteur: Versie: TBR Geleiderbelastingen v1.9

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

ULS (bezwijksterkte) NEN-EN5034		341-2-15:20)19					
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γQ		γ _a
		°C	G _{k,mast}	G _{k,geleider}	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,15	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,40	0,00	0,0
ULS 3	Wind+ijs	- 5°	1,15	1,15	0,00	0,42	1,30	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,00	0,42	1,30	0,0
ULS 4	Koude+wind	-20°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,00	0,28	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,15	1,15	1,30	0,28	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 7	Permanent	10°	1,30	1,30	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwij	ksterkte, enkel voor hoekmasten: a	fwezigheid geleid	ders)	γ _G	γ _Q			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,15	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,15	1,15	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,15	1,15	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,15	1,15	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,0	0,24	0,0	0,0
SLS (contro	le van de vervormingen, vermoeiing	g, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	1,00	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,30	1,00	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen	6
Aantal belastingcombinaties ULS	57
Aantal belastingcombinaties SPLS	210
Aantal belastingcombinaties SLS	15
Aantal knooplasten	4512

SchematisationDe trekkracht in de afloper wordt bepaald met de toestandsvergelijking voor een gekromde kabel. In de rekstijfheid van de kabel is de invloed van de veer verdisconteerd.

18-6-2021 1 van 5

Project: Masttype: Mast: H1 1

- Tabellen met geleiderbelastingen

 In de onderstaande drie tabellen is weergegeven:
 De trekkracht per belastingcombinatie en de bijbehorende zeeg en veerverlenging
 De geleiderbelastingen in het lokale assenstelsel voor het onderste bevestigingspunt
- De maximale waarden voor de reacties onder en boven in het globale assenstelsel

Trekkracht, zeeg en veerverlenging

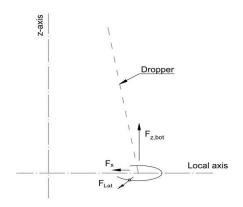
Geleider	Combinatie		Veer-	veer- verlengin g [m]	rek- kracht initieel [kN]	Trek- kracht [kN]
150ct1f1	SLS 1a	0,48	0,010	0,018	7,7	17,5
	SLS 3	0,36	0,008	0,016	8,0	15,9
	SLS 4	0,17	0,007	0,014	7,7	14,4
	SLS 6	0,25	0,002	0,010	7,7	10,0
	SLS 7	0,20	0,000	0,008	7,7	7,7
	ULS 1a	0,54	0,013	0,021	9,2	20,8
	ULS 3	0,41	0,010	0,018	9,5	18,0
	ULS 4	0,20	0,007	0,015	9,2	15,0
	ULS 6b	0,30	0,004	0,012	9,2	11,6
150ct1f2	SLS 1a	0,45	0,010	0,017	7,7	17,4
	SLS 3	0,33	0,008	0,016	8,0	15,7
	SLS 4	0,14	0,007	0,015	7,7	14,7
	SLS 6	0,21	0,002	0,010	7,7	9,9
	SLS 7	0,17	0,000	0,008	7,7	7,7
	ULS 1a	0,52	0,013	0,021	9,2	20,6
	ULS 3	0,38	0,010	0,018	9,5	17,8
	ULS 4	0,17	0,007	0,015	9,2	15,2
	ULS 6b	0,27	0,004	0,011	9,2	11,5
150ct1f3	SLS 1a	0,65	0,016	0,024	7,9	23,8
	SLS 3	0,46	0,013	0,021	8,3	21,1
	SLS 4	0,18	0,012	0,020	7,9	19,8
	SLS 6	0,29	0,004	0,012	7,9	12,3
	SLS 7	0,14	0,000	0,008	7,9	7,9
	ULS 1a	0,74	0,021	0,029	9,4	28,8
	ULS 3	0,54	0,016	0,024	10,1	24,3
	ULS 4	0,23	0,013	0,021	9,4	20,6
	ULS 6b	0,36	0,006	0,014	9,4	14,2

Controle iteratieproces

Geleider	Iteratie	
bl1	()
bl2	()
150ct1f:	ОК	
150ct1f	ОК	
150ct1f:	ОК	
150ct2f:	ОК	
150ct2f	ОК	
150ct2f	ОК	
150ct2f	OK	

18-6-2021 2 van 5

Project: Masttype: Mast:

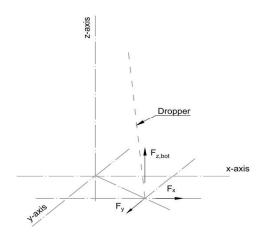

Belastingen in lokale richting geleider

De belastingen op het onderste bevestigingspunt voor het dimensioneren van de ondersteuningsconstructie

De richting van de laterale kracht wordt bepaald door de windrichting en kan in alle richtingen aangrijpen.

De resulterende horizontale kracht kan worden afgeleid uit de vectoriële optelling van de kracht in x-richting en laterale kracht.

Combinatie1	Fx,lok,bot [kN]	Flat,bot [kN]	Fz_bot [kN]
SLS 1a	4,8	1,1	-15,8
SLS 3	4,4	0,5	-14,0
SLS 4	3,9	0,2	-12,7
SLS 6	2,7	0,2	- 8,3
SLS 7	2,1	0,0	-6,0
ULS 1a	5,7	1,6	-18,8
ULS 3	4,9	0,7	-15,8
ULS 4	4,1	0,3	-13,0
ULS 6b	3,2	0,3	- 9,6
SLS 1a	3,9	1,1	-15,6
SLS 3	3,5	0,5	-13,8
SLS 4	3,3	0,2	-13,0
SLS 6	2,2	0,2	- 8,2
SLS 7	1,7	0,0	-6,0
ULS 1a	4,6	1,6	-18,6
ULS 3	4,0	0,7	-15,5
ULS 4	3,4	0,3	-13,2
ULS 6b	2,6	0,3	- 9,5
CIC 1a	2.4	1 7	21.0
SLS 1a	3,1	1,7	-21,9
SLS 3 SLS 4	2,7	0,8	-18,8
SLS 4 SLS 6	2,6	0,3	-17,9 -10,4
	1,6	0,3	
SLS 7 ULS 1a	1,0	0,0 2,3	-6,0 -26,6
ULS 1a	3,7	2,3 1,1	-26,6 -21,6
ULS 3	3,2		
	2,7	0,5	-18,4
ULS 6b	1,8	0,5	-12,0


18-6-2021 3 van 5

Project: Masttype: Mast:

Maximale waarden in globale assenstelsel

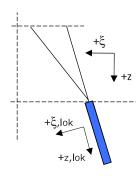
De maximale waarden van de verticale kracht en de resulterende horizontale kracht per belastingcombinatie Zowel voor het bovenste als het onderste bevestigingspunt

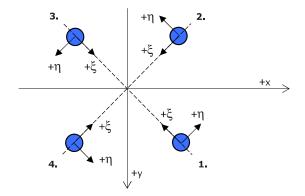
Geleider	Combinatie	Fx_top [kN]	Fy_top [kN	Fz_top [kN]	Fx_bot [kN]	Fy_bot [kN]	Fz_bot [kN]
150ct1f1	SLS 1a	5,1	0,1	19,2	-5,6	0,0	-15,8
	SLS 3	3,5	0,0	17,9	-4,7	0,0	-14,0
	SLS 4	3,3	0,0	16,1	-3,8	0,0	-12,7
	SLS 6	2,2	0,0	11,7	-2,7	0,0	- 8,3
	SLS 7	1,7	0,0	9,5	-2,1	0,0	-6,0
	ULS 1a	6,7	0,5	22,8	-6,8	0,0	-18,8
	ULS 3	4,1	0,0	20,3	-5,5	0,0	-15,8
	ULS 4	3,4	0,0	17,0	-4,0	0,0	-13,0
	ULS 6b	2,5	0,0	13,6	-3,4	0,0	- 9,6
	ULS 7	1,7	0,0	10,3	-2,2	0,0	-5,8
150ct1f2	SLS 1a	4,8	0,8	19,1	-4,9	0,0	-15,6
	SLS 3	3,1	0,0	17,7	-4,1	0,0	-13,8
	SLS 4	2,9	0,0	16,4	-3,3	0,0	-13,0
	SLS 6	1,9	0,0	11,7	-2,3	0,0	-8,2
	SLS 7	1,5	0,0	9,5	-1,8	0,0	-6,0
	ULS 1a	6,3	1,4	22,6	-6,0	0,0	-18,6
	ULS 3	3,6	0,1	20,1	-4,7	0,0	-15,5
	ULS 4	3,0	0,0	17,2	-3,5	0,0	-13,2
	ULS 6b	2,1	0,0	13,5	-2,9	0,0	- 9,5
	ULS 7	1,4	0,0	10,2	-1,9	0,0	-5,7
150ct1f3	SIS 1a	5,0	1,2	25,7	-4,2	0,0	- 21,9
	SLS 3	3,1	0,0	23,4	-3,3	0,0	-18,8
	SLS 4	2,2	0,0	21,7	-2,4	0,0	-17,9
	SLS 6	1,3	0,0	14,2	-1,5	0,0	-10,4
	SLS 7	0,8	0,0	9,8	-1,0	0,0	-6,0
	ULS 1a	6,5	1,9	31,0	-5,4	0,0	-26,6
	ULS 3	3,8	0,3	27,1	-4,0	0,0	-21,6
	ULS 4	2,2	0,0	22,8	-2,5	0,0	-18,4
	ULS 6b	1,9	0,0	16,4	-2,1	0,0	-12,0
	ULS 7	0,8	0,0	10,6	-1,1	0,0	-5,7
150ct2f1	SLS 1a	4,9	2,6	18,6	-5,0	-0,8	-15,1
	SLS 3	3,1	1,4	17,1	-4,2	-0,6	-13,2
	SLS 4	3,0	1,0	16,0	-3,4	-0,4	-12,5
	SLS 6	1,9	0,8	10,9	- 2,3	-0,2	-7,5
	SLS 7	1,5	0,3	9,5	-1,9	-0,4	-6,0
	ULS 1a	6,5	3,6	22,1	-6,1	-0,9	-18,1

ZWO380 D2.2 OSP Mast 1 H1 Project: Masttype:

Mast:	1						
150ct2f1	ULS 3	3,7	1,8	19,4	-4,8	-0,7	-14,8
	ULS 4	3,0	1,2	16,6	-3,5	-0,3	-12,6
	ULS 6b	2,1	1,0	13,0	-3,0	-0,4	-9,0
	ULS 7	1,5	0,3	10,2	-2,0	-0,4	- 5,7
150ct2f2	SLS 1a	5,2	3,3	18,3	-5,3	-1,4	-14,9
	SLS 3	3,2	2,0	16,8	-4,4	-1,2	-12,9
	SLS 4	3,2	1,6	15,5	-3,6	-1,1	-12,0
	SLS 6	1,9	1,1	10,5	-2,4	-0,6	-7,0
	SLS 7	1,7	0,6	9,5	-2,1	-0,8	-6,0
	ULS 1a	6,8	4,3	21,9	-6,5	-1,8	- 17,9
	ULS 3	3,8	2,4	19,1	-5,2	-1,3	-14,5
	ULS 4	3,2	1,8	16,1	- 3,7	-1,0	-12,1
	ULS 6b	2,1	1,3	12,8	-3,2	-0,8	-8,8
	ULS 7	1,7	0,6	10,3	- 2,2	-0,8	- 5,8
150ct2f3	SLS 1a	5,0	3,5	24,9	-4,2	-1,2	-21,1
	SLS 3	3,1	2,0	22,5	- 3,3	-1,0	-17,8
	SLS 4	2,2	1,4	21,2	- 2,4	-0,6	-17,4
	SLS 6	1,2	1,0	13,2	-1,5	-0,2	-9,4
	SLS 7	0,8	0,3	9,8	-1,1	-0,4	-6,0
	ULS 1a	6,6	4,8	30,2	-5,4	-1,4	-25,8
	ULS 3	3,9	2,6	26,0	- 3,9	-1,1	-20,5
	ULS 4	2,2	1,6	22,2	- 2,5	-0,4	-17,8
	ULS 6b	2,0	1,3	15,7	-2,1	-0,6	-11,3
	ULS 7	0,8	0,3	10,6	-1,1	-0,4	-5,6

18-6-2021 5 van 5




Project: ZW-Oost GT-BD150 Masttype: Hoekmast H1

Mast: 1

Auteur: MKh
Oplegreacties per randstijl Versie: 1.4

Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

Assenstelsels

Maximale	drukbelasting
Maximale	urukbelastilig

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 1a_45 Ba All Cts	- 52	- 52	-292	0	- 73	6	-301
2	SPLS 1a_0 Ba All Cts	-40	37	-222	-2	- 55	3	- 229
3	ULS 3_135	138	147	-888	-6	-201	- 5	-910
4	ULS 1a_105	163	- 175	-1019	9	-239	2	-1047

Maximale trekbelasting

Stijl	Combinatie	R_x	R_y	R_z	R _n	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	100	108	659	6	147	6	675
2	ULS 1a_0,9_105	126	-138	800	- 9	187	-1	822
3	SPLS 1a_0,9_0,9_45 Ba All Cts	-28	- 29	151	1	40	- 5	156
4	SPLS 1a 0.9 0.9 0 Ba All Cts	-17	14	82	2	21	-2	84

Maximale torsiebelasting (positief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_93 Ba Ct2 Ba Ct1	-18	86	245	73	48	8	249
2	SPLS 6a_93 Ba Ct2 Ba Ct1	84	9	220	66	53	- 2	226
3	SPLS 6a_93 Ba Ct2 Ba Ct1	119	12	-428	76	-93	- 6	-438
4	SPLS 6a_93 Ba Ct2 Ba Ct1	13	-130	-422	83	-101	2	-434

Maximale torsiebelasting (negatief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_93 Ba Ct1 Ba Ct2	76	-21	166	-69	39	0	170
2	SPLS 6a_93 Ba Ct1 Ba Ct2	- 8	- 99	302	- 76	64	6	309
3	SPLS 6a_93 Ba Ct1 Ba Ct2	3	118	-367	-81	- 85	0	- 377
4	SPLS 6a_93 Ba Ct1 Ba Ct2	129	- 24	-483	- 74	-108	- 4	- 495

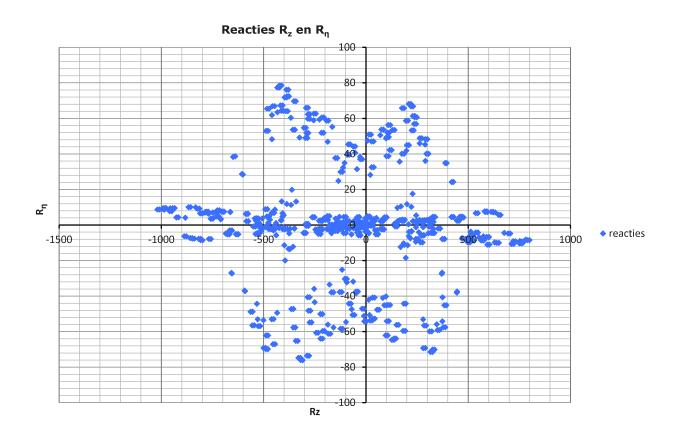
Combinatie Ftrek+Fh

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	100	108	659	6	147	6	675
2	ULS 1a_0,9_105	126	-138	800	-9	187	-1	822
3	SPLS 6a_93 Ba Ct1 Ba Ct2	3	118	-367	-81	- 85	0	- 377
4	SPLS 6a 93 Ba Ct2 Ba Ct1	13	-130	-422	83	-101	2	-434

Permanente belasting

Stijl	Combinatie	R _x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SLS 7	40	43	264	3	59	2	270
2	SLS 7	33	-38	226	-4	50	2	231
3	SLS 7	71	75	-449	-3	-103	-1	-461
4	SLS 7	65	-69	-411	3	-94	-1	-422

Omhullenden ongeacht stijl

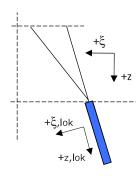

Belasting	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Max. druk	ULS 1a_105	163	-175	-1019	9	-239	2	-1047
Max. trek	ULS 1a_0,9_105	126	-138	800	- 9	187	-1	822
Max. pos. torsie	SPLS 6a_93 Ba Ct2 Ba Ct1	13	-130	-422	83	-101	2	-434
Max. neg. torsie	SPLS 6a_93 Ba Ct1 Ba Ct2	3	118	-367	-81	-85	0	- 377
Comb. trek+torsie	ULS 1a_0,9_105	126	-138	800	-9	187	-1	822

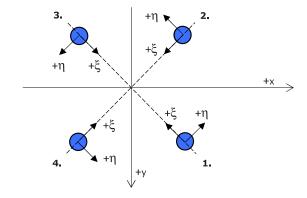
Maximale drukbelasting SLS

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 1a_0,9_0,9_45	- 22	-19	-83	2	- 29	9	- 87
2	SLS 1a_0	- 8	0	-4	- 5	-6	5	- 5
3	ULS 3_135	138	147	-888	- 6	-201	- 5	- 910
4	ULS 3_135	150	-161	-959	8	- 220	- 3	-984

Maximale trekbelasting SLS

Stijl	Combinatie	R _x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	100	108	659	6	147	6	675
2	ULS 3_0,9_135	111	-124	730	-9	166	4	749
3	ULS 1a_0,9_0,9_45	12	15	-119	- 2	-19	- 9	-120
4	SLS 1a_0	28	- 35	-206	5	-44	-4	- 211




Project: ZW-Oost GT-BD150 Masttype: Hoekmast H1

Mast: 1

Auteur: MKh
Oplegreacties per randstijl Versie: 1.4

Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

Assenstelsels

Maximale	drukbelasting
Maximale	urukbelastilig

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 1a_45 Ba All Cts	- 53	- 53	-299	0	- 75	6	-308
2	SPLS 1a_0 Ba All Cts	-42	38	-229	- 2	- 56	3	- 236
3	ULS 3_135	162	173	-1050	-8	- 237	- 7	-1077
4	ULS 1a_105	195	-210	-1221	11	- 287	3	-1254

Maximale trekbelasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	121	131	801	7	178	8	821
2	ULS 1a_0,9_105	156	-170	985	-10	231	- 2	1011
3	SPLS 1a_0,9_0,9_45 Ba All Cts	-28	- 29	151	1	40	- 5	156
4	SPLS 1a 0.9 0.9 0 Ba All Cts	-17	14	82	2	21	- 2	84

Maximale torsiebelasting (positief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_93 Ba Ct2 Ba Ct1	-19	90	253	76	50	9	258
2	SPLS 6a_93 Ba Ct2 Ba Ct1	87	10	224	69	55	- 2	230
3	SPLS 6a_93 Ba Ct2 Ba Ct1	125	14	-451	79	-98	- 7	-462
4	SPLS 6a_93 Ba Ct2 Ba Ct1	14	-135	-443	86	-105	2	-455

Maximale torsiebelasting (negatief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_93 Ba Ct1 Ba Ct2	79	-22	172	-71	40	0	176
2	SPLS 6a_93 Ba Ct1 Ba Ct2	-10	-102	309	- 79	66	6	316
3	SPLS 6a_93 Ba Ct1 Ba Ct2	4	124	-389	-84	-90	0	-399
4	SPLS 6a_93 Ba Ct1 Ba Ct2	135	-25	-505	-77	-113	-4	-518

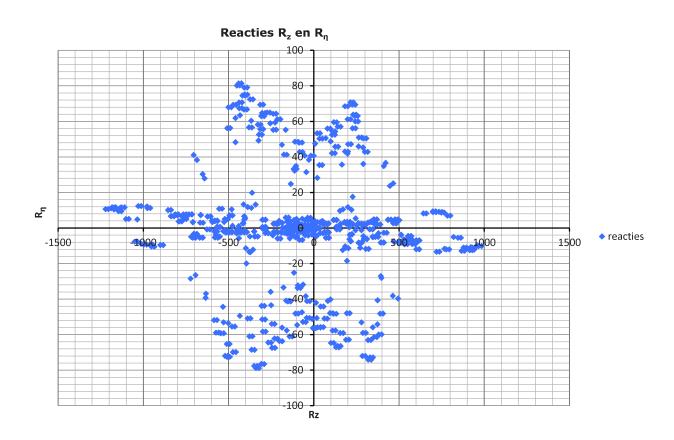
Combinatie Ftrek+Fh

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	121	131	801	7	178	8	821
2	ULS 1a_0,9_105	156	-170	985	-10	231	- 2	1011
3	SPLS 6a_93 Ba Ct1 Ba Ct2	4	124	-389	-84	- 90	0	-399
4	SPLS 6a 93 Ba Ct2 Ba Ct1	14	-135	-443	86	-105	2	-455

Permanente belasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SLS 7	40	43	264	3	59	2	270
2	SLS 7	33	-38	226	-4	50	2	231
3	SLS 7	71	75	-449	-3	-103	-1	- 461
4	SLS 7	65	-69	-411	3	-94	-1	-422

Omhullenden ongeacht stijl


Belasting	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Max. druk	ULS 1a_105	195	-210	-1221	11	-287	3	-1254
Max. trek	ULS 1a_0,9_105	156	-170	985	-10	231	- 2	1011
Max. pos. torsie	SPLS 6a_93 Ba Ct2 Ba Ct1	14	-135	- 443	86	-105	2	- 455
Max. neg. torsie	SPLS 6a_93 Ba Ct1 Ba Ct2	4	124	-389	-84	-90	0	-399
Comb. trek+torsie	ULS 1a_0,9_105	156	-170	985	-10	231	-2	1011

Maximale drukbelasting SLS

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 1a_0,9_0,9_45	-33	-30	-144	2	- 45	11	-151
2	SLS 1a_0	-10	3	-18	- 5	- 9	5	-20
3	ULS 3_135	162	173	-1050	-8	- 237	- 7	-1077
4	ULS 3_135	179	-192	-1145	9	- 263	- 3	-1175

Maximale trekbelasting SLS

Stijl	Combinatie	R _x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	121	131	801	7	178	8	821
2	ULS 3_0,9_135	136	-152	896	-11	204	5	919
3	ULS 1a_0,9_0,9_45	2	5	-65	- 2	- 5	-11	- 65
4	SLS 1a_0	26	- 32	-194	5	-41	- 4	-198

Inhoud

- Uitgangspunten
- Mastconstructie
- Tussenresultaten
- Belastingen initiëel
- Belastingen na aanpassing
p. 15

Gegevens

Norm NEN-EN50341-2-15:2019

Initieel

Gevolgklasse CC2-0 Betrouwbaarheidsniveau Afkeur Referentieperiode 30 jaar

Na aanpassing

Gevolgklasse CC2
Betrouwbaarheidsniveau Verbouw
Referentieperiode 50 jaar

Windgebied III
Windsnelheid 24,5 m/s
Terreincategorie II
Reductie factor Cdir 1,00
IJsgebied B

MasttypeHoekmastMasthoogte32 mMax. veldlengte229,1 mLijnhoek152°Trekparameter1100 m

Wind span 116 m EDS Weight span 577 m Min. Weight span 105 m Max. Weight span 9465 m

0.0	2021-07-28			
ISSUE	DATE	REVISION	CHK'D	APP'D
		•		

Client:

Title:

Berekening masttype H150

JOB No.	-	DATE	-
DRAWN	-	CHKD	-
DESIGN	-	APPD	-

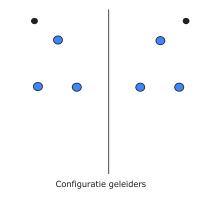
Document name:

ZWO380 D2.2 OSP Mast 11_H150_11_Report.pdf

Project number:

Project client number:

0.0


Project: Tower: Number: H150

Auteur: TBR Geleiderbelastingen Versie: v11.9

Algemeen

Angelieeri Benaming Masttype Aantal circuits Configuratie Aantal bliksemgeleiders H150 Hoekmast 2-circuit-donau

Uitgangspunten NEN-EN50341-2-15:2019 Norm Gevolgklasse initieel CC2-0 Betrouwbaarheidsniveau initieel Afkeur CC2-0 30 jaar CC2 Verbouw 50 jaar III Referentieperiode initieel Gevolgklasse na aanpassing Betrouwbaarheidsniveau na aanpassing Referentieperiode na aanpassing Windgebied Windsnelheid (m/s) 24,5 m/s II Terreincategorie Reductiefactor c_{dir} IJsgebied fasegeleider IJsgebied bliksemgeleider 1,00 В

Geleiders Back

Teeslag	
diameter Int	rekwaarden P _{back}
2 %	1100
2 %	1100
2 %	1600
2 %	1600
	2 % 2 % 2 % 2 %

Geleiders Ahead							
Omschrijving	Spanning	Geleider Ahead	Bundel Ah	IJsgebied	Toeslag gewicht	Toeslag diameter	Intrekwaarden P _{ahead}
Circuit 1	150 kV	ACSR 20/224	2	В	2 %	2 %	50
Circuit 2	150 kV	ACSR 20/224	2	В	2 %	2 %	50
Bliksemdraad 1		Niet aanwezig	1	Α	2 %	2 %	1600
Bliksemdraad 2		Niet aanwezig	1	Α	2 %	2 %	1600

Isolatoren	(1)			
Omschrijving	Ophanging	Gewicht	Lengte	Windopp.
		[kN]	[m]	[m ²]
Circuit 1	Afspanketting	1,50	4,50	1,00
Circuit 2	Afspanketting	1,50	4,50	1,00
Bliksemdraad 1	Afspanketting	0,10	0,20	0,10
Bliksemdraad 2	Afspanketting	0,10	0,20	0,10

Eigenschappen gelden voor geheel van de isolatorset

Ophanghoogte en positie in mast

	•				Positie in mast	
Circuits	Aandui	ding Nummer	Ophanghoogte	Aangrijppunt	Horizontale afstand	
Circuit 1	10	150ct1f1	21,4 m	21,4 m	9,5 m	
Circuit 1	11	150ct1f2	21,4 m	21,4 m	4,6 m	
Circuit 1	12	150ct1f3	27,3 m	27,3 m	4,4 m	
Circuit 2	20	150ct2f1	21,4 m	21,4 m	-4,6 m	
Circuit 2	21	150ct2f2	21,4 m	21,4 m	-9,5 m	
Circuit 2	22	150ct2f3	27,3 m	27,3 m	-4,4 m	
Bliksemdraad 1	1	bl1	29,5 m	29,5 m	8,8 m	
Bliksemdraad 2	3	bl2	29,5 m	29,5 m	-8,8 m	

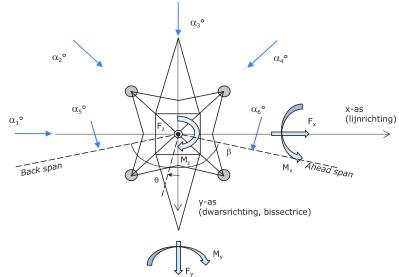
28-7-2021 2 van 21

Project: Tower: Number:

Hoogteaanpassing naastgelegen masten (aanpassing wind- en weight span)

	Back	Ahead	
Verhoging voor windbelasting	0,0 m	0,0 m	(positief: omhoog)
Verlaging voor verticale belasting	0,0 m	0,0 m	(negatief: omlaag, grotere weight span)
Verlaging: Niet in 0,9EG-combinaties			

Hoogteafwijking mastbeeld naastgelegen masten en richtingsverandering t.o.v. Lijnrichting


, j			Hoogteverschil		Richtingsverandering		
Circuits	Aandui	ding Nummer	∆h_back .	∆h_ahead	∆y_back	∆y_ahead	
Circuit 1	10	150ct1f1	-0,7	-20,9 m	0,0	-2,5 m	
Circuit 1	11	150ct1f2	-0,7	-20,9 m	0,0	-0,4 m	
Circuit 1	12	150ct1f3	0,2	-27,7 m	0,0	-2,0 m	
Circuit 2	20	150ct2f1	-0,7	-20,9 m	0,0	0,4 m	
Circuit 2	21	150ct2f2	-0,7	-20,9 m	0,0	2,5 m	
Circuit 2	22	150ct2f3	0,2	-27,7 m	0,0	2,0 m	
Bliksemdraad 1	1	bl1	0,5	0,0 m	0,0	0,0 m	
Bliksemdraad 2	3	bl2	0,5	0,0 m	0,0	0,0 m	

Lijn- en mastgegevens

_ijii cii iiiasigegeveiis		Back	Ahead	
		229,1	3,0 m	
Ruling span $\sqrt{(\Sigma L^3/\Sigma L)}$		285,6	3,0 m	
Lijnhoek	β	152 °		
Rotatie mast t.o.v. bissectrice	θ	0 °		
Vaklengte		549	3 m	
Hoogte onderkant mast t.o.v. ma	aaiveld	0,7 m		
Beschouwde windrichtingen	α_1	0 °		
Windrichtingen volgens:	α_2	45 °		
Geleiderbelastingen	α_3	90 °		
_	α_4	135 °		
	α_5	76 °		
	α_6	104 °		

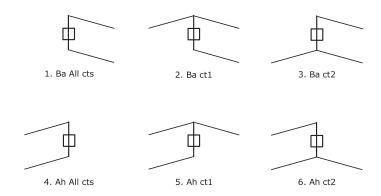
Windrichtingen gelden t.o.v. hoofdrichting mastconstructie, niet t.o.v. bissectrice.

Windrichtingen en positieve richtingen belastingen

Beschouwd aantal windrichtingen	
1a	6
3	6
4	1
6	1
Overig	1

28-7-2021 3 van 21

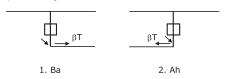
Project: Tower: Number:


Geleiderafval

		SPLS	SPLS - torsie		kelzijdige trek	5a - gele	iderbreuk
		Aanw.	Afw.	Aanw.	Afw.	Aanw.	Afw.
Circuit 1	150ct1f1	1	0	1	0	1	0
Circuit 1	150ct1f2	1	0	1	0	1	0
Circuit 1	150ct1f3	1	0	1	0	1	0
Circuit 2	150ct2f1	0	1	1	0	1	0
Circuit 2	150ct2f2	0	1	1	0	1	0
Circuit 2	150ct2f3	0	1	1	0	1	0
Bliksemdraad 1	bl1	1	0	1	0	1	0
Bliksemdraad 2	bl2	0	1	1	0	1	0

Belastingsituaties SPLS

Beschouwde situaties SPLS: 1 t/m 6, alle mogelijke situaties.


Principe belastingssituaties:

Belastingsituaties 5a. Geleiderbreuk

Beschouwde situaties geleiderbreuk 5a: 1 en 2, alle mogelijke situaties.

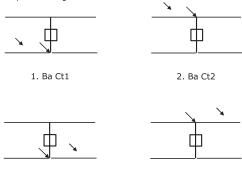
Principe belastingssituaties:

28-7-2021 4 van 21

Project: ZWO380 D2.2 OSP Mast 11

Tower: H150 Number: 11

Belastingsituaties 6. Bouw- en onderhoud


Onder 6a wordt de belasting door aanwezigheid lijnwagen of lijnfiets in combinatie met puntlast op traverse in rekening gebracht. Combinatie 6b bevat geen belastingen in geleider of op traverse. Deze combinatie is toegevoegd om te kunnen combineren met separate controle bordessen etc. De situaties worden in ULS en in iedere SPLS-situatie (in geval van hoekmast) toegepast.

	Fase	Bliksem
Lijnwagen	3,0 kN	2,0 kN
Puntlast op traverse	1,0 kN	1,0 kN

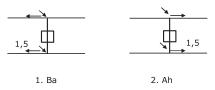
Beschouwde situaties bouw- en onderhoud 6a: 1 en 2, uitgangspunt is symmetrie tussen back / ahead.

Aanwezigheid lijnwagen: Circuit, belasting tegelijk aanwezig in alle geleiders per circuit.

Principe belastingssituaties:

Belastingsituaties 8. Lijndansen als statische belasting

Geleider		-	
Steunmast fase	0,866 W	1,5 W	
Steunmast bliksem	1,5 EDS	1,5 W	
Hoekmast fase en bliksem	1,5 EDS	1.5 W	


4. Ah Ct2

Beschouwde situaties lijndansen 8: Geen (bestaande constructie)

Belasting tegelijk aanwezig in alle geleiders van het circuit.

Principe belastingssituaties:

3. Ah Ct1

Belastingcombinatie 8. Lijndansen als dynamische belasting

Alleen van toepassing op hoek- en eindmasten

Belasting bestaat uit EDS-trekbelasting in één van de geleiders aan één zijde van de mast Door gebruiker via het belastingsspectrum van tabel 4.11/NL.1 om te zetten naar spanningspectrum

28-7-2021 5 van 21

ZWO380 D2.2 OSP Mast 11 Project:

H150 Tower: Number:

Mastconstructie

Eigenschappen

Hoekmast H150 0,5 m 32,0 m 140,0 kN Masttype Mastbenaming Voetplaat t.o.v. maaiveld Masthoogte t.o.v. voetplaat Gewicht mast

x-ri. 5,40 0,118 y-ri. 5,40 m 0,118 -Breedte en helling mast bij fundatie Pootsprei Helling van de randstijl Factor spatkracht 1,3 -1,3

Berekening windbelasting

Dynamische invloed G_T 1,00 (Masthoogte < 60 m)

(A1C1sin^2(phi)+A2C2cos^2(phi)) (A1C1sin^2(phi)+A2C2cos^2(phi)) Windbelasting overhoeks op mastlichaam evenredig met: Windbelasting overhoeks op traverse evenredig met:

(1+0,2sin^2(2phi)) (1+0,2sin^2(2phi)) 0,4 Vergroting wind overhoeks mastlichaam Vergroting wind overhoeks traverse

Factor wind evenwijdig t.o.v. haaks op traverse

Eigenschappen mastsecties langsrichting (vooraanzicht, yz-vlak)

h	b_1	b_2	∆h	Δ_{x}	A_0	A_1	$\chi = A_1/A_0$	C_{t}
[m]	[m]	[m]	[m]	[m]	[m²]	[m ²]	[-]	
7,50	5,40	3,63	7,50	0,118	33,86	6,19	0,18	3,01
14,57	3,63	2,86	7,07	0,054	22,94	5,23	0,23	2,81
21,41	2,86	2,10	6,84	0,056	16,96	4,26	0,25	2,72
25,40	2,10	1,91	3,99	0,024	8,00	2,36	0,30	2,55
29,50	1,91	1,70	4,10	0,026	7,40	2,18	0,29	2,55
32,00	1,70		2,50		2,13	0,29	0,14	3,22
21,41	8,42		2,10		8,84	2,73	0,31	2,51
27,30	7,95		2,20		8,75	2,53	0,29	2,57
	7,50 14,57 21,41 25,40 29,50 32,00 21,41	[m] [m] 7,50 5,40 14,57 3,63 21,41 2,86 25,40 2,10 29,50 1,91 32,00 1,70 21,41 8,42	[m] [m] [m] 7,50 5,40 3,63 14,57 3,63 2,86 21,41 2,86 2,10 25,40 2,10 1,91 29,50 1,91 1,70 32,00 1,70 1,70 21,41 8,42	[m] [m] [m] 7,50 5,40 3,63 7,50 14,57 3,63 2,86 7,07 21,41 2,86 2,10 6,84 25,40 2,10 1,91 3,99 29,50 1,91 1,70 4,10 32,00 1,70 2,50 21,41 8,42 2,10	[m] [m] [m] [m] 7,50 5,40 3,63 7,50 0,118 14,57 3,63 2,86 7,07 0,054 21,41 2,86 2,10 6,84 0,056 25,40 2,10 1,91 3,99 0,024 29,50 1,91 1,70 4,10 0,026 32,00 1,70 2,50 21,41 8,42 2,10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[m] [m] [m] [m] [m] [m²] [m²]	[m] [m] [m] [m] [m] [m²] [m²] [m²] [-] 7,50 5,40 3,63 7,50 0,118 33,86 6,19 0,18 14,57 3,63 2,86 7,07 0,054 22,94 5,23 0,23 21,41 2,86 2,10 6,84 0,056 16,96 4,26 0,25 25,40 2,10 1,91 3,99 0,024 8,00 2,36 0,30 29,50 1,91 1,70 4,10 0,026 7,40 2,18 0,29 32,00 1,70 2,50 2,13 0,29 0,14 21,41 8,42 2,10 8,84 2,73 0,31

Eigenschappen mastsecties	dwarsrichting (zij								
Omschrijving	h	b_1	b ₂	∆h	Δ_{x}	A_0	A_1	$\chi = A_1/A_0$	C_t
	[m]	[m]	[m]	[m]	[m]	[m²]	[m²]	[-]	
Broekstuk	7,50	5,40	3,63	7,50	0,118	33,86	6,19	0,18	3,01
Eerste tussenstuk	14,57	3,63	2,86	7,07	0,054	22,94	5,23	0,23	2,81
Tweede tussenstuk	21,41	2,86	2,10	6,84	0,056	16,96	4,26	0,25	2,72
Bovenstuk 1	25,40	2,10	1,91	3,99	0,024	8,00	2,36	0,30	2,55
Bovenstuk 2	29,50	1,91	1,70	4,10	0,026	7,40	2,18	0,29	2,55
Topstuk	32,00	1,70		2,50		2,13	0,29	0,14	3,22
Ondertraverse	21,41	8,42		2,10		8,84	2,73	0,31	2,51
Boventraverse	27,30	7,95		2,20		8,75	2,53	0,29	2,57

NB: oppervlakte traverse dwarsrichting wordt in berekening gereduceerd.

28-7-2021 6 van 21

ZWO380 D2.2 OSP Mast 11 H150

Project: Tower: Number:

Windoppervlak feeders telecominstallaties

Onderdeel Broekstuk A (m²/m)Δh Factor

Eerste tussenstuk Tweede tussenstuk Bovenstuk 1 Bovenstuk 2

Invoer antennes

A (m²) h (m) $C_f(m)$

Omschrijving Antenne top Antenne o.t.

Belastingen mastsectie langsrichting (x-richting) per windrichting

Omschrijving	p_w	F _{x1}	F_{x2}	F _{x3}	F _{x4}	h_{ef}	M_{y1}	M_{y2}	M_{y3}	M_{y4}
	[kN/m ²]	[kN]	[kN]	[kN]	[kN]	[m]	[kNm]	[kNm]	[kNm]	[kNm]
Broekstuk	0,70	13,0	11,1	0,0	-11,1	3,8	48,9	41,5	0,0	-41,5
Eerste tussenstuk	0,73	10,7	9,1	0,0	-9,1	11,0	117,8	99,9	0,0	-99,9
Tweede tussenstuk	0,85	9,8	8,3	0,0	-8,3	18,0	177,0	150,2	0,0	-150,2
Bovenstuk 1	0,93	5,6	4,7	0,0	-4,7	23,4	130,9	111,1	0,0	-111,1
Bovenstuk 2	0,96	5,4	4,6	0,0	-4,6	27,5	147,4	125,1	0,0	-125,1
Topstuk	1,00	0,9	0,8	0,0	-0,8	30,8	28,6	24,3	0,0	-24,3
Ondertraverse	0,90	12,4	7,3	0,0	-7,3	22,1	273,1	162,2	0,0	-162,2
Boventraverse	0,97	12,6	7,5	0,0	-7,5	28,0	354,3	210,4	0,0	-210,4

Totaal 70,4 53,4 0,0 -53,4 1278,0 924,7 0,0 -924	<u>Totaal</u>	70,4	53,4	0,0	-53,4	1278,0		0,0	-924,7
--	---------------	------	------	-----	-------	--------	--	-----	--------

Belastingen mastsectie dwarsrichting (y-richting) per windrichting

Omschrijving	p_w	F_{y1}	F_{y2}	F_{y3}	F_{x4}	h_{ef}	$M_{\times 1}$	M_{x2}	M_{x3}	M_{x4}
	[kN/m ²]	[kN]	[kN]	[kN]	[kN]	[m]	[kNm]	[kNm]	[kNm]	[kNm]
Broekstuk	0,70	0,0	11,1	13,0	11,1	3,8	0,0	41,5	48,9	41,5
Eerste tussenstuk	0,73	0,0	9,1	10,7	9,1	11,0	0,0	99,9	117,8	99,9
Tweede tussenstuk	0,85	0,0	8,3	9,8	8,3	18,0	0,0	150,2	177,0	150,2
Bovenstuk 1	0,93	0,0	4,7	5,6	4,7	23,4	0,0	111,1	130,9	111,1
Bovenstuk 2	0,96	0,0	4,6	5,4	4,6	27,5	0,0	125,1	147,4	125,1
Topstuk	1,00	0,0	0,8	0,9	0,8	30,8	0,0	24,3	28,6	24,3
Ondertraverse	0,90	0,0	7,3	4,9	7,3	22,1	0,0	162,2	109,3	162,2
Boventraverse	0,97	0,0	7,5	5,1	7,5	28,0	0,0	210,4	141,7	210,4

Totaal	0,0	53,4	55,4	53,4	0,0	924,7	901,6	924,7

Resulterende belastingen vanuit mastconstructie incl. antenne zonder geleiders niveau fundatie (kar. waarde)

Belasting / windrichting	F _x	F _y	F _z	M _x	M _y	M _z	
	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	
Permanente belasting	0	0	140	0	0	0	
Windrichting 0°	70	0	0	0	1278	0	
Windrichting 45°	53	53	0	925	925	0	
Windrichting 90°	0	55	0	902	0	0	
Windrichting 135°	-53	53	0	925	-925	0	

28-7-2021 7 van 21

ZWO380 D2.2 OSP Mast 11 H150 11

Project: Tower: Number:

Tussenresultaten geleiderbelastingen

Geleiders ba	ack
--------------	-----

Circuit	Geleider	Diameter	Α	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Circuit 2	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Bliksemdraad 1	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05
Bliksemdraad 2	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05

Geleiders ahead

Circuit	Geleider	Diameter	Α	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Circuit 2	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Bliksemdraad 1	Niet aanwezig					
Bliksemdraad 2	Niet aanwezig					

Verticale belasting back

Circuit	Bundel	Toeslag	$W_{z,G}$	IJsgebied	Formule	$W_{z,ijs}$	W _{z,ijs,bundel}
	[-]	[%]	[N/m]			[N/m]	[N/m]
Circuit 1	2	2	15,5	В	4+0,2d	8,1	16,1
Circuit 2	2	2	15,5	В	4+0,2d	8,1	16,1
Bliksemdraad 1	1	2	3,8	Α	15+0,4d	19,7	19,7
Bliksemdraad 2	1	2	3,8	Α	15+0,4d	19,7	19,7

Verticale	belasting	ahead
C:		

Circuit	Bundel	Toeslag	$W_{z,G}$	IJsgebied	Formule	W _{z,ijs}	W _{z,ijs,bundel}
	[-]	[%]	[N/m]			[N/m]	[N/m]
Circuit 1	2	2	15,5	В	4+0,2d	8,1	16,1
Circuit 2	2	2	15,5	В	4+0,2d	8,1	16,1
Bliksemdraad 1	1	2		Α	15+0,4d		
Bliksemdraad 2	1	2		Α	15+0,4d		

-	la	to	re	'n

G _{isolator}	Aantal	$F_{v,iso}$	Lengte	Windopp. W	/indhoogte	Stuwdruk	Vormfactor	$F_{h,iso}$
[kN]	-	[kN]	[m]	[m ²]	[m]	[kN/m ²]	[-]	[kN]
1,50	1	1,5	4,5	1,0	22,11	0,90	1,2	1,09
1,50	1	1,5	4,5	1,0	22,11	0,90	1,2	1,09
1,50	1	1,5	4,5	1,0	28,00	0,97	1,2	1,16
1,50	1	1,5	4,5	1,0	22,11	0,90	1,2	1,09
1,50	1	1,5	4,5	1,0	22,11	0,90	1,2	1,09
1,50	1	1,5	4,5	1,0	28,00	0,97	1,2	1,16
0,10	1	0,1	0,2	0,1	30,20	0,99	1,2	0,12
0,10	1	0,1	0,2	0,1	30,20	0,99	1,2	0,12
	[kN] 1,50 1,50 1,50 1,50 1,50 1,50 0,10	[kN] - 1,50 1 1,50 1 1,50 1 1,50 1 1,50 1 1,50 1 0,10 1	[kN] - [kN] 1,50 1 1,5 1,50 1 1,5 1,50 1 1,5 1,50 1 1,5 1,50 1 1,5 1,50 1 1,5 1,50 1 1,5 0,10 1 0,1	[kN] - [kN] [m] 1,50 1 1,5 4,5 1,50 1 1,5 4,5 1,50 1 1,5 4,5 1,50 1 1,5 4,5 1,50 1 1,5 4,5 1,50 1 1,5 4,5 0,10 1 0,1 0,2	[kN] - [kN] [m] [m²] 1,50 1 1,5 4,5 1,0 1,50 1 1,5 4,5 1,0 1,50 1 1,5 4,5 1,0 1,50 1 1,5 4,5 1,0 1,50 1 1,5 4,5 1,0 1,50 1 1,5 4,5 1,0 0,10 1 0,1 0,2 0,1	[kN] - [kN] [m] [m²] [m] 1,50 1 1,5 4,5 1,0 22,11 1,50 1 1,5 4,5 1,0 22,11 1,50 1 1,5 4,5 1,0 28,00 1,50 1 1,5 4,5 1,0 22,11 1,50 1 1,5 4,5 1,0 22,11 1,50 1 1,5 4,5 1,0 28,00 0,10 1 0,1 0,2 0,1 30,20	[kN] - [kN] [m] [m²] [m] [kN/m²] 1,50 1 1,5 4,5 1,0 22,11 0,90 1,50 1 1,5 4,5 1,0 22,11 0,90 1,50 1 1,5 4,5 1,0 28,00 0,97 1,50 1 1,5 4,5 1,0 22,11 0,90 1,50 1 1,5 4,5 1,0 22,11 0,90 1,50 1 1,5 4,5 1,0 22,11 0,90 0,10 1 0,1 0,2 0,1 30,20 0,99	[kN] - [kN] [m] [m²] [m] [kN/m²] [-] 1,50 1 1,5 4,5 1,0 22,11 0,90 1,2 1,50 1 1,5 4,5 1,0 22,11 0,90 1,2 1,50 1 1,5 4,5 1,0 28,00 0,97 1,2 1,50 1 1,5 4,5 1,0 22,11 0,90 1,2 1,50 1 1,5 4,5 1,0 22,11 0,90 1,2 1,50 1 1,5 4,5 1,0 22,11 0,90 1,2 1,50 1 1,5 4,5 1,0 28,00 0,97 1,2 0,10 1 0,1 0,2 0,1 30,20 0,99 1,2

28-7-2021 8 van 21

Project: ZWO380 D2.2 OSP Mast 11 Tower: H150 Number: 11

Windbelasting back

willapelastili											
	hoogte										
Geleider	wind	Stuwdruk	G_{c_dwars}	G_{c_trek}	C_c	$d_{toeslag}$	w_y	$W_{y,vak}$	D _{ijs,toeslag}	$W_{y,ijs}$	W _{y,ijs,vak}
	[m]	[kN/m²]	[-]	[-]	[-]	[mm]	[N/m]	[N/m]	[mm]	[N/m]	[N/m]
150ct1f1	17,8	0,85	0,64	0,56	1,20	20,75	27,1	23,8	40,2	52,6	46,1
150ct1f2	17,8	0,85	0,64	0,56	1,20	20,75	27,1	23,8	40,2	52,6	46,1
150ct1f3	24,1	0,93	0,67	0,59	1,20	20,75	31,0	27,2	40,2	60,1	52,8
150ct2f1	17,8	0,85	0,64	0,56	1,20	20,75	27,1	23,8	40,2	52,6	46,1
150ct2f2	17,8	0,85	0,64	0,56	1,20	20,75	27,1	23,8	40,2	52,6	46,1
150ct2f3	24,1	0,93	0,67	0,59	1,20	20,75	31,0	27,2	40,2	60,1	52,8
bl1	27,7	0,97	0,68	0,60	1,20	11,99	9,5	8,3	55,2	43,7	38,4
bl2	27,7	0,97	0,68	0,60	1,20	11,99	9,5	8,3	55,2	43,7	38,4

Windbelast											
	hoogte										
Geleider	wind	Stuwdruk	G_{c_dwars}	G_{c_trek}	C_c	$d_{toeslag}$	W_y	$W_{y,vak}$	$D_{ijs,toeslag}$	$W_{y,ijs}$	$W_{y,ijs,vak}$
	[m]	[kN/m²]	[-]	[-]	[-]	[mm]	[N/m]	[N/m]	[mm]	[N/m]	[N/m]
150ct1f1	11,7	0,74	0,60	0,98	1,20	20,75	22,2	35,9	40,2	43,0	69,7
150ct1f2	11,7	0,74	0,60	0,98	1,20	20,75	22,2	35,9	40,2	43,0	69,7
150ct1f3	14,1	0,79	0,62	0,98	1,20	20,75	24,4	38,4	40,2	47,2	74,4
150ct2f1	11,7	0,74	0,60	0,98	1,20	20,75	22,2	35,9	40,2	43,0	69,7
150ct2f2	11,7	0,74	0,60	0,98	1,20	20,75	22,2	35,9	40,2	43,0	69,7
150ct2f3	14,1	0,79	0,62	0,98	1,20	20,75	24,4	38,4	40,2	47,2	74,4
bl1	30,2	0,99	0,69	0,99							
bl2	30,2	0,99	0,69	0,99							

28-7-2021 9 van 21

Project: ZWO380 D2.2 OSP Mast 11 Masttype: H150 Mast: 11

Auteur: Versie: TBR Geleiderbelastingen

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

ULS (bezwijks	terkte)	NEN-EN50	341-2-15:20	19				
Belastingsgeval	omschrijving	Temp	γg	γ _G		γQ		γ̈́a
		°C	$G_{k,mast}$	$G_{k,geleider}$	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,05	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,12	0,00	0,0
ULS 3	Wind+ijs	-5°	1,05	1,05	0,00	0,34	0,97	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,00	0,34	0,97	0,0
ULS 4	Koude+wind	-20°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,00	0,22	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,05	1,05	1,20	0,22	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 7	Permanent	10°	1,15	1,15	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijks	sterkte, enkel voor hoekmasten:	afwezigheid geleid	ers)	γ _G	γQ			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,05	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,05	1,05	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,05	1,05	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,05	1,05	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,0	0,24	0,0	0,0
SLS (controle	van de vervormingen, vermoeiir	ng, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	0,94	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,28	0,88	
SLS 4	Wind	-20°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen Aantal belastingcombinaties ULS Aantal belastingcombinaties SPLS Aantal belastingcombinaties SLS Aantal knooplasten 6 52 210 15 4432

28-7-2021 10 van 21

ZWO380 D2.2 OSP Mast 11

Project: ZWO3 Masttype: H150 Mast:

- Samenvattingstabellen geleiderbelastingen
 In de onderstaande vier tabellen is weergegeven:
 De maximale geleiderbelasting in het globale assenstelsel, gesplitst in aandeel van back en ahead span
- De alledaagse (EDS) waarden van de gecombineerde geleiderbelasting (ba+Ah) in het globale assenstelsel met in het lokale assenstelsel de maximaal optredende trekkracht.

 Componenten Fx en Fy als absolute waarde

 De alledaagse (EDS) waarden van de gecombineerde geleiderbelastingen (Ba+Ah) met bijbehorende trekkrachten
- Controle op uplift, waar een negatieve waarde duidt op uplift

Maximale waarden voor back en ahead span

	Fx_ba	Fx_ah	Fy_ba	Fy_ah	Fz_ba	Fz_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	-24,7	0,0	7,9	0,1	3,6	1,1
bl2	-24,7	0,0	7,9	0,1	3,6	1,1
150ct1f1	-40,0	14,2	12,2	0,7	7,6	110,7
150ct1f2	-40,0	15,6	12,2	2,2	7,6	110,7
150ct1f3	-40,0	14,9	13,4	0,8	7,5	146,6
150ct2f1	-40,0	14,5	12,2	6,0	7,6	110,7
150ct2f2	-40,0	9,2	12,2	12,7	7,6	110,7
150ct2f3	-40,0	10,5	13,4	11,7	7,5	146,6

Min. Weight s	pan (m)			Max. Weight	span (m)	
Weight spar Cor	nbinatie1	Weight spar Combinatie1				
Geleider	SLS 1a	SLS 4	SLS 7	Geleider	ULS 1a	ULS 3
bl1	107,9	110,3	111,1	bl1	111,1	112,3
bl2	107,9	110,3	111,1	bl2	111,1	112,3
150ct1f1	475,3	7157,1	466,7	150ct1f1	924,5	1487,6
150ct1f2	466,8	7157,4	466,7	150ct1f2	941,9	1489,4
150ct1f3	589,5	9464,6	576,6	150ct1f3	1264,9	1941,4
150ct2f1	480,4	7157,1	466,7	150ct2f1	939,7	1489,1
150ct2f2	468,4	7156,5	466,7	150ct2f2	934,6	1488,6
150ct2f3	576,1	9463,7	576,6	150ct2f3	1270,5	1942,0

Omhullende weight span over alle combinaties (incl. 0,9 combinaties)

Voor alle geleiders

Wind / Weight span verhouding

Max. weight span Min. weight span

9464,6 m 106,4 m 81,556 -0,917 -

28-7-2021 11 van 21

Project: ZWO380 D2.2 OSP Mast 11 Masttype: H150 Mast: 11

Maximale waarden	back+ah	ead span	Maximale	waard	en '	trekkracht geleider	

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	24,7	8,0	3,6	-25,9	0,0
bl2	24,7	8,0	3,6	-25,9	0,0
150ct1f1	40,0	12,5	110,7	-41,4	15,7
150ct1f2	40,0	13,5	110,7	-41,4	15,7
150ct1f3	40,0	13,9	146,6	-41,5	15,7
150ct2f1	40,0	13,8	110,7	-41,4	15,7
150ct2f2	40,0	18,7	110,7	-41,4	15,7
150ct2f3	40,0	17,8	146,6	-41,5	15,7

EDS-belastingen geleiders

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	0,0	1,5	0,5	-6,1	0,0
bl2	0,0	1,5	0,5	-6,1	0,0
150ct1f1	0,7	4,1	6,9	-17,1	0,8
150ct1f2	0,8	4,1	6,9	-17,1	0,8
150ct1f3	0,7	4,1	8,7	-17,1	0,8
150ct2f1	0,7	4,1	6,9	-17,1	0,8
150ct2f2	0,5	4,1	6,9	-17,1	0,8
150ct2f3	0.5	4.1	8.7	-17.1	0.8

Controle uplift SLS-wind

	·	Fz_ba	Fz_ah
Combinat	ie:Geleider	[kN]	[kN]
SLS 4	bl1	0,0	0,0
	bl2	0,0	0,0
	150ct1f1	0,0	0,0
	150ct1f2	0,0	0,0
	150ct1f3	0,0	0,0
	150ct2f1	0,0	0,0
	150ct2f2	0,0	0,0
	150ct2f3	0,0	0,0

28-7-2021 12 van 21

Project: ZWO380 D2.2 OSP Mast 11 Masttype: H150 Mast: 11

Auteur: Versie: TBR Geleiderbelastingen

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

ULS (bezwijks	sterkte)	NEN-EN50	341-2-15:20	19				
Belastingsgeval	omschrijving	Temp	γg	γ _G		γο		γa
		°C	$G_{k,mast}$	$G_{k,qeleider}$	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,15	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,40	0,00	0,0
ULS 3	Wind+ijs	-5°	1,15	1,15	0,00	0,42	1,30	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,00	0,42	1,30	0,0
ULS 4	Koude+wind	-20°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,00	0,28	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,15	1,15	1,30	0,28	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 7	Permanent	10°	1,30	1,30	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijks	sterkte, enkel voor hoekmasten:	afwezigheid geleid	ers)	γ _G	γQ			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,15	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,15	1,15	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,15	1,15	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,15	1,15	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,0	0,24	0,0	0,0
SLS (controle	van de vervormingen, vermoeii	ng, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	1,00	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,30	1,00	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen Aantal belastingcombinaties ULS Aantal belastingcombinaties SPLS Aantal belastingcombinaties SLS Aantal knooplasten 6 52 210 15 4432

28-7-2021 16 van 21

ZWO380 D2.2 OSP Mast 11

Project: Masttype: H150 Mast:

- Samenvattingstabellen geleiderbelastingen
 In de onderstaande vier tabellen is weergegeven:
 De maximale geleiderbelasting in het globale assenstelsel, gesplitst in aandeel van back en ahead span
- De alledaagse (EDS) waarden van de gecombineerde geleiderbelasting (ba+Ah) in het globale assenstelsel met in het lokale assenstelsel de maximaal optredende trekkracht.

 Componenten Fx en Fy als absolute waarde

 De alledaagse (EDS) waarden van de gecombineerde geleiderbelastingen (Ba+Ah) met bijbehorende trekkrachten
- Controle op uplift, waar een negatieve waarde duidt op uplift

Maximale waarden voor back en ahead span

	Fx_ba	Fx_ah	Fy_ba	Fy_ah	Fz_ba	Fz_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	-29,9	0,0	9,7	0,2	3,9	1,1
bl2	-29,9	0,0	9,7	0,2	3,9	1,1
150ct1f1	-42,9	14,2	14,8	0,7	8,3	110,9
150ct1f2	-42,9	15,6	14,8	2,2	8,3	110,9
150ct1f3	-43,0	14,9	16,3	0,8	8,2	146,8
150ct2f1	-42,9	14,5	14,8	6,0	8,3	110,9
150ct2f2	-42,9	9,2	14,8	12,7	8,3	110,9
150ct2f3	-43,0	10,5	16,3	11,7	8,2	146,7

Min. Weight s	pan (m)			Max. Weight span (m)
Weight spar Cor	mbinatie1			Weight spar Combinatie1
Geleider	SLS 1a	SLS 4	SLS 7	Geleider ULS 1a ULS 3
bl1	107,7	110,3	111,1	bl1 111,1 112,5
bl2	107,7	110,3	111,1	bl2 111,1 112,5
150ct1f1	476,4	7157,2	466,7	150ct1f1 997,7 1278,2
150ct1f2	466,9	7157,5	466,7	150ct1f2 1017,1 1280,3
150ct1f3	591,1	9464,8	576,6	150ct1f3 1370,7 1664,7
150ct2f1	482,1	7157,2	466,7	150ct2f1 1014,6 1280,0
150ct2f2	468,5	7156,6	466,7	150ct2f2 1008,8 1279,4
150ct2f3	576.0	9463.7	576.6	150ct2f3 1377.0 1665.5

Omhullende weight span over alle combinaties (incl. 0,9 combinaties)

Voor alle geleiders Min. weight span

9464,8 m 105,1 m Wind / Weight span verhouding 81,558 -

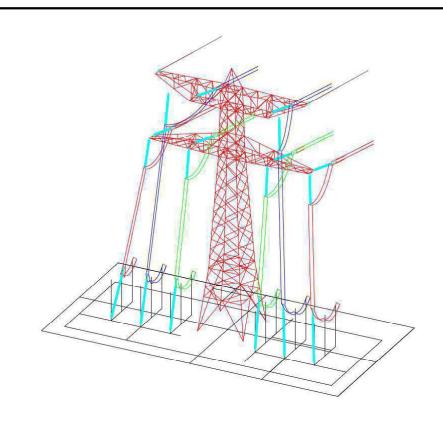
0,906 -

28-7-2021 17 van 21

Project: ZWO380 D2.2 OSP Mast 11 Masttype: H150 Mast: 11

Maximale waarden back+ahead span Maximale waarden trekkracht geleider

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	29,9	9,7	3,9	-31,3	0,0
bl2	29,9	9,7	3,9	-31,3	0,0
150ct1f1	41,5	15,1	110,9	-44,5	15,7
150ct1f2	41,5	16,4	110,9	-44,5	15,7
150ct1f3	41,5	16,9	146,8	-44,9	15,7
150ct2f1	41,7	16,4	110,9	-44,5	15,7
150ct2f2	42,2	19,3	110,9	-44,5	15,7
150ct2f3	42,2	18,8	146,7	-44,9	15,7


EDS-belastingen geleiders

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	0,0	1,5	0,5	-6,1	0,0
bl2	0,0	1,5	0,5	-6,1	0,0
150ct1f1	0,7	4,1	6,9	-17,1	0,8
150ct1f2	0,8	4,1	6,9	-17,1	0,8
150ct1f3	0,7	4,1	8,7	-17,1	0,8
150ct2f1	0,7	4,1	6,9	-17,1	0,8
150ct2f2	0,5	4,1	6,9	-17,1	0,8
150ct2f3	0.5	4.1	8.7	-17.1	0.8

Controle uplift SLS-wind

		Fz_ba	Fz_ah
Combinat	tie: Geleider	[kN]	[kN]
SLS 4	bl1	0,0	0,0
	bl2	0,0	0,0
	150ct1f1	0,0	0,0
	150ct1f2	0,0	0,0
	150ct1f3	0,0	0,0
	150ct2f1	0,0	0,0
	150ct2f2	0,0	0,0
	150ct2f3	0,0	0,0

28-7-2021 18 van 21

Inhoud

- Uitgangspunten
- Mastconstructie
- Tussenresultaten
- Belastingen initiëel
- Belastingen na aanpassing
p. 15

Gegevens

Norm NEN-EN50341-2-15:2019

Initieel

GevolgklasseCC2-0BetrouwbaarheidsniveauAfkeurReferentieperiode30 jaar

Na aanpassing

Gevolgklasse CC2
Betrouwbaarheidsniveau Verbouw
Referentieperiode 50 jaar

Windgebied III
Windsnelheid 24,5 m/s
Terreincategorie II
Reductie factor Cdir 1,00
IJsgebied B

Masttype Hoekmast Lijnhoek 152°

		_		
0.0	2021-06-18			
ISSUE	DATE	REVISION	CHK'D	APP'D

Client:

Title:

Verticale geleiders H150

JOB No.	-	DATE	-
DRAWN	-	CHKD	-
DESIGN	-	APPD	-

Document name:

D2.3 OSP Mastr 11_H150_11_Report.pdf

Project number:

Project client number:										
	ı	ı —	l	I			1		1	
0.0										
										l

Project: Tower: D2.3 OSP Mastr 11

H150 Number:

Auteur: Geleiderbelastingen afloper v1.9

Algemeen Benaming Masttype Aantal circuits Configuratie Aantal bliksemgeleiders H150 Hoekmast 2 2-circuit-donau

Uitgangspunten

Norm NEN-E
Gevolgklasse initieel
Betrouwbaarheidsniveau initieel
Referentieperiode initieel
Gevolgklasse na aanpassing
Betrouwbaarheidsniveau na aanpassing
Referentieperiode na aanpassing NEN-EN50341-2-15:2019 CC2-0 Afkeur CC2-0 30 jaar CC2 Verbouw 50 jaar Windgebied III Windsnelheid (m/s) 24,5 m/s II Terreincategorie Reductiefactor c_{dir} IJsgebied fasegeleider IJsgebied bliksemgeleider 1,00 B 0

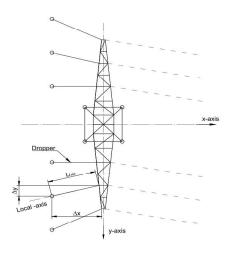
Geleiders

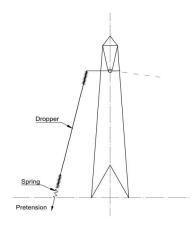
Omschrijving	Spanning	Geleider Back	Bundel Ba	IJsgebied	Toeslag gewicht	Toeslag diameter	
Circuit 1	150 kV	ACSR 20/224	2	В	2 %	2 %	·
Circuit 2	150 kV	ACSR 20/224	2	В	2 %	2 %	
Bliksemdraad 1		Niet aanwezig	0	0	0 %	0 %	0
Bliksemdraad 2		Niet aanwezig	0	0	0 %	0 %	0

Isolatoren	(1)			
Omschrijving	Ophanging	Gewicht	Lengte	Windopp.
		[kN]	[m]	[m²]
Circuit 1	Afspanketting	1,50	4,50	1,00
Circuit 2	Afspanketting	1,50	4,50	1,00
Bliksemdraad 1	0	0,00	0,00	0,00
Bliksemdraad 2	0	0,00	0,00	0,00

^{1.} Eigenschappen gelden voor geheel van de isolatorset

Ophanghoogte en positie in mast


Circuits	Nummar	Association	Onbanahaaata	Aspariisaunt
	Nummer		Ophanghoogte	Aangrijppunt
Circuit 1	10	150ct1f1	21,4 m	21,4 m
Circuit 1	11	150ct1f2	21,4 m	21,4 m
Circuit 1	12	150ct1f3	27,3 m	27,3 m
Circuit 2	20	150ct2f1	21,4 m	21,4 m
Circuit 2	21	150ct2f2	21,4 m	21,4 m
Circuit 2	22	150ct2f3	27,3 m	27,3 m
Bliksemdraad 1	1	bl1	0,0 m	0,0 m
Bliksemdraad 2	3	bl2	0,0 m	0,0 m


18-6-2021 2 van 13

Project: Tower: Number:

Principe hoekmast met aflopers

Top view tower

Side view tower

Hoogteafwijking mastbeeld naastgelegen masten en richtingsverandering t.o.v. Lijnrichting

			Hoogteverschil	Richtingsvera	ndering	Lokaal ∆x Lei	ngte overspanning	
Circuits	Nummer	Aanduiding	Δh	Δy	Δx	Lhor	L	
Circuit 1	10	150ct1f1	20,9 m	-2,5	4,0	4,7	21,4 m	
Circuit 1	11	150ct1f2	20,9 m	-0,4	3,7	3,7	21,2 m	
Circuit 1	12	150ct1f3	27,7 m	-2,0	1,7	2,6	27,8 m	
Circuit 2	20	150ct2f1	20,9 m	0,4	4,0	4,0	21,2 m	
Circuit 2	21	150ct2f2	20,9 m	2,5	3,7	4,5	21,3 m	
Circuit 2	22	150ct2f3	27,7 m	2,0	1,7	2,6	27,8 m	
Bliksemdraad 1	1	bl1	0,0 m	0,0	0,0	0,0	0,0 m	
Bliksemdraad 2	3	bl2	0,0 m	0,0	0,0	0,0	0,0 m	

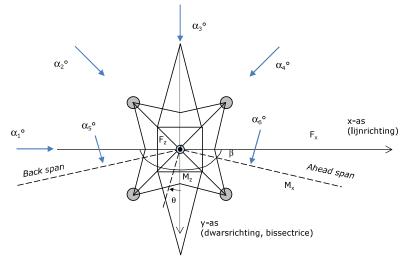
Voorspanning en veerstijfheid

	_		Voorspanning	Veerstijfheid	Effectieve rekstijfheid
Circuits	Nummer	Aanduiding	F _{pr}	k	EA _{fict}
Circuit 1	10	150ct1f1	3,0 kN	500 kN/m	5006 kN/m
Circuit 1	11	150ct1f2	3,0 kN	500 kN/m	5006 kN/m
Circuit 1	12	150ct1f3	3,0 kN	500 kN/m	7250 kN/m
Circuit 2	20	150ct2f1	3,0 kN	500 kN/m	5006 kN/m
Circuit 2	21	150ct2f2	3,0 kN	500 kN/m	5006 kN/m
Circuit 2	22	150ct2f3	3,0 kN	500 kN/m	7250 kN/m
Bliksemdraad 1	1	bl1	0,0 kN	0 kN/m	kN/m
Bliksemdraad 2	3	bl2	0,0 kN	0 kN/m	kN/m

De effectieve rekstijfheid is bepaald met de invloed van de veerstijfheid Deze is berekend door de optelling van de reciproke waarden van de veerstijfheid van geleider en veer.

18-6-2021 3 van 13

Project: Tower: Number:


Lijn- en mastgegevens

Deze invoer is opgenomen voor beschouwde windrichtingen en komt overeen met invoer geleiderbelastingen voor de mast

Lijnhoek Rotatie mast t.o.v. bissectrice	$_{\theta}^{\beta}$	152 ° 0 °
Hoogte onderkant mast t.o.v. m	aaiveld	0,5 m
Beschouwde windrichtingen	α_1	0 °
Windrichtingen volgens:	α_2	45 °
Geleiderbelastingen	α_3	90 °
_	α_4	135 °
	α_5	76 °
	α ₆	104 °

Windrichtingen gelden t.o.v. hoofdrichting mastconstructie, niet t.o.v. bissectrice.

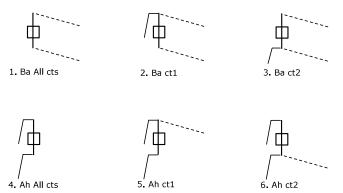
Windrichtingen en positieve richtingen belastingen

Beschouwd aantal windrichtinger	n
1a	- (
3	- (
4	
6	(
Overig	(
•	

18-6-2021 4 van 13

D2.3 OSP Mastr 11

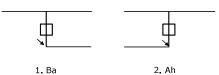
Project: Tower: Number: H150


Geleiderafval

		SPLS	- torsie	SPLS - Enk	kelzijdige trek	5a - gele	5a - geleiderbreuk		
		Aanw.	Afw.	Aanw.	Afw.	Aanw.	Afw.		
Circuit 1	150ct1f1	1	0	1	0	1	0		
Circuit 1	150ct1f2	1	0	1	0	1	0		
Circuit 1	150ct1f3	1	0	1	0	1	0		
Circuit 2	150ct2f1	0	1	1	0	1	0		
Circuit 2	150ct2f2	0	1	1	0	1	0		
Circuit 2	150ct2f3	0	1	1	0	1	0		
Bliksemdraad 1	bl1	1	0	1	0		0		
Bliksemdraad 2	bl2	0	1	1	0		0		

Belastingsituaties SPLS

Beschouwde situaties SPLS: 1 t/m 6, alle mogelijke situaties. Geleiderbelastingen naar volgende mast geen onderdeel van deze berekening.


Principe belastingssituaties:

Belastingsituaties 5a. Geleiderbreuk

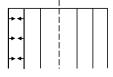
Beschouwde situaties geleiderbreuk 5a: 1 en 2, alle mogelijke situaties.

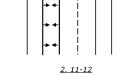
Principe belastingssituaties:

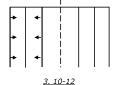
18-6-2021 5 van 13

D2.3 OSP Mastr 11 Project:

Tower: H150 Number:


Belastingsituaties 6. Bouw- en onderhoud


Onder 6a wordt de belasting door aanwezigheid lijnwagen of lijnfiets in combinatie met puntlast op traverse in rekening gebracht. Combinatie 6b bevat geen belastingen in geleider of op traverse. Deze combinatie met 20% wind is geschikt voor controle stijgpunt in combinatie met kortsluitbelastingen.


	Fase	Bliksem
Lijnwagen (nvt.)	0,0 kN	0,0 kN
Puntlast op traverse	1,0 kN	1,0 kN

Belastingsituaties 8. Kortsluiting

Principe belastingssituaties:

Kortsluitkrachten

(Zie separate berekening)
Geleider W. 6 Ko W_{z,G} Kortsluitkra
[N/m] [kN]
150ct1f1 16.3 [kN] 3,0 2,8 1,8 3,1 2,8 [kN] 15,9 [kN] 10 11 12 20 21 22 1 3 150ct1f2 16,3 -0,3 16,0 150ct1f3 29,0 -2,0 28,9 0,3 1,9 150ct2f1 16,3 16,0 150ct2f2 16,3 150ct2f3 29,0 bl1 bl2

Belastingcombinaties kortsluiting

_

18-6-2021 6 van 13

Project: D2.3 OSP Mastr 11

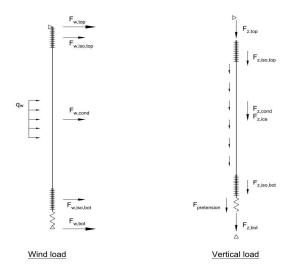
Tower: H150 Number: 11

Tussenresultaten geleiderbelastingen

Geleiders

GCICIGCIS						
Circuit	Geleider	Diameter	Α	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Circuit 2	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Bliksemdraad 1	Niet aanwezig					
Bliksemdraad 2	Niet aanwezig					

Verticale belasting


verticale pelasting									
Circuit	Bundel	Toeslag	W _{z,}	G	IJsgebied	Formule	$W_{z,ijs}$	W	z,ijs,bundel
	[-]	[%]	[N/	'm]			[N/m]	[N	N/m]
Circuit 1		2	2	15,5	E	3 4+0,2d		8,1	16,1
Circuit 2		2	2	15,5	E	3 4+0,2d		8,1	16,1
Bliksemdraad 1		0	0		C)			
Bliksemdraad 2		0	0		C)			

Schema voor berekenen horizontale en verticale belasting

Horizontale belasting wordt bepaald voor de wind tegen de geleider en isolatoren boven en onder.

De horizontale component als gevolg van de scheefstand van de afloper wordt per belastingscombinatie apart bepaald

De verticale krachten gelden alleen voor de EDS-conditie zonder externe belastingen en temperatuursverandering De berekeningen zijn weergegeven op het volgende blad.

18-6-2021 7 van 13

Project: D2.3 OSP Mastr 11 Tower: H150 Number: 11

Isolatoren					Boven			Onder		
Geleider	G _{isolator}	Lengte	Windopp.	Vormfactor'	Windhoogte	Stuwdruk	F _{h,iso} V	Vindhoogte	Stuwdruk	$F_{h,iso}$
	[kN]	[m]	[m ²]	[-]	[m]	[kN/m²]	[kN]	[m]	[kN/m²]	[kN]
150ct1f1	1,50	4,5	1,0	1,2	19,66	0,87	1,05	3,31	0,49	0,59
150ct1f2	1,50	4,5	1,0	1,2	19,66	0,87	1,05	3,31	0,49	0,59
150ct1f3	1,50	4,5	1,0	1,2	25,55	0,94	1,13	2,35	0,49	0,59
150ct2f1	1,50	4,5	1,0	1,2	19,66	0,87	1,05	3,31	0,49	0,59
150ct2f2	1,50	4,5	1,0	1,2	19,66	0,87	1,05	3,31	0,49	0,59
150ct2f3	1,50	4,5	1,0	1,2	25,55	0,94	1,13	2,35	0,49	0,59
bl1	0,00	0,0	0,0	1,2	0,50	0,49		0,50	0,49	
bl2	0,00	0,0	0,0	1,2	0,50	0,49		0,50	0,49	

Horizontale belasting

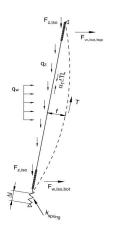
Horizontale											
	hoogte										
Geleider	wind	Stuwdruk	G_c	C_c	$d_{toeslag}$	W_y	$D_{ijs,toeslag}$	$W_{y,ijs}$	F _{w,geleider}	F _{w,boven}	$F_{w,onder}$
	[m]	[kN/m²]	[-]	[-]	[mm]	[N/m]	[mm]	[N/m]	[kN]	[kN]	[kN]
150ct1f1	11,5	0,74	0,97	1,20	20,75	35,4	40,2	68,7	0,21	1,3	0,8
150ct1f2	11,5	0,74	0,97	1,20	20,75	35,4	40,2	68,7	0,21	1,3	0,8
150ct1f3	14,0	0,78	0,97	1,20	20,75	37,9	40,2	73,6	0,35	1,5	0,9
150ct2f1	11,5	0,74	0,97	1,20	20,75	35,4	40,2	68,7	0,21	1,3	0,8
150ct2f2	11,5	0,74	0,97	1,20	20,75	35,4	40,2	68,7	0,21	1,3	0,8
150ct2f3	14,0	0,78	0,97	1,20	20,75	37,9	40,2	73,6	0,35	1,5	0,9
bl1	0,5	0,49	0,84								
bl2	0,5	0,49	0,84								

 $\begin{tabular}{ll} \textbf{Verticale belasting} \\ \textbf{Formules:} & F_{z,top} = F_{z,iso,top} + F_{z,cond} + F_{z,iso,bot} + F_{pr} \\ & F_{t,mid} = F_{z,cond}/2 + F_{z,iso,bot} + F_{pr} \\ & F_{z,bot} = -F_{pr} \end{tabular}$ $\begin{aligned} &L_{geleider} = \Delta h - 2L_{iso} \\ &F_{z,cond} = L_{cond} \ x \ w_z \end{aligned}$

Geleider	w _{z,G} [N/m]	w _{z,ijs} [N/m]	L _{geleider} [m]	F _{z,iso} [kN]	F _{z,gel} [kN]	F _{z,ijs} [kN]	Pretension [kN]	F _{z,boven} [kN]	F _{t,mid} [kN]	F _{z,onder} [kN]
150ct1f1	15,5	16,1	11,9	1,5	0,2	0,2	3,0	6,2	4,6	-3,0
150ct1f2	15,5	16,1	11,9	1,5	0,2	0,2	3,0	6,2	4,6	-3,0
150ct1f3	15,5	16,1	18,7	1,5	0,3	0,3	3,0	6,3	4,6	-3,0
150ct2f1	15,5	16,1	11,9	1,5	0,2	0,2	3,0	6,2	4,6	- 3,0
150ct2f2	15,5	16,1	11,9	1,5	0,2	0,2	3,0	6,2	4,6	-3,0
150ct2f3 bl1 bl2	15,5	16,1	18,7 0,0 0,0	1,5	0,3	0,3	3,0 0,0 0,0	6,3	4,6	-3,0

18-6-2021 8 van 13

Project: Masttype: Mast:


Auteur: Versie: TBR Geleiderbelastingen v1.9

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

ULS (bez	wijksterkte)	NEN-EN5	0341-2-15:20	019				
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γQ		γa
		°C	G _{k,mast}	$G_{k,ge}$ eider	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,05	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,12	0,00	0,0
ULS 3	Wind+ijs	-5°	1,05	1,05	0,00	0,34	0,97	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,00	0,34	0,97	0,0
ULS 4	Koude+wind	-20°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,00	0,22	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,05	1,05	1,20	0,22	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 7	Permanent	10°	1,15	1,15	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bez	wijksterkte, enkel voor hoekmasten: a	fwezigheid gelei	ders)	γ _G	γo			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,05	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,05	1,05	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,05	1,05	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,05	1,05	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,0	0,24	0,0	0,0
SLS (con	trole van de vervormingen, vermoeiing	g, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	0,94	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,28	0,88	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen	6
Aantal belastingcombinaties ULS	57
Aantal belastingcombinaties SPLS	210
Aantal belastingcombinaties SLS	15
Aantal knooplasten	4512

SchematisationDe trekkracht in de afloper wordt bepaald met de toestandsvergelijking voor een gekromde kabel. In de rekstijfheid van de kabel is de invloed van de veer verdisconteerd.

18-6-2021 9 van 13

Project: Masttype: Mast:

- Tabellen met geleiderbelastingen

 In de onderstaande drie tabellen is weergegeven:
 De trekkracht per belastingcombinatie en de bijbehorende zeeg en veerverlenging
 De geleiderbelastingen in het lokale assenstelsel voor het onderste bevestigingspunt
- De maximale waarden voor de reacties onder en boven in het globale assenstelsel

Trekkracht, zeeg en veerverlenging

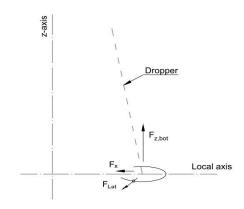
			Veer- verlengin	_	kracht initieel	Trek- kracht
Geleider	Combinatie	Zeeg [m]	g [m	g [m]	[kN]	[kN]
150ct1f1	SLS 1a	0,45	0,009	0,019	4,6	9,3
	SLS 3	0,33	0,007	0,016	4,7	8,0
	SLS 4	0,19	0,006	0,015	4,6	7,4
	SLS 6	0,25	0,002	0,011	4,6	5,6
	SLS 7	0,21	0,000	0,009	4,6	4,6
	ULS 1a	0,48	0,011	0,020	4,9	10,0
	ULS 3	0,35	0,008	0,017	5,0	8,4
	ULS 4	0,20	0,006	0,015	4,9	7,5
	ULS 6b	0,28	0,003	0,012	4,9	6,1
150ct1f2	SLS 1a	0,42	0,009	0,018	4,6	9,0
	SLS 3	0,29	0,006	0,016	4,7	7,8
	SLS 4	0,14	0,006	0,015	4,6	7,4
	SLS 6	0,19	0,002	0,011	4,6	5,4
	SLS 7	0,17	0,000	0,009	4,6	4,6
	ULS 1a	0,45	0,010	0,020	4,9	9,8
	ULS 3	0,31	0,007	0,016	5,0	8,2
	ULS 4	0,15	0,006	0,015	4,9	7,5
	ULS 6b	0,24	0,003	0,012	4,9	6,0
150ct1f3	SLS 1a	0,50	0,012	0,021	4,6	10,6
	SLS 3	0,32	0,009	0,019	4,8	9,3
	SLS 4	0,14	0,009	0,019	4,6	9,3
	SLS 6	0,21	0,003	0,013	4,6	6,3
	SLS 7	0,10	0,000	0,009	4,6	4,6
	ULS 1a	0,53	0,014	0,023	5,0	11,5
	ULS 3	0,36	0,010	0,020	5,1	9,8
	ULS 4	0,16	0,010	0,019	5,0	9,5
	ULS 6b	0,24	0,004	0,013	5,0	6,6

Controle iteratieproces

Geleider Iteratie bl1 bl2	0
bl2	Ŭ
	_
4 = 0 + 4 5 : 0 : /	0
150ct1f : OK	
150ct1f : OK	
150ct1f : OK	
150ct2f : OK	
150ct2f : OK	
150ct2f ; OK	

18-6-2021 10 van 13

Project: Masttype: Mast:

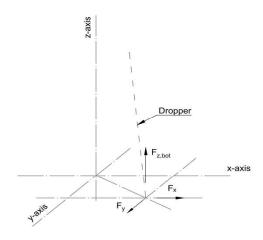

Belastingen in lokale richting geleider

De belastingen op het onderste bevestigingspunt voor het dimensioneren van de ondersteuningsconstructie

De richting van de laterale kracht wordt bepaald door de windrichting en kan in alle richtingen aangrijpen.

De resulterende horizontale kracht kan worden afgeleid uit de vectoriële optelling van de kracht in x-richting en laterale kracht.

Combinatie1	Fx,lok,bot [kN]	Flat,bot [kN]	Fz_bot [kN]
SLS 1a	2,1	0,8	- 7,7
SLS 3	1,8	0,3	-6,3
SLS 4	1,7	0,2	-5,8
SLS 6	1,3	0,2	-4,1
SLS 7	1,0	0,0	-3,0
ULS 1a	2,3	0,9	- 8,3
ULS 3	1,9	0,3	-6,6
ULS 4	1,7	0,2	-5,9
ULS 6b	1,4	0,2	-4,5
SLS 1a	1,6	0,8	-7,4
SLS 3	1,4	0,3	-6,1
SLS 4	1,3	0,2	-5,8
SLS 6	1,0	0,2	-3,8
SLS 7	0,8	0,0	-3,0
ULS 1a	1,7	0,9	-8,1
ULS 3	1,5	0,3	-6,4
ULS 4	1,3	0,2	-5,8
ULS 6b	1,1	0,2	-4,3
SLS 1a	1,0	0,9	-8,9
SLS 3	0,9	0,4	- 7,5
SLS 4	0,9	0,2	-7,7
SLS 6	0,6	0,2	-4,6
SLS 7	0,4	0,0	-3,0
ULS 1a	1,1	1,1	-9,8
ULS 3	0,9	0,4	- 7,9
ULS 4	0,9	0,2	-7,7
ULS 6b	0,6	0,2	-4,9


18-6-2021 11 van 13

Project: Masttype: Mast:

Maximale waarden in globale assenstelsel

De maximale waarden van de verticale kracht en de resulterende horizontale kracht per belastingcombinatie Zowel voor het bovenste als het onderste bevestigingspunt

Geleider	Combinatie	Fx_top [kN]	Fy_top [kN	Fz_top [kN]	Fx_bot [kN]	Fy_bot [kN]	Fz_bot [kN]
150ct1f1	SLS 1a	2,5	0,4	10,8	-2,6	0,0	- 7,7
	SLS 3	1,5	0,0	9,7	-2,0	0,0	-6,3
	SLS 4	1,3	0,0	9,0	-1,6	0,0	-5,8
	SLS 6	0,9	0,0	7,2	-1,2	0,0	-4,1
	SLS 7	0,7	0,0	6,2	-1,0	0,0	-3,0
	ULS 1a	2,9	0,5	11,7	-2,8	0,0	-8,3
	ULS 3	1,6	0,0	10,2	-2,1	0,0	-6,6
	ULS 4	1,3	0,0	9,2	-1,6	0,0	- 5,9
	ULS 6b	1,0	0,0	7,8	-1,5	0,0	-4,5
	ULS 7	0,7	0,0	6,5	-1,0	0,0	-2,8
150ct1f2	SLS 1a	2,5	1,2	10,6	-2,4	0,0	-7,4
	SLS 3	1,3	0,4	9,5	-1,8	0,0	-6,1
	SLS 4	1,2	0,2	9,0	-1,5	0,0	- 5,8
	SLS 6	0,8	0,2	7,0	-1,1	0,0	-3,8
	SLS 7	0,7	0,0	6,2	-1,0	0,0	-3,0
	ULS 1a	2,8	1,4	11,4	-2,6	0,0	-8,1
	ULS 3	1,5	0,5	9,9	-1,9	0,0	-6,4
	ULS 4	1,2	0,2	9,2	-1,5	0,0	-5,8
	ULS 6b	0,9	0,2	7,7	-1,4	0,0	-4,3
	ULS 7	0,7	0,0	6,5	-1,0	0,0	- 2,8
150ct1f3	SLS 1a	2,0	0,8	12,2	-1,4	0,0	-8,9
	SLS 3	1,0	0,0	11,0	-0,9	0,0	-7,5
	SLS 4	0,5	0,0	11,0	-0,6	0,0	-7,7
	SLS 6	0,3	0,0	7,9	-0,4	0,0	-4,6
	SLS 7	0,2	0,0	6,3	-0,3	0,0	-3,0
	ULS 1a	2,4	1,0	13,2	-1,6	0,0	-9,8
	ULS 3	1,2	0,1	11,6	-1,0	0,0	-7,9
	ULS 4	0,5	0,0	11,2	-0,6	0,0	-7,7
	ULS 6b	0,7	0,0	8,3	-0,6	0,0	-4,9
	ULS 7	0,2	0,0	6,6	-0,3	0,0	-2,8
150ct2f1	SLS 1a	2,5	1,5	10,5	-2,5	-0,1	- 7,3
	SLS 3	1,4	0,6	9,4	-1,9	-0,1	-6,0
	SLS 4	1,2	0,4	8,8	-1,5	0,0	-5,7
	SLS 6	0,8	0,4	6,8	-1,2	0,0	-3,6
	SLS 7	0,7	0,1	6,2	-1,0	-0,1	-3,0
	ULS 1a	2,9	1,7	11,3	-2,8	-0,2	-8,0

Project: Masttype:

ULS 7

Masttype: Mast:	11						
150ct2f1	ULS 3	1,5	0,7	9,8	-2,0	-0,1	- 6,3
	ULS 4	1,2	0,4	9,0	-1,6	0,0	-5,7
	ULS 6b	1,0	0,4	7,6	-1,4	-0,1	-4,2
	ULS 7	0,7	0,1	6,5	-1,0	-0,1	-2,8
150ct2f2	SLS 1a	2,5	2,1	10,1	-2,3	-0,9	-6,9
	SLS 3	1,3	1,2	8,9	-1,7	-0,8	-5,5
	SLS 4	1,1	1,0	8,4	-1,4	-0,7	-5,3
	SLS 6	0,7	0,7	6,3	-1,0	-0,5	-3,1
	SLS 7	0,7	0,5	6,2	-1,0	-0,6	-3,0
	ULS 1a	2,8	2,5	10,9	- 2,5	-1,0	- 7,5
	ULS 3	1,5	1,3	9,3	-1,8	-0,8	- 5,8
	ULS 4	1,1	1,0	8,5	-1,4	- 0,7	- 5,2
	ULS 6b	0,9	0,8	7,2	-1,3	-0,6	- 3,9
	ULS 7	0,7	0,4	6,5	-1,0	-0,7	-2,8
	0.0.4						
150ct2f3		2,0	2,1	11,7	-1,4	-0,8	-8,4
	SLS 3	1,0	1,1	10,4	-0,9	-0,7	-6,9
	SLS 4	0,5	0,9	10,6	-0,6	-0,5	-7,3
	SLS 6	0,3	0,6	7,2	-0,4	-0,2	-3,9
	SLS 7	0,2	0,3	6,3	-0,3	-0,4	-3,0
	ULS 1a	2,4	2,5	12,7	-1,6	-0,8	-9,3
	ULS 3	1,2	1,3	11,0	-1,0	- 0,7	- 7,2
	ULS 4	0,5	1,0	10,8	-0,6	-0,5	- 7,3
	ULS 6b	0,7	0,7	7,8	-0,6	-0,5	-4,4

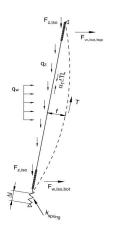
0,2 0,3 6,6 -0,3 -0,4 -2,8

18-6-2021 13 van 13

Project: Masttype: Mast:

Auteur: Versie: TBR Geleiderbelastingen v1.9

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar


ULS (b	ezwijksterkte)	NEN-EN5	0341-2-15:20	019				
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γo		γa
		°C	$G_{k,mast}$	G _{k,geleider}	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,15	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,40	0,00	0,0
ULS 3	Wind+ijs	-5°	1,15	1,15	0,00	0,42	1,30	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,00	0,42	1,30	0,0
ULS 4	Koude+wind	-20°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,00	0,28	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,15	1,15	1,30	0,28	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 7	Permanent	10°	1,30	1,30	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (E	SPLS (Bezwijksterkte, enkel voor hoekmasten: afwezigheid g		ders)	γ _G	γQ			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,15	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	9 Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,15	1,15	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,15	1,15	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,15	1,15	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,0	0,24	0,0	0,0
SLS (c	ontrole van de vervormingen, vermoeiin	g, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	1,00	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,30	1,00	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen	6
Aantal belastingcombinaties ULS	57
Aantal belastingcombinaties SPLS	210
Aantal belastingcombinaties SLS	15
Aantal knooplasten	4512

Schematisation

De trekkracht in de afloper wordt bepaald met de toestandsvergelijking voor een gekromde kabel.

In de rekstijfheid van de kabel is de invloed van de veer verdisconteerd.

18-6-2021 1 van 5

Project: Masttype: Mast:

- Tabellen met geleiderbelastingen

 In de onderstaande drie tabellen is weergegeven:
 De trekkracht per belastingcombinatie en de bijbehorende zeeg en veerverlenging
 De geleiderbelastingen in het lokale assenstelsel voor het onderste bevestigingspunt
- De maximale waarden voor de reacties onder en boven in het globale assenstelsel

Trekkracht, zeeg en veerverlenging

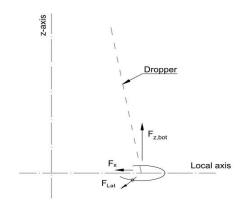
			Veer- verlengin	rotare veer- verlengin	rek- kracht initieel	Trek- kracht
Geleider	Combinatie	Zeeg [m]	g [m	g [m]	[kN]	[kN]
150ct1f1	SLS 1a	0,46	0,010	0,019	4,6	9,5
	SLS 3	0,34	0,007	0,016	4,7	8,2
	SLS 4	0,20	0,006	0,015	4,6	7,5
	SLS 6	0,26	0,002	0,011	4,6	5,7
	SLS 7	0,21	0,000	0,009	4,6	4,6
	ULS 1a	0,52	0,013	0,022	5,6	11,1
	ULS 3	0,38	0,009	0,018	5,7	9,1
	ULS 4	0,22	0,006	0,016	5,6	7,8
	ULS 6b	0,30	0,004	0,013	5,6	6,5
150ct1f2	SLS 1a	0,43	0,009	0,019	4,6	9,3
	SLS 3	0,30	0,007	0,016	4,7	7,9
	SLS 4	0,14	0,006	0,015	4,6	7,4
	SLS 6	0,20	0,002	0,011	4,6	5,4
	SLS 7	0,17	0,000	0,009	4,6	4,6
	ULS 1a	0,49	0,013	0,022	5,6	10,9
	ULS 3	0,34	0,008	0,018	5,7	8,8
	ULS 4	0,17	0,006	0,015	5,6	7,7
	ULS 6b	0,26	0,003	0,013	5,6	6,3
150ct1f3	SLS 1a	0,51	0,012	0,022	4,6	10,9
	SLS 3	0,34	0,010	0,019	4,8	9,4
	SLS 4	0,15	0,009	0,019	4,6	9,4
	SLS 6	0,22	0,003	0,013	4,6	6,3
	SLS 7	0,10	0,000	0,009	4,6	4,6
	ULS 1a	0,58	0,017	0,026	5,6	12,9
	ULS 3	0,40	0,012	0,021	5,9	10,6
	ULS 4	0,19	0,010	0,019	5,6	9,7
	ULS 6b	0,27	0,005	0,014	5,6	7,0

Controle iteratieproces

Geleider	Iteratie
bl1	0
bl2	0
150ct1f:	OK
150ct1f:	OK
150ct1f:	OK
150ct2f:	OK
150ct2f	OK
150ct2f:	ОК

18-6-2021 2 van 5

Project: Masttype: Mast:

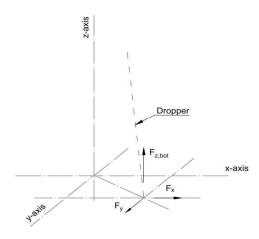

Belastingen in lokale richting geleider

De belastingen op het onderste bevestigingspunt voor het dimensioneren van de ondersteuningsconstructie

De richting van de laterale kracht wordt bepaald door de windrichting en kan in alle richtingen aangrijpen.

De resulterende horizontale kracht kan worden afgeleid uit de vectoriële optelling van de kracht in x-richting en laterale kracht.

	Fx,lok,bot	Flat,bot	Fz_bot
Combinatie1	[kN]	[kN]	[kN]
SLS 1a	2,2	0,8	- 7,9
SLS 3	1,8	0,3	- 6,5
SLS 4	1,7	0,2	- 5,9
SLS 6	1,3	0,2	-4,1
SLS 7	1,0	0,0	-3,0
ULS 1a	2,5	1,1	- 9,3
ULS 3	2,1	0,4	-7,1
ULS 4	1,8	0,2	- 5,9
ULS 6b	1,5	0,2	- 4,6
SLS 1a	1,7	0,8	-7,7
SLS 3	1,4	0,3	- 6,2
SLS 4	1,3	0,2	- 5,9
SLS 6	1,0	0,2	-3,8
SLS 7	0,8	0,0	-3,0
ULS 1a	1,9	1,1	- 9,1
ULS 3	1,6	0,4	- 6,9
ULS 4	1,4	0,2	-5,8
ULS 6b	1,1	0,2	-4,4
SLS 1a	1,0	1,0	- 9,2
SLS 3	0,9	0,4	- 7,6
SLS 4	0,9	0,2	-7,7
SLS 6	0,6	0,2	-4,7
SLS 7	0,4	0,0	-3,0
ULS 1a	1,2	1,3	-11,1
ULS 3	1,0	0,5	- 8,5
ULS 4	0,9	0,3	- 7,8
ULS 6b	0,7	0,3	-5,1


18-6-2021 3 van 5

Project: Masttype: Mast:

Maximale waarden in globale assenstelsel

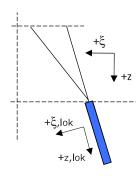
De maximale waarden van de verticale kracht en de resulterende horizontale kracht per belastingcombinatie Zowel voor het bovenste als het onderste bevestigingspunt

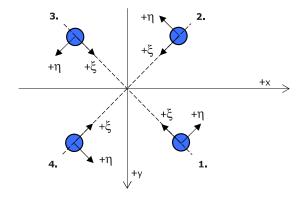
eleider	Combinatie	Fx_top [kN]	Fy_top [kN	Fz_top [kN]	Fx_bot [kN]	Fy_bot [kN]	Fz_bot [kN]
150ct1f1	SLS 1a	2,6	0,4	11,1	-2,7	0,0	- 7,9
	SLS 3	1,5	0,0	9,8	-2,0	0,0	-6,5
	SLS 4	1,3	0,0	9,0	-1,6	0,0	-5,9
	SLS 6	0,9	0,0	7,3	-1,2	0,0	-4,1
	SLS 7	0,7	0,0	6,2	-1,0	0,0	-3,0
	ULS 1a	3,5	0,8	13,0	-3,2	0,0	-9,3
	ULS 3	1,8	0,0	11,0	-2,3	0,0	-7,1
	ULS 4	1,3	0,0	9,6	-1,6	0,0	-5,9
	ULS 6b	1,1	0,0	8,3	-1,6	0,0	-4,6
	ULS 7	0,7	0,0	6,8	-1,1	0,0	- 2,6
150ct1f2	SLS 1a	2,6	1,3	10,9	-2,5	0,0	-7,7
	SLS 3	1,4	0,4	9,6	-1,9	0,0	-6,2
	SLS 4	1,2	0,2	9,0	-1,5	0,0	-5,9
	SLS 6	0,8	0,2	7,0	-1,1	0,0	-3,8
	SLS 7	0,7	0,0	6,2	-1,0	0,0	-3,0
	ULS 1a	3,5	1,8	12,7	-3,0	0,0	-9,1
	ULS 3	1,7	0,6	10,8	-2,1	0,0	-6,9
	ULS 4	1,2	0,3	9,5	-1,5	0,0	-5,8
	ULS 6b	1,0	0,3	8,1	-1,5	0,0	-4,4
	ULS 7	0,6	0,0	6,7	-1,0	0,0	-2,6
150ct1f3	SLS 1a	2,2	0,9	12,5	-1,5	0,0	- 9,2
	SLS 3	1,1	0,0	11,2	-1,0	0,0	-7,6
	SLS 4	0,5	0,0	11,0	-0,6	0,0	-7,7
	SLS 6	0,3	0,0	8,0	-0,4	0,0	-4,7
	SLS 7	0,2	0,0	6,3	-0,3	0,0	-3,0
	ULS 1a	2,9	1,4	14,8	-2,0	0,0	-11,1
	ULS 3	1,4	0,2	12,7	-1,2	0,0	-8,5
	ULS 4	0,5	0,0	11,6	-0,6	0,0	-7,8
	ULS 6b	0,8	0,0	8,9	-0,7	0,0	-5,1
	ULS 7	0,2	0,0	6,8	-0,3	0,0	-2,5
150ct2f1	SLS 1a	2,7	1,6	10,7	- 2,6	- 0,2	- 7,6
	SLS 3	1,4	0,6	9,5	-2,0	-0,1	-6,1
	SLS 4	1,2	0,4	8,9	-1,5	0,0	-5,7
	SLS 6	0,9	0,4	6,8	-1,2	0,0	-3,7
	SLS 7	0,7	0,1	6,2	-1,0	-0,1	-3,0

Project: Masttype: Mast:

Mast:	11						
150ct2f1	ULS 3	1,7	0,9	10,7	-2,3	-0,1	-6,7
	ULS 4	1,3	0,5	9,3	-1,6	0,0	-5,6
	ULS 6b	1,0	0,5	8,0	-1, 5	-0,1	-4,4
	ULS 7	0,7	0,1	6,7	-1,1	-0,1	- 2,6
150ct2f2	SLS 1a	2,6	2,3	10,3	-2,4	-1,0	-7,1
	SLS 3	1,4	1,2	9,0	-1,8	- 0,8	-5,7
	SLS 4	1,1	1,0	8,4	-1,4	- 0,7	-5,3
	SLS 6	0,7	0,8	6,3	-1,0	- 0,5	-3,1
	SLS 7	0,7	0,5	6,2	-1,0	- 0,6	- 3,0
	ULS 1a	3,4	3,0	12,2	- 2,9	-1,2	-8,5
	ULS 3	1,7	1,5	10,1	-2,0	- 0,9	-6,2
	ULS 4	1,1	1,1	8,8	-1,4	- 0,7	-5,1
	ULS 6b	1,0	0,9	7,6	-1,4	- 0,6	-4,0
	_ULS 7	0,6	0,4	6,8	-1,0	-0,7	- 2,6
	0.04						
150ct2f3		2,2	2,3	12,0	-1,5	-0,8	-8,7
	SLS 3	1,1	1,2	10,6	-0,9	-0,7	-7,0
	SLS 4	0,5	0,9	10,6	-0,6	- 0,5	-7,4
	SLS 6	0,3	0,7	7,2	-0,4	-0,2	-3,9
	SLS 7	0,2	0,3	6,3	- 0,3	-0,4	-3,0
	ULS 1a	2,9	3,0	14,3	- 1,9	- 0,9	-10,6
	ULS 3	1,4	1,5	12,0	- 1,2	- 0,8	-7,8
	ULS 4	0,5	1,0	11,1	-0,6	-0,4	- 7,3
	ULS 6b	0,8	0,8	8,3	- 0,7	- 0,5	- 4,5
	_ULS 7	0,2	0,3	6,8	-0,3	-0,4	- 2,5

18-6-2021 5 van 5




Project: ZW-Oost RSB-RSD150 Masttype: Hoekmast 150°

Mast: 11

Auteur: MKh
Oplegreacties per randstijl Versie: 1.4

Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

Assenstelsels

Maximale	drukbelasting
riaxiiiaje	urukbelastilig

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 1a_45 Ba All Cts	-28	-26	-185	2	-38	7	-189
2	SPLS 1a_0 Ba All Cts	-20	17	-131	-2	-26	4	-133
3	ULS 3_135	48	58	-454	-7	- 75	-1	-461
4	ULS 3_90	105	-108	-858	2	-151	8	-871

Maximale trekbelasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	26	45	337	13	51	5	341
2	ULS 3_0,9_90	92	-90	745	2	129	- 5	756
3	SPLS 1a_0,9_0,9_45 Ba All Cts	-17	-16	115	-1	23	- 4	117
4	SPLS 1a 0,9 0,9 0 Ba All Cts	- 9	7	61	1	11	-1	62

Maximale torsiebelasting (positief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_90 Ba Ct2 Ba Ct1	- 28	64	186	65	25	6	187
2	SPLS 6a_90 Ba Ct2 Ba Ct1	81	-1	331	57	58	- 3	336
3	SPLS 6a_90 Ba Ct2 Ba Ct1	72	-12	-270	59	-43	- 2	- 273
4	SPLS 6a_90 Ba Ct2 Ba Ct1	14	-104	-458	64	-83	7	-466

Maximale torsiebelasting (negatief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_90 Ba Ct1 Ba Ct2	44	- 24	109	-48	15	4	110
2	SPLS 6a_90 Ba Ct1 Ba Ct2	9	-89	410	-56	69	-1	416
3	SPLS 6a_90 Ba Ct1 Ba Ct2	-18	75	-236	-66	-40	1	-239
4	SPLS 6a_90 Ba Ct1 Ba Ct2	104	-18	-492	-61	-86	4	-500

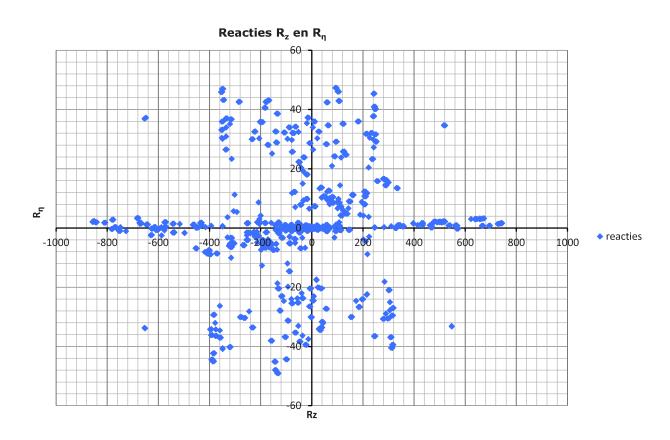
Combinatie Ftrek+Fh

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_90 Ba Ct2 Ba Ct1	- 28	64	186	65	25	6	187
2	ULS 3_0,9_90	92	- 90	745	2	129	- 5	756
3	SPLS 6a_90 Ba Ct1 Ba Ct2	-18	75	-236	-66	-40	1	-239
4	SPLS 6a 90 Ba Ct2 Ba Ct1	14	-104	-458	64	-83	7	-466

Permanente belasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SLS 7	9	17	125	6	18	3	126
2	SLS 7	30	-29	248	0	42	0	251
3	SLS 7	26	29	-222	- 2	-38	1	- 226
4	SLS 7	43	-44	-346	1	- 62	4	-351

Omhullenden ongeacht stijl

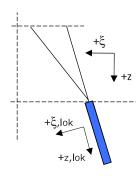

Belasting	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Max. druk	ULS 3_90	105	-108	-858	2	-151	8	- 871
Max. trek	ULS 3_0,9_90	92	-90	745	2	129	- 5	756
Max. pos. torsie	SPLS 6a_90 Ba Ct2 Ba Ct1	- 28	64	186	65	25	6	187
Max. neg. torsie	SPLS 6a_90 Ba Ct1 Ba Ct2	-18	75	-236	-66	-40	1	-239
Comb. trek+torsie	ULS 3_0,9_90	92	-90	745	2	129	- 5	756

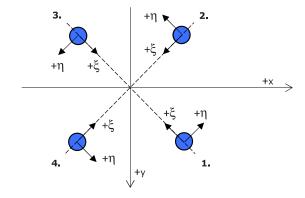
Maximale drukbelasting SLS

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 1a_0,9_0,9_45	- 26	- 9	-77	12	- 25	12	-80
2	SLS 1a_0	10	-11	107	-1	15	3	108
3	ULS 3_135	48	58	-454	- 7	- 75	-1	-461
4	ULS 3_135	100	-103	-812	2	-143	8	-825

Maximale trekbelasting SLS

Stijl	Combinatie	R _x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	26	45	337	13	51	5	341
2	ULS 3_0,9_135	86	- 85	697	1	121	- 5	708
3	ULS 1a_0,9_0,9_45	-8	2	-26	- 7	4	-8	- 25
4	SLS 1a_0	25	-27	-215	2	-37	1	-218




Project: ZW-Oost RSB-RSD150 Masttype: Hoekmast 150°

Mast: 11

Auteur: MKh
Oplegreacties per randstijl Versie: 1.4

Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

Assenstelsels

Maximale drukbelasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 1a_45 Ba All Cts	-29	-26	-189	2	-39	7	-192
2	SPLS 1a_0 Ba All Cts	-20	17	-134	-2	- 27	4	-137
3	ULS 3_135	57	68	-539	-8	-88	- 2	- 546
4	ULS 3_90	125	-129	-1023	3	-180	9	-1039

Maximale trekbelasting

Stijl	Combinatie	R_x	R_y	R_z	R _n	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	33	56	412	16	62	6	417
2	ULS 3_0,9_90	112	-110	904	2	157	-6	917
3	SPLS 1a_0,9_0,9_45 Ba All Cts	-17	-16	115	-1	23	-4	117
4	SPLS 1a 0.9 0.9 0 Ba All Cts	- 9	7	61	1	11	-1	62

Maximale torsiebelasting (positief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_90 Ba Ct2 Ba Ct1	-29	66	190	67	26	6	191
2	SPLS 6a_90 Ba Ct2 Ba Ct1	84	0	339	59	59	- 3	345
3	SPLS 6a_90 Ba Ct2 Ba Ct1	74	-12	-279	61	-44	- 2	-283
4	SPLS 6a_90 Ba Ct2 Ba Ct1	15	-108	-475	66	-86	7	-482

Maximale torsiebelasting (negatief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_90 Ba Ct1 Ba Ct2	46	- 25	113	- 50	15	4	114
2	SPLS 6a_90 Ba Ct1 Ba Ct2	9	-91	418	- 58	70	-1	424
3	SPLS 6a_90 Ba Ct1 Ba Ct2	-18	78	-248	-68	-42	1	-251
4	SPLS 6a_90 Ba Ct1 Ba Ct2	107	-18	-506	-63	-89	4	-514

Combinatie Ftrek+Fh

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	33	56	412	16	62	6	417
2	ULS 3_0,9_90	112	-110	904	2	157	- 6	917
3	SPLS 6a_90 Ba Ct1 Ba Ct2	-18	78	-248	-68	- 42	1	-251
4	SPLS 6a 90 Ba Ct2 Ba Ct1	15	-108	-475	66	-86	7	-482

Permanente belasting

Stijl	Combinatie	R _x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SLS 7	9	17	127	6	19	3	128
2	SLS 7	30	-30	250	0	42	0	254
3	SLS 7	26	29	-223	- 2	-38	1	-226
4	SLS 7	43	-44	-347	1	-62	4	-352

Omhullenden ongeacht stijl


Belasting	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Max. druk	ULS 3_90	125	-129	-1023	3	-180	9	-1039
Max. trek	ULS 3_0,9_90	112	-110	904	2	157	- 6	917
Max. pos. torsie	SPLS 6a_90 Ba Ct2 Ba Ct1	- 29	66	190	67	26	6	191
Max. neg. torsie	SPLS 6a_90 Ba Ct1 Ba Ct2	-18	78	- 248	-68	-42	1	-251
Comb. trek+torsie	ULS 3_0,9_90	112	-110	904	2	157	-6	917

Maximale drukbelasting SLS

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 1a_0,9_0,9_45	- 33	-14	-110	14	-33	15	-114
2	SLS 1a_0	9	-10	100	-1	14	3	101
3	ULS 3_135	57	68	-539	-8	-88	- 2	-546
4	ULS 3 135	119	-122	-970	2	-171	9	-985

Maximale trekbelasting SLS

Stijl	Combinatie	R _x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	33	56	412	16	62	6	417
2	ULS 3_0,9_135	105	-103	847	1	147	-6	860
3	ULS 1a_0,9_0,9_45	-14	- 2	4	-8	12	-11	6
4	SLS 1a_0	24	- 26	-207	2	-36	1	-210

Inhoud

- Uitgangspunten
- Mastconstructie
- Tussenresultaten
- Belastingen initiëel
- Belastingen na aanpassing
p. 15

Gegevens

Norm NEN-EN50341-2-15:2019

Initieel

Gevolgklasse CC2 Betrouwbaarheidsniveau Afkeur Referentieperiode 30 jaar

Na aanpassing

Gevolgklasse CC2
Betrouwbaarheidsniveau Verbouw
Referentieperiode 50 jaar

Windgebied III
Windsnelheid 24,5 m/s
Terreincategorie II
Reductie factor Cdir 1,00
IJsgebied B

MasttypeHoekmastMasthoogte29 mMax. veldlengte110 mLijnhoek143°Trekparameter1000 m

Wind span 56 m
EDS Weight span 291 m
Min. Weight span 72 m
Max. Weight span 6017 m

0.0	2021-07-28			
ISSUE	DATE	REVISION	CHK'D	APP'D

Client:

Title:

Berekening masttype Portaal

JOB No.	-	DATE	-
DRAWN	-	CHKD	-
DESIGN	-	APPD	ı

Document name:

ZWO380 D2.2 OSP Mast 19a_Portaal_19a_Report.pdf

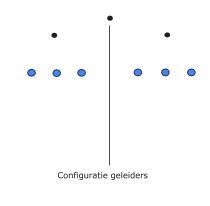
Project number:

0.0

Project client number:

Project: ZWO380 D2.2 OSP Mast 19a

Project: ZWO38 Tower: Portaal Number: 19a


Auteur: TBR
Geleiderbelastingen Versie: v11.9

Algemeen

Renaming Portaal
Masttype Hoekmast
Aantal circuits 2
Configuratie 2-circuit-vlak
Aantal bliksemgeleiders 3

Uitgangspunten

Norm NEN-EN50341-2-15:2019
Gevolgklasse initieel CC2
Betrouwbaarheidsniveau initieel Afkeur CC2-0
Referentieperiode initieel 30 jaar
Gevolgklasse na aanpassing CC2
Betrouwbaarheidsniveau na aanpassing Verbouw
Referentieperiode na aanpassing 50 jaar
Windgebied III
Windsnelheid (m/s) 24,5 m/s
Terreincategorie II
Reductiefactor c_{dir} 1,00
IJsgebied bliksemgeleider B

Geleiders Back

Omschrijving	Spanning	Geleider Back	Bundel Ba	IJsgebied	Toeslag gewicht	Toeslag diameter	Intrekwaarden P _{back}
Circuit 1	150 kV	ACSR Bobolink	2	В	2 %	2 %	1000
Circuit 2	150 kV	ACSR Bobolink	2	В	2 %	2 %	1000
Bliksemdraad 1		ACSR 30/52 PETREL	1	Α	2 %	2 %	1000
Bliksemdraad 2		ACSR 30/52 PETREL	1	Α	2 %	2 %	1000
Bliksemdraad 3		OPGW 96 Fibral	1	Α	2 %	2 %	1000

Geleiders Ahead							
Omschrijving	Spanning	Geleider Ahead	Bundel Ah	IJsgebied	Toeslag gewicht	Toeslag diameter	Intrekwaarden P _{ahead}
Circuit 1	150 kV	ACSR Bobolink	2	В	2 %	2 %	25
Circuit 2	150 kV	ACSR Bobolink	2	В	2 %	2 %	25
Bliksemdraad 1		Niet aanwezig	1	Α	2 %	2 %	0
Bliksemdraad 2		Niet aanwezig	1	Α	2 %	2 %	0
Bliksemdraad 3		Niet aanwezig	1	Α	2 %	2 %	0

Isolatoren	(1)			
Omschrijving	Ophanging	Gewicht	Lengte	Windopp.
		[kN]	[m]	[m ²]
Circuit 1	Afspanketting	2,50	4,50	1,00
Circuit 2	Afspanketting	2,50	4,50	1,00
Bliksemdraad 1	Afspanketting	0,10	0,20	0,10
Bliksemdraad 2	Afspanketting	0,10	0,20	0,10
Bliksemdraad 3	Afspanketting	0,10	0,20	0,10

1. Eigenschappen gelden voor geheel van de isolatorset

Ophanghoogte en positie in mast

	•				Positie in mast	
Circuits	Aandui	ding Nummer	Ophanghoogte	Aangrijppunt	Horizontale afstand	
Circuit 1	10	150ct1f1	16,0 m	16,0 m	11,8 m	
Circuit 1	11	150ct1f2	16,0 m	16,0 m	8,3 m	
Circuit 1	12	150ct1f3	16,0 m	16,0 m	4,8 m	
Circuit 2	20	150ct2f1	16,0 m	16,0 m	-4,8 m	
Circuit 2	21	150ct2f2	16,0 m	16,0 m	-8,3 m	
Circuit 2	22	150ct2f3	16,0 m	16,0 m	-11,8 m	
Bliksemdraad 1	1	bl1	18,2 m	18,2 m	12,1 m	
Bliksemdraad 2	3	bl2	18,2 m	18,2 m	-12,1 m	
Bliksemdraad 3	5	bl3	29,5 m	29,5 m	0,0 m	

28-7-2021 2 van 21

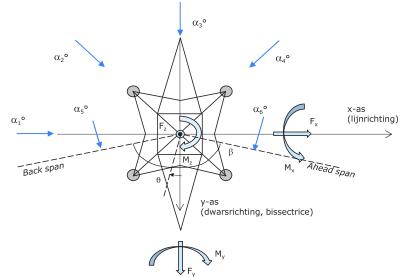
ZWO380 D2.2 OSP Mast 19a Portaal 19a

Project: Tower: Number:

Hoogteaanpassing naastgelegen masten (aanpassing wind- en weight span)

	Back	Ahead	
Verhoging voor windbelasting	0,0 m	0,0 m	(positief: omhoog)
Verlaging voor verticale belasting	0,0 m	0,0 m	(negatief: omlaag, grotere weight span)
Verlaging: Niet in 0,9EG-combinaties			

Hoogteafwijking mastheeld naastgelegen masten en richtingsverandering t.o.v. Lijnrichting


noogtearwijking mastbeeld naastgelegen masten en richtingsverandering t.o.v. Lijnrichting							
			Hoogtev	erschil	Richtingsve	randering	
Circuits	Aandui	ding Nummer	Δh_back _	\h_ahead	∆y_back	∆y_ahead	
Circuit 1	10	150ct1f1	-4,3	-15,7 m	0,0	-2,2 m	
Circuit 1	11	150ct1f2	-4,3	-15,7 m	0,0	-2,2 m	
Circuit 1	12	150ct1f3	-4,3	-15,7 m	0,0	-2,2 m	
Circuit 2	20	150ct2f1	-4,3	-15,7 m	0,0	2,2 m	
Circuit 2	21	150ct2f2	-4,3	-15,7 m	0,0	2,2 m	
Circuit 2	22	150ct2f3	-4,3	-15,7 m	0,0	2,2 m	
Bliksemdraad 1	1	bl1	-3,5	0,0 m	0,0	0,0 m	
Bliksemdraad 2	3	bl2	-3,5	0,0 m	0,0	0,0 m	
Bliksemdraad 3	5	bl3	-14,8	0,0 m	0,0	0,0 m	

Lijn- en mastgegevens

j castgcgctcs		DI-	A II	
		Back	Ahead	
		110,0	2,0 m	
Ruling span $\sqrt{(\Sigma L^3/\Sigma L)}$		110,0	2,0 m	
Lijnhoek	β	143 °		
Rotatie mast t.o.v. bissectrice	θ	18 °		
Vaklengte		110	2 m	
Hoogte onderkant mast t.o.v. ma	aaiveld	0,5 m		
Beschouwde windrichtingen	α_1	0 °		
Windrichtingen volgens:	α_2	45 °		
Geleiderbelastingen	α_3	90 °		
	α_4	135 °		
	α_5	53,5 °		
	α_6	90,5 °		

Windrichtingen gelden t.o.v. hoofdrichting mastconstructie, niet t.o.v. bissectrice.

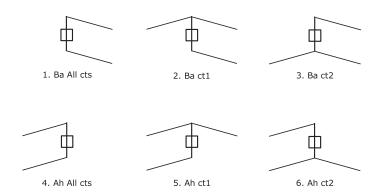
Windrichtingen en positieve richtingen belastingen

Beschouwd aantal windrichtingen	
1a	6
3	6
4	1
6	1
Overig	1

28-7-2021 3 van 21

ZWO380 D2.2 OSP Mast 19a Portaal 19a

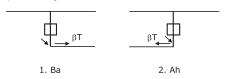
Project: Tower: Number:


Geleiderafval

		SPLS	SPLS - torsie		elzijdige trek	5a - geleiderbreuk	
		Aanw.	Afw.	Aanw.	Afw.	Aanw.	Afw.
Circuit 1	150ct1f1	1	0	1	0	1	0
Circuit 1	150ct1f2	1	0	1	0	1	0
Circuit 1	150ct1f3	1	0	1	0	1	0
Circuit 2	150ct2f1	0	1	1	0	1	0
Circuit 2	150ct2f2	0	1	1	0	1	0
Circuit 2	150ct2f3	0	1	1	0	1	0
Bliksemdraad 1	bl1	1	0	1	0	1	0
Bliksemdraad 2	bl2	0	1	1	0	1	0
Bliksemdraad 3	bl3	0	1	1	0	1	0

Belastingsituaties SPLS

Beschouwde situaties SPLS: 1 t/m 6, alle mogelijke situaties.


Principe belastingssituaties:

Belastingsituaties 5a. Geleiderbreuk

Beschouwde situaties geleiderbreuk 5a: 1 en 2, alle mogelijke situaties.

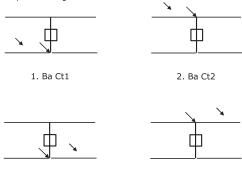
Principe belastingssituaties:

28-7-2021 4 van 21

Project: ZWO380 D2.2 OSP Mast 19a

Tower: Portaal Number: 19a

Belastingsituaties 6. Bouw- en onderhoud


Onder 6a wordt de belasting door aanwezigheid lijnwagen of lijnfiets in combinatie met puntlast op traverse in rekening gebracht. Combinatie 6b bevat geen belastingen in geleider of op traverse. Deze combinatie is toegevoegd om te kunnen combineren met separate controle bordessen etc. De situaties worden in ULS en in iedere SPLS-situatie (in geval van hoekmast) toegepast.

	Fase	Bliksem	
Lijnwagen	0,0 kN	0,0 kN	
Puntlast op traverse	1,0 kN	1,0 kN	

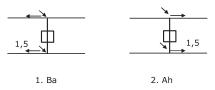
Beschouwde situaties bouw- en onderhoud 6a: 1 en 2, uitgangspunt is symmetrie tussen back / ahead.

Aanwezigheid lijnwagen: Circuit, belasting tegelijk aanwezig in alle geleiders per circuit.

Principe belastingssituaties:

Belastingsituaties 8. Lijndansen als statische belasting

Geleider			
Steunmast fase	0,866 W	1,5 W	
Steunmast bliksem	1,5 EDS	1,5 W	
Hoekmast fase en bliksem	1.5 EDS	1.5 W	


4. Ah Ct2

Beschouwde situaties lijndansen 8: Geen (bestaande constructie)

Belasting tegelijk aanwezig in alle geleiders van het circuit.

Principe belastingssituaties:

3. Ah Ct1

Belastingcombinatie 8. Lijndansen als dynamische belasting

Alleen van toepassing op hoek- en eindmasten

Belasting bestaat uit EDS-trekbelasting in één van de geleiders aan één zijde van de mast Door gebruiker via het belastingsspectrum van tabel 4.11/NL.1 om te zetten naar spanningspectrum

28-7-2021 5 van 21

ZWO380 D2.2 OSP Mast 19a Project:

Portaal Tower: Number: 19a

Mastconstructie

Eigenschappen

Masttype Hoekmast Portaal 0,5 m 29,0 m 180,0 kN Mastbenaming Voetplaat t.o.v. maaiveld Masthoogte t.o.v. voetplaat Gewicht mast

x-ri. 7,00 0,208 y-ri. 7,00 m 0,208 -Breedte en helling mast bij fundatie Pootsprei Helling van de randstijl Factor spatkracht 1,3 -1,3

Berekening windbelasting

Dynamische invloed G_T 1,00 (Masthoogte < 60 m)

(A1C1sin^2(phi)+A2C2cos^2(phi)) (A1C1sin^2(phi)+A2C2cos^2(phi)) Windbelasting overhoeks op mastlichaam evenredig met: Windbelasting overhoeks op traverse evenredig met:

(1+0,2sin^2(2phi)) (1+0,2sin^2(2phi)) 0,4 Vergroting wind overhoeks mastlichaam Vergroting wind overhoeks traverse

Factor wind evenwijdig t.o.v. haaks op traverse

Eigenschappen mastsecties langsrichting (vooraanzicht, yz-vlak)

Omschrijving	h	b_1	b ₂	∆h	Δ_{x}	A_0	A_1	$\chi = A_1/A_0$	C_{t}
	[m]	[m]	[m]	[m]	[m]	[m ²]	[m ²]	[-]	
Broekstuk	4,80	7,00	5,00	4,80	0,208	28,80	5,30	0,18	3,00
Eerste tussenstuk	9,75	5,00	3,89	4,95	0,112	22,00	4,60	0,21	2,89
Tweede tussenstuk	15,50	3,89	2,60	5,75	0,112	18,66	4,60	0,25	2,74
Bovenstuk 1	22,50	2,60	2,00	7,00	0,043	16,10	4,90	0,30	2,52
Bovenstuk 2	27,50	2,00	2,00	5,00		10,00	2,90	0,29	2,57
Topstuk	29,00	2,00		1,50		1,50	0,30	0,20	2,93
Ondertraverse	15,50	10,80		2,50		13,50	6,20	0,46	2,07

Eigenschappen mastsecties dwarsrichting (zijaanzicht, xz-vlak)											
Omschrijving	h	b_1	b_2	∆h	Δ_{x}	A_0	A_1	$\chi = A_1/A_0$	C_{t}		
	[m]	[m]	[m]	[m]	[m]	[m ²]	[m ²]	[-]			
Broekstuk	4,80	7,00	5,00	4,80	0,208	28,80	5,30	0,18	3,00		
Eerste tussenstuk	9,75	5,00	3,89	4,95	0,112	22,00	4,60	0,21	2,89		
Tweede tussenstuk	15,50	3,89	2,60	5,75	0,112	18,66	4,60	0,25	2,74		
Bovenstuk 1	22,50	2,60	2,00	7,00	0,043	16,10	4,90	0,30	2,52		
Bovenstuk 2	27,50	2,00	2,00	5,00		10,00	2,90	0,29	2,57		
Topstuk	29,00	2,00		1,50		1,50	0,30	0,20	2,93		
Ondertraverse	15,50	10,80		2,50		13,50	6,20	0,46	2,07		

NB: oppervlakte traverse dwarsrichting wordt in berekening gereduceerd.

28-7-2021 6 van 21

ZWO380 D2.2 OSP Mast 19a Portaal Project:

Tower: Number: 19a

Windoppervlak feeders telecominstallaties

Onderdeel Broekstuk A (m²/m)Factor Δh

Eerste tussenstuk Tweede tussenstuk Bovenstuk 1 Bovenstuk 2

Invoer antennes Omschrijving Antenne top h (m) $C_f(m)$ A (m²)

Antenne o.t.

Belastingen mastsectie langsrichting (x-richting) per windrichting

Omschrijving	p_w	F_{x1}	F_{x2}	F_{x3}	F_{x4}	h_{ef}	M_{y1}	M_{y2}	M_{y3}	M_{y4}
	[kN/m ²]	[kN]	[kN]	[kN]	[kN]	[m]	[kNm]	[kNm]	[kNm]	[kNm]
Broekstuk	0,70	11,2	9,5	0,0	-9,5	2,4	26,8	22,7	0,0	-22,7
Eerste tussenstuk	0,70	9,3	7,9	0,0	-7,9	7,3	67,8	57,6	0,0	-57,6
Tweede tussenstuk	0,76	9,6	8,1	0,0	-8,1	12,6	120,6	102,3	0,0	-102,3
Bovenstuk 1	0,87	10,8	9,1	0,0	-9,1	19,0	204,3	173,3	0,0	-173,3
Bovenstuk 2	0,94	7,0	5,9	0,0	-5,9	25,0	174,8	148,3	0,0	-148,3
Topstuk	0,97	0,9	0,7	0,0	-0,7	28,3	24,1	20,5	0,0	-20,5
Ondertraverse	0,82	21,1	12,6	0,0	-12,6	16,3	345,2	205,1	0,0	-205,1

729,8 Totaal 69,8 53,8 0,0 -53,8 963,7 0,0 -729,8

Belastingen mastsectie dwarsrichting (y-richting) per windrichting

Omschrijving	p_{w}	F _{y1}	F _{y2}	F _{y3}	F_{x4}	h_{ef}	$M_{\times 1}$	M _{x2}	M_{x3}	M_{x4}
	[kN/m ²]	[kN]	[kN]	[kN]	[kN]	[m]	[kNm]	[kNm]	[kNm]	[kNm]
Broekstuk	0,70	0,0	9,5	11,2	9,5	2,4	0,0	22,7	26,8	22,7
Eerste tussenstuk	0,70	0,0	7,9	9,3	7,9	7,3	0,0	57,6	67,8	57,6
Tweede tussenstuk	0,76	0,0	8,1	9,6	8,1	12,6	0,0	102,3	120,6	102,3
Bovenstuk 1	0,87	0,0	9,1	10,8	9,1	19,0	0,0	173,3	204,3	173,3
Bovenstuk 2	0,94	0,0	5,9	7,0	5,9	25,0	0,0	148,3	174,8	148,3
Topstuk	0,97	0,0	0,7	0,9	0,7	28,3	0,0	20,5	24,1	20,5
Ondertraverse	0,82	0,0	12,6	8,5	12,6	16,3	0,0	205,1	138,1	205,1

0,0 53,8 57,1 53,8 729,8

Resulterende belastingen vanuit mastconstructie incl. antenne zonder geleiders niveau fundatie (kar. waarde)

Belasting / windrichting	F _x	F _y	F _z	M _x	M_y	M _z	
	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	
Permanente belasting	0	0	180	0	0	0	
Windrichting 0°	70	0	0	0	964	0	
Windrichting 45°	54	54	0	730	730	0	
Windrichting 90°	0	57	0	757	0	0	
Windrichting 135°	-54	54	0	730	-730	0	

28-7-2021 7 van 21

ZWO380 D2.2 OSP Mast 19a Portaal 19a

Project: Tower: Number:

Tussenresultaten geleiderbelastingen

Ge	leic	lers	ha	ck
ue	ıcıı	1612	υa	Ch

Circuit	Geleider	Diameter	Α	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR Bobolink	36,2	775,5	24,11	65500	2,06E-05
Circuit 2	ACSR Bobolink	36,2	775,5	24,11	65500	2,06E-05
Bliksemdraad 1	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05
Bliksemdraad 2	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05
Bliksemdraad 3	OPGW 96 Fibral	15,8	116,0	4,85	85366	1,72E-05

Geleiders ahead

Circuit	Geleider	Diameter	А	G	Е	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR Bobolink	36,2	775,5	24,11	65500	2,06E-05
Circuit 2	ACSR Bobolink	36,2	775,5	24,11	65500	2,06E-05
Bliksemdraad 1	Niet aanwezig					
Bliksemdraad 2	Niet aanwezig					
Bliksemdraad 3	Niet aanwezig					

Verticale belasting back

To treate belasting be							
Circuit	Bundel	Toeslag	$W_{z,G}$	IJsgebied	Formule	$W_{z,ijs}$	W _{z,ijs,bundel}
	[-]	[%]	[N/m]			[N/m]	[N/m]
Circuit 1	2	2	49,2	В	4+0,2d	11,2	22,5
Circuit 2	2	2	49,2	В	4+0,2d	11,2	22,5
Bliksemdraad 1	1	2	3,8	Α	15+0,4d	19,7	19,7
Bliksemdraad 2	1	2	3,8	Α	15+0,4d	19,7	19,7
Bliksemdraad 3	1	2	4,9	A	15+0,4d	21,3	21,3

Verticale belasting ahead

verticale belasting affect	au						
Circuit	Bundel	Toeslag	$W_{z,G}$	IJsgebied	Formule	$W_{z,ijs}$	W _{z,ijs,bundel}
	[-]	[%]	[N/m]			[N/m]	[N/m]
Circuit 1	2	2	49,2	В	4+0,2d	11,2	22,5
Circuit 2	2	2	49,2	В	4+0,2d	11,2	22,5
Bliksemdraad 1	1	2		Α	15+0,4d		
Bliksemdraad 2	1	2		Α	15+0,4d		
Bliksemdraad 3	1	2		Α	15+0,4d		

Isolatoren

2001001011									
Geleider	G _{isolator}	Aantal	$F_{v,iso}$	Lengte	Windopp. W	indhoogte	Stuwdruk	Vormfactor	$F_{h,iso}$
	[kN]	-	[kN]	[m]	[m ²]	[m]	[kN/m ²]	[-]	[kN]
150ct1f1	2,50	1	2,5	4,5	1,0	16,50	0,83	1,2	0,99
150ct1f2	2,50	1	2,5	4,5	1,0	16,50	0,83	1,2	0,99
150ct1f3	2,50	1	2,5	4,5	1,0	16,50	0,83	1,2	0,99
150ct2f1	2,50	1	2,5	4,5	1,0	16,50	0,83	1,2	0,99
150ct2f2	2,50	1	2,5	4,5	1,0	16,50	0,83	1,2	0,99
150ct2f3	2,50	1	2,5	4,5	1,0	16,50	0,83	1,2	0,99
bl1	0,10	1	0,1	0,2	0,1	18,70	0,86	1,2	0,10
bl2	0,10	1	0,1	0,2	0,1	18,70	0,86	1,2	0,10
bl3	0,10	1	0,1	0,2	0,1	30,00	0,99	1,2	0,12

28-7-2021 8 van 21

ZWO380 D2.2 OSP Mast 19a Portaal 19a

Project: Tower: Number:

Windbelasting back

.9										
hoogte										
wind	Stuwdruk	G_{c_dwars}	G_{c_trek}	C_c	$d_{toeslag}$	W_y	$W_{y,vak}$	$D_{ijs,toeslag}$	$W_{y,ijs}$	W _{y,ijs,vak}
[m]	[kN/m²]	[-]	[-]	[-]	[mm]	[N/m]	[N/m]	[mm]	[N/m]	[N/m]
13,4	0,77	0,70	0,70	1,01	36,96	40,4	40,5	55,0	71,1	71,4
13,4	0,77	0,70	0,70	1,01	36,96	40,4	40,5	55,0	71,1	71,4
13,4	0,77	0,70	0,70	1,01	36,96	40,4	40,5	55,0	71,1	71,4
13,4	0,77	0,70	0,70	1,01	36,96	40,4	40,5	55,0	71,1	71,4
13,4	0,77	0,70	0,70	1,01	36,96	40,4	40,5	55,0	71,1	71,4
13,4	0,77	0,70	0,70	1,01	36,96	40,4	40,5	55,0	71,1	71,4
16,0	0,82	0,71	0,72	1,20	11,99	8,4	8,4	55,2	38,7	38,8
16,0	0,82	0,71	0,72	1,20	11,99	8,4	8,4	55,2	38,7	38,8
21,6	0,90	0,74	0,74	1,20	16,08	12,9	12,9	58,3	46,6	46,8
	hoogte wind [m] 13,4 13,4 13,4 13,4 13,4 13,6 16,0	hoogte wind Stuwdruk [m] [kN/m²] 13,4 0,77 13,4 0,77 13,4 0,77 13,4 0,77 13,4 0,77 13,4 0,77 16,0 0,82 16,0 0,82	hoogte wind Stuwdruk G _{c_dwars} [m] [kN/m²] [-] 13,4 0,77 0,70 13,4 0,77 0,70 13,4 0,77 0,70 13,4 0,77 0,70 13,4 0,77 0,70 13,4 0,77 0,70 13,4 0,77 0,70 13,4 0,77 0,70 16,0 0,82 0,71 16,0 0,82 0,71	hoogte wind Stuwdruk G _{c_dwars} G _{c_trek} [m] [kN/m²] [-] [-] 13,4 0,77 0,70 0,70 13,4 0,77 0,70 0,70 13,4 0,77 0,70 0,70 13,4 0,77 0,70 0,70 13,4 0,77 0,70 0,70 13,4 0,77 0,70 0,70 13,4 0,77 0,70 0,70 13,4 0,77 0,70 0,70 16,0 0,82 0,71 0,72 16,0 0,82 0,71 0,72	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Windbelasting ahead											
	hoogte										
Geleider	wind	Stuwdruk	G_{c_dwars}	G_{c_trek}	C_c	$d_{toeslag}$	W_y	$W_{y,vak}$	$D_{ijs,toeslag}$	$W_{y,ijs}$	$W_{y,ijs,vak}$
	[m]	[kN/m²]	[-]	[-]	[-]	[mm]	[N/m]	[N/m]	[mm]	[N/m]	[N/m]
150ct1f1	8,6	0,67	0,65	0,98	1,06	36,96	34,1	51,1	55,0	57,4	86,1
150ct1f2	8,6	0,67	0,65	0,98	1,06	36,96	34,1	51,1	55,0	57,4	86,1
150ct1f3	8,6	0,67	0,65	0,98	1,06	36,96	34,1	51,1	55,0	57,4	86,1
150ct2f1	8,6	0,67	0,65	0,98	1,06	36,96	34,1	51,1	55,0	57,4	86,1
150ct2f2	8,6	0,67	0,65	0,98	1,06	36,96	34,1	51,1	55,0	57,4	86,1
150ct2f3 bl1	8,6	0,67	0,65	0,98	1,06	36,96	34,1	51,1	55,0	57,4	86,1
bl2											
bl3											

28-7-2021 9 van 21

Project: ZWO380 D2.2 OSP Mast 19a Masttype: Portaal Mast: 19a

Auteur: Versie: TBR Geleiderbelastingen

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

ULS (bezwijkst	erkte)	NEN-EN50	341-2-15:20	19				
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γο		γa
		°C	$G_{k,mast}$	$G_{k,qeleider}$	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,05	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,05	0,00	1,12	0,00	
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,12	0,00	
ULS 3	Wind+ijs	-5°	1,05	1,05	0,00	0,34	0,97	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,00	0,34	0,97	0,0
ULS 4	Koude+wind	-20°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,00	0,22	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,05	1,05	1,20	0,22	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 7	Permanent	10°	1,15	1,15	0,00	0,00	0,00	
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijksterkte, enkel voor hoekmasten: afwezigheid geleide		ers)	γg	γQ				
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,05	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,05	0,0	0,78	0,00	
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,05	1,05	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,05	1,05	0,0	0,24	0,00	
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,05	1,05	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,0	0,24	0,0	0,0
SLS (controle	van de vervormingen, vermoeiiı	ng, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	0,94	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,28	0,88	
SLS 4	Wind	-20°	1,00	1,00	0,0	0,19	0,0	
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen Aantal belastingcombinaties ULS Aantal belastingcombinaties SPLS Aantal belastingcombinaties SLS Aantal knooplasten 6 54 210 15 5301

28-7-2021 10 van 21

Project: Masttype: Portaal Mast: 19a

- Samenvattingstabellen geleiderbelastingen
 In de onderstaande vier tabellen is weergegeven:
 De maximale geleiderbelasting in het globale assenstelsel, gesplitst in aandeel van back en ahead span
- De alledaagse (EDS) waarden van de gecombineerde geleiderbelasting (ba+Ah) in het globale assenstelsel met in het lokale assenstelsel de maximaal optredende trekkracht.

 Componenten Fx en Fy als absolute waarde

 De alledaagse (EDS) waarden van de gecombineerde geleiderbelastingen (Ba+Ah) met bijbehorende trekkrachten
- Controle op uplift, waar een negatieve waarde duidt op uplift

Maximale waarden voor back en ahead span

Flaxilliaic W	adi dell vooi	back cir ai	icaa spaii			
	Fx_ba	Fx_ah	Fy_ba	Fy_ah	Fz_ba	Fz_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	-11,4	0,0	9,4	0,1	1,8	1,1
bl2	-11,4	0,0	9,4	0,1	1,8	1,1
150ct1f1	-65,3	25,2	48,9	0,5	9,7	292,8
150ct1f2	-65,3	25,2	48,9	0,5	9,7	292,8
150ct1f3	-65,3	25,2	48,9	0,5	9,7	292,8
150ct2f1	-65,3	24,6	48,9	27,6	9,7	292,8
150ct2f2	-65,3	24,6	48,9	27,6	9,7	292,8
150ct2f3	-65,3	24,6	48,9	27,6	9,7	292,8
bl3	-13,3	0,0	11,0	0,1	3,8	1,1
Post	0.0	0.0	0.0	0.0	0.0	

Min. Weight span (m) Max. Weight span (m)					
Weight spar	Combinatie1			Weight spar Combinatie1	
Geleider	SLS 1a	SLS 4	SLS 7	Geleider ULS 1a ULS 3	
bl1	86,4	101,1	86,4	bl1 114,3 75,8	
bl2	86,4	101,1	86,4	bl2 114,3 75,8	
150ct1f1	290,9	6016,7	290,9	150ct1f1 390,4 892,6	
150ct1f2	290,9	6016,7	290,9	150ct1f2 390,4 892,6	
150ct1f3	290,9	6016,7	290,9	150ct1f3 390,4 892,6	
150ct2f1	297,3	6016,7	290,9	150ct2f1 382,4 891,5	
150ct2f2	297,3	6016,7	290,9	150ct2f2 382,4 891,5	
150ct2f3	297,3	6016,7	290,9	150ct2f3 382,4 891,5	
bl3	189,2	257,6	189,1	bl3 326,7 147,1	
Post				Post	

Omhullende weight span over alle combinaties (incl. 0,9 combinaties)

Voor alle geleiders

6016,7 m Min. weight span 73,9 m Wind / Weight span verhouding

107,440 -1,320 -

28-7-2021 11 van 21

Project: ZWO380 D2.2 OSP Mast 19a Masttype: Portaal Mast: 19a

Maximale waarden back+ahead span Maximale waarden trekkracht geleider

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	11,4	9,4	1,8	-14,8	0,0
bl2	11,4	9,4	1,8	-14,8	0,0
150ct1f1	65,3	49,0	292,8	-81,6	37,0
150ct1f2	65,3	49,0	292,8	-81,6	37,0
150ct1f3	65,3	49,0	292,8	-81,6	37,0
150ct2f1	65,3	76,6	292,8	-81,6	37,0
150ct2f2	65,3	76,6	292,8	-81,6	37,0
150ct2f3	65,3	76,6	292,8	-81,6	37,0
bl3	13,3	11,0	3,8	-17,2	0,0
Post	1,1	1,1	0,6	0,0	

EDS-belastingen geleiders

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	0,0	2,3	0,4	-3,8	0,0
bl2	0,0	2,3	0,4	-3,8	0,0
150ct1f1	0,8	29,3	12,2	-49,2	1,2
150ct1f2	0,8	29,3	12,2	-49,2	1,2
150ct1f3	0,8	29,3	12,2	-49,2	1,2
150ct2f1	0,8	29,3	12,2	-49,2	1,2
150ct2f2	0,8	29,3	12,2	-49,2	1,2
150ct2f3	0,8	29,3	12,2	-49,2	1,2
bl3	0,0	2,9	1,0	-4,9	0,0
Post	0,0	0,0	0,5	0,0	

Controle uplift SLS-wind

		Fz_ba	Fz_ah
Combina	tie: Geleider	[kN]	[kN]
SLS 4	bl1	0,0	0,0
	bl2	0,0	0,0
	150ct1f1	0,0	0,0
	150ct1f2	0,0	0,0
	150ct1f3	0,0	0,0
	150ct2f1	0,0	0,0
	150ct2f2	0,0	0,0
	150ct2f3	0,0	0,0
	bl3	0,0	0,0
	Post	0,0	
		bl2 150ct1f1 150ct1f2 150ct1f3 150ct2f1 150ct2f2 150ct2f3 bl3	Combinatie: Geleider [kN] SLS 4 bl1 0,0 bl2 0,0 150ct1f1 0,0 150ct1f2 0,0 150ct1f3 0,0 150ct2f1 0,0 150ct2f1 0,0 150ct2f2 0,0 150ct2f3 0,0 bl3 0,0 0

28-7-2021 12 van 21

Project: ZWO380 D2.2 OSP Mast 19a Masttype: Portaal Mast: 19a

Auteur: Versie: TBR Geleiderbelastingen

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

ULS (bezwijks	terkte)	NEN-EN50	341-2-15:20	19				
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γο		γ _a
		°C	$G_{k,mast}$	$G_{k,qeleider}$	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,15	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,40	0,00	0,0
ULS 3	Wind+ijs	-5°	1,15	1,15	0,00	0,42	1,30	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,00	0,42	1,30	0,0
ULS 4	Koude+wind	-20°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,00	0,28	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,15	1,15	1,30	0,28	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 7	Permanent	10°	1,30	1,30	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijks	terkte, enkel voor hoekmasten:	afwezigheid geleid	ers)	γ _G	γq			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,15	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,15	1,15	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,15	1,15	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,15	1,15	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,0	0,24	0,0	0,0
SLS (controle	van de vervormingen, vermoeiir	ng, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	1,00	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,30	1,00	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen Aantal belastingcombinaties ULS Aantal belastingcombinaties SPLS Aantal belastingcombinaties SLS Aantal knooplasten 6 54 210 15 5301

28-7-2021 16 van 21

Project: Masttype: Portaal Mast: 19a

- Samenvattingstabellen geleiderbelastingen
 In de onderstaande vier tabellen is weergegeven:
 De maximale geleiderbelasting in het globale assenstelsel, gesplitst in aandeel van back en ahead span
- De flaximale geleiderbelasting in net globale assenstelsel, gespiltst in adnoel van back en anead span
 De gecombineerde geleiderbelasting (Ba+Ah) in het globale assenstelsel met in het lokale assenstelsel de maximaal optredende trekkracht.
 Componenten Fx en Fy als absolute waarde
 De alledaagse (EDS) waarden van de gecombineerde geleiderbelastingen (Ba+Ah) met bijbehorende trekkrachten
 Controle op uplift, waar een negatieve waarde duidt op uplift

Maximale waarden voor back en ahead span

Maximale W	riaxilliale waardeli voor back eli allead spali										
	Fx_ba	Fx_ah	Fy_ba	Fy_ah	Fz_ba	Fz_ah					
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]					
bl1	-13,7	0,0	11,3	0,1	2,3	1,1					
bl2	-13,7	0,0	11,3	0,1	2,3	1,1					
150ct1f1	-68,1	25,2	53,0	0,5	10,9	293,1					
150ct1f2	-68,1	25,2	53,0	0,5	10,9	293,1					
150ct1f3	-68,1	25,2	53,0	0,5	10,9	293,1					
150ct2f1	-68,1	24,5	53,0	27,7	10,9	293,1					
150ct2f2	-68,1	24,5	53,0	27,7	10,9	293,1					
150ct2f3	-68,1	24,5	53,0	27,7	10,9	293,1					
bl3	-15,8	0,0	13,1	0,2	4,7	1,1					
Post	0,0	0,0	0,0	0,0	0,0						

Min. Weigh	t span (m)		Max. Weigl	Max. Weight span (m)			
Weight spar	Combinatie1			Weight spar	Weight spar Combinatie1		
Geleider	SLS 1a	SLS 4	SLS 7	Geleider	ULS 1a	ULS 3	
bl1	86,4	101,2	86,4	bl1	117,4	73,5	
bl2	86,4	101,2	86,4	bl2	117,4	73,5	
150ct1f1	290,9	6016,7	290,9	150ct1f1	412,7	816,5	
150ct1f2	290,9	6016,7	290,9	150ct1f2	412,7	816,5	
150ct1f3	290,9	6016,7	290,9	150ct1f3	412,7	816,5	
150ct2f1	298,0	6016,7	290,9	150ct2f1	403,0	815,2	
150ct2f2	298,0	6016,7	290,9	150ct2f2	403,0	815,2	
150ct2f3	298,0	6016,7	290,9	150ct2f3	403,0	815,2	
bl3	189,2	258,0	189,1	bl3	340,9	137,1	
Post				Post			

Omhullende weight span over alle combinaties (incl. 0,9 combinaties)

Voor alle geleiders

6016,7 m Min. weight span 72,0 m Wind / Weight span verhouding

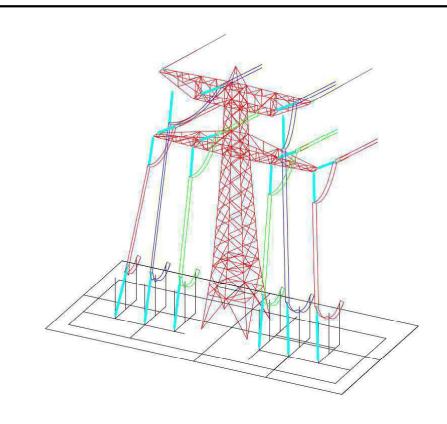
1,286 -

28-7-2021 17 van 21

Project: ZWO380 D2.2 OSP Mast 19a Masttype: Portaal Mast: 19a

Maximale waarden back+ahead span Maximale waarden trekkracht geleider

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	13,7	11,3	2,3	-17,7	0,0
bl2	13,7	11,3	2,3	-17,7	0,0
150ct1f1	67,4	50,5	293,1	-86,2	37,0
150ct1f2	67,4	50,5	293,1	-86,2	37,0
150ct1f3	67,4	50,5	293,1	-86,2	37,0
150ct2f1	67,4	78,2	293,1	-86,2	37,0
150ct2f2	67,4	78,2	293,1	-86,2	37,0
150ct2f3	67,4	78,2	293,1	-86,2	37,0
bl3	15,8	13,1	4,7	-20,4	0,0
Post	1,4	1,4	0,7	0,0	


EDS-belastingen geleiders

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	0,0	2,3	0,4	-3,8	0,0
bl2	0,0	2,3	0,4	-3,8	0,0
150ct1f1	0,8	29,3	12,2	-49,2	1,2
150ct1f2	0,8	29,3	12,2	-49,2	1,2
150ct1f3	0,8	29,3	12,2	-49,2	1,2
150ct2f1	0,8	29,3	12,2	-49,2	1,2
150ct2f2	0,8	29,3	12,2	-49,2	1,2
150ct2f3	0,8	29,3	12,2	-49,2	1,2
bl3	0,0	2,9	1,0	-4,9	0,0
Post	0,0	0,0	0,5	0,0	

Controle uplift SLS-wind

		Fz_ba	Fz_ah
Combina	tie: Geleider	[kN]	[kN]
SLS 4	bl1	0,0	0,0
	bl2	0,0	0,0
	150ct1f1	0,0	0,0
	150ct1f2	0,0	0,0
	150ct1f3	0,0	0,0
	150ct2f1	0,0	0,0
	150ct2f2	0,0	0,0
	150ct2f3	0,0	0,0
	bl3	0,0	0,0
	Post	0,0	
		bl2 150ct1f1 150ct1f2 150ct1f3 150ct2f1 150ct2f2 150ct2f3 bl3	Combinatie: Geleider [kN] SLS 4 bl1 0,0 bl2 0,0 150ct1f1 0,0 150ct1f2 0,0 150ct1f3 0,0 150ct2f1 0,0 150ct2f1 0,0 150ct2f2 0,0 150ct2f3 0,0 bl3 0,0 0

28-7-2021 18 van 21

Inhoud

- Uitgangspunten
- Mastconstructie
- Tussenresultaten
- Belastingen initiëel
- Belastingen na aanpassing
p. 15

Gegevens

Norm NEN-EN50341-2-15:2019

Initieel

Gevolgklasse CC2 Betrouwbaarheidsniveau Afkeur Referentieperiode 30 jaar

Na aanpassing

Gevolgklasse CC2
Betrouwbaarheidsniveau Verbouw
Referentieperiode 50 jaar

Windgebied III
Windsnelheid 24,5 m/s
Terreincategorie II
Reductie factor Cdir 1,00
IJsgebied B

Masttype Hoekmast Lijnhoek 143°

0.0	2021-06-18			
ISSUE	DATE	REVISION	CHK'D	APP'D

Client:

Title:

Verticale geleiders Portaal

JOB No.	-	DATE	-
DRAWN	-	CHKD	-
DESIGN	-	APPD	-

Document name:

ZWO380 D2.2 OSP Mast 19a_Portaal_19a_Report.pdf

Project number:

Project client number:										
	ı	ı —	l	I			1		1	
0.0										
										l

ZWO380 D2.2 OSP Mast 19a Project:

Tower: Portaal Number: 19a

Auteur: Geleiderbelastingen afloper Versie: v1.9

Algemeen

Benaming Masttype Aantal circuits Configuratie Aantal bliksemgeleiders Portaal Hoekmast 2-circuit-vlak

Uitgangspunten

Norm NEN-E
Gevolgklasse initieel
Betrouwbaarheidsniveau initieel
Referentieperiode initieel
Gevolgklasse na aanpassing
Betrouwbaarheidsniveau na aanpassing
Referentieperiode na aanpassing NEN-EN50341-2-15:2019 CC2 Afkeur CC2-0 30 jaar CC2 Verbouw 50 jaar Windgebied III 24,5 m/s II Windsnelheid (m/s) Terreincategorie Reductiefactor c_{dir} 1,00 IJsgebied fasegeleider В IJsgebied bliksemgeleider

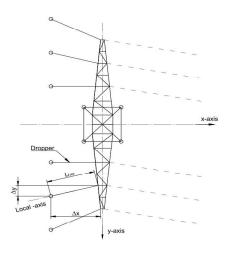
Geleiders

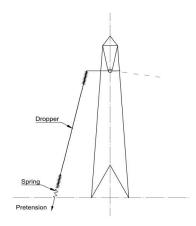
Omschrijving	Spanning	Geleider	Bundel	IJsgebied	Toeslag	Toeslag	
		Back	Ва		gewicht	diameter	
Circuit 1	150 kV	ACSR Bobolink	2	В	2 %	2 %	
Circuit 2	150 kV	ACSR Bobolink	2	В	2 %	2 %	
Bliksemdraad 1		ACSR 30/52 PETREL	1	Α	2 %	2 %	1000
Bliksemdraad 2		ACSR 30/52 PETREL	1	Α	2 %	2 %	1000
Bliksemdraad 3		OPGW 96 Fibral	1	Α	2 %	2 %	1000

Isolatoren	(1)			
Omschrijving	Ophanging	Gewicht	Lengte	Windopp.
		[kN]	[m]	[m²]
Circuit 1	Afspanketting	2,50	4,50	1,00
Circuit 2	Afspanketting	2,50	4,50	1,00
Bliksemdraad 1	Afspanketting	0,10	0,20	0,10
Bliksemdraad 2	Afspanketting	0,10	0,20	0,10
Bliksemdraad 3	Afspanketting	0.10	0,20	0.10

^{1.} Eigenschappen gelden voor geheel van de isolatorset

Ophanghoogte en positie in mast


Circuits	Nummer	Aanduiding	Ophanghoogte	Aangrijppunt
Circuit 1	10	150ct1f1	16,0 m	16,0 m
Circuit 1	11	150ct1f2	16,0 m	16,0 m
Circuit 1	12	150ct1f3	16,0 m	16,0 m
Circuit 2	20	150ct2f1	16,0 m	16,0 m
Circuit 2	21	150ct2f2	16,0 m	16,0 m
Circuit 2	22	150ct2f3	16,0 m	16,0 m
Bliksemdraad 1	1	bl1	0,0 m	0,0 m
Bliksemdraad 2	3	bl2	0,0 m	0,0 m
Bliksemdraad 3	5	bl3	0,0 m	0,0 m


18-6-2021 2 van 13

Project: Tower: Number: Portaal

Principe hoekmast met aflopers

Top view tower

Side view tower

Hoogteafwijking mastbeeld naastgelegen masten en richtingsverandering t.o.v. Lijnrichting

			Hoogteverschil	Richtingsvera	ndering	Lokaal ∆x Ler	ngte overspanning	
Circuits	Nummer	Aanduiding	Δh	Δy	Δx	Lhor	L	
Circuit 1	10	150ct1f1	15,7 m	-2,2	0,5	2,3	15,9 m	
Circuit 1	11	150ct1f2	15,7 m	- 2,2	0,3	2,2	15,9 m	
Circuit 1	12	150ct1f3	15,7 m	- 2,2	0,3	2,2	15,9 m	
Circuit 2	20	150ct2f1	15,7 m	2,2	0,3	2,2	15,9 m	
Circuit 2	21	150ct2f2	15,7 m	2,2	0,3	2,2	15,9 m	
Circuit 2	22	150ct2f3	15,7 m	2,2	0,5	2,3	15,9 m	
Bliksemdraad 1	1	bl1	0,0 m	0,0	0,0	0,0	0,0 m	
Bliksemdraad 2	3	bl2	0,0 m	0,0	0,0	0,0	0,0 m	
Bliksemdraad 3	5	bl3	0,0 m	0,0	0,0	0,0	0,0 m	

Voorspanning en veerstijfheid

			Voorspanning	Veerstijfheid	Effectieve rekstijfheid
Circuits	Nummer	Aanduiding	F _{pr}	k	EA _{fict}
Circuit 1	10	150ct1f1	3,0 kN	500 kN/m	3243 kN/m
Circuit 1	11	150ct1f2	3,0 kN	500 kN/m	3243 kN/m
Circuit 1	12	150ct1f3	3,0 kN	500 kN/m	3243 kN/m
Circuit 2	20	150ct2f1	3,0 kN	500 kN/m	3243 kN/m
Circuit 2	21	150ct2f2	3,0 kN	500 kN/m	3243 kN/m
Circuit 2	22	150ct2f3	3,0 kN	500 kN/m	3243 kN/m
Bliksemdraad 1	1	bl1	0,0 kN	0 kN/m	kN/m
Bliksemdraad 2	3	bl2	0,0 kN	0 kN/m	kN/m
Bliksemdraad 3	5	bl3	0,0 kN	0 kN/m	kN/m

De effectieve rekstijfheid is bepaald met de invloed van de veerstijfheid Deze is berekend door de optelling van de reciproke waarden van de veerstijfheid van geleider en veer.

18-6-2021 3 van 13

ZWO380 D2.2 OSP Mast 19a Portaal 19a

Project: Tower: Number:

Lijn- en mastgegevens

Deze invoer is opgenomen voor beschouwde windrichtingen en komt overeen met invoer geleiderbelastingen voor de mast

Lijnhoek Rotatie mast t.o.v. bissectrice	$_{\theta}^{\beta}$	143 ° 18 °
Hoogte onderkant mast t.o.v. ma	aaiveld	0,5 m
Beschouwde windrichtingen	α_1	0 °
Windrichtingen volgens:	α_2	45 °
Geleiderbelastingen	α_3	90 °
_	α_4	135 °
	α_5	53,5 °
	α ₆	90.5 °

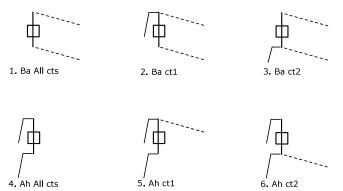
Windrichtingen gelden t.o.v. hoofdrichting mastconstructie, niet t.o.v. bissectrice.

Windrichtingen en positieve richtingen belastingen

Beschouwd	aantal	windrichtingen	
1a			(
3			(
4			
6			6
Overig			6

18-6-2021 4 van 13

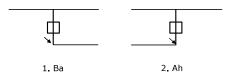
Project: Tower: Number: Portaal


Geleiderafval

		SPLS	SPLS - torsie		kelzijdige trek	5a - gele	iderbreuk
		Aanw.	Afw.	Aanw.	Afw.	Aanw.	Afw.
Circuit 1	150ct1f1	1	0	1	0	1	0
Circuit 1	150ct1f2	1	0	1	0	1	0
Circuit 1	150ct1f3	1	0	1	0	1	0
Circuit 2	150ct2f1	0	1	1	0	1	0
Circuit 2	150ct2f2	0	1	1	0	1	0
Circuit 2	150ct2f3	0	1	1	0	1	0
Bliksemdraad 1	bl1	1	0	1	0	1	0
Bliksemdraad 2	bl2	0	1	1	0	1	0
Bliksemdraad 3	bl3	0	1	1	0	1	0

Belastingsituaties SPLS

Beschouwde situaties SPLS: $1\,\mathrm{t/m}$ 6, alle mogelijke situaties. Geleiderbelastingen naar volgende mast geen onderdeel van deze berekening.


Principe belastingssituaties:

Belastingsituaties 5a. Geleiderbreuk

Beschouwde situaties geleiderbreuk 5a: 1 en 2, alle mogelijke situaties.

Principe belastingssituaties:

18-6-2021 5 van 13

Project: ZWO380 D2.2 OSP Mast 19a

Project: ZWO38 Tower: Portaal Number: 19a

Belastingsituaties 6. Bouw- en onderhoud

Onder 6a wordt de belasting door aanwezigheid lijnwagen of lijnfiets in combinatie met puntlast op traverse in rekening gebracht.

Combinatie 6b bevat geen belastingen in geleider of op traverse. Deze combinatie met 20% wind is geschikt voor controle stijgpunt in combinatie met kortsluitbelastingen.

	Fase	Bliksem
Lijnwagen (nvt.)	0,0 kN	0,0 kN
Puntlast op traverse	1,0 kN	1,0 kN

Belastingsituaties 8. Kortsluiting

Principe belastingssituaties:

Kortsluitkrachten

(Zie separate berekening)

Geleider	w _{z,G} Ko	rtsluitkra	F _x	F_v	F_z
	[N/m]	[kN]	[kN]	[kNj	[kN]
10	150ct1f1	8,9	0,3	-1,2	8,8
11	150ct1f2	8,9	0,1	-1,2	8,8
12	150ct1f3	8,9	0,1	-1,2	8,8
20	150ct2f1	8,9	0,1	1,2	8,8
21	150ct2f2	8,9	0,1	1,2	8,8
22	150ct2f3	8,9	0,3	1,2	8,8
1	bl1				
3	bl2				
_	Ы2				

Belastingcombinaties kortsluiting

Belastingcombinatie
ULS 8 Kortsluiting 10-11
ULS 8 Kortsluiting 10-12
ULS 8 Kortsluiting 11-12
ULS 8 Kortsluiting 20-21
ULS 8 Kortsluiting 20-22
ULS 8 Kortsluiting 21-22

18-6-2021 6 van 13

Project: ZWO380 D2.2 OSP Mast 19a

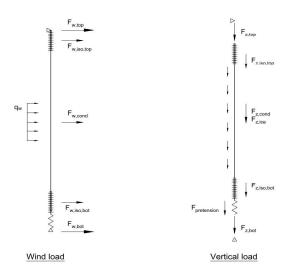
Tower: Portaal Number: 19a

Tussenresultaten geleiderbelastingen

Geleiders

Circuit	Geleider	Diameter	Α	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR Bobolink	36,2	775,5	24,11	65500	2,06E-05
Circuit 2	ACSR Bobolink	36,2	775,5	24,11	65500	2,06E-05
Bliksemdraad 1	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05
Bliksemdraad 2	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05
Bliksemdraad 3	OPGW 96 Fibral	15,8	116,0	4,85	85366	1,72E-05

Verticale belasting


Bundel	Toeslag	W _z	,G	IJsgebied	Formule	$W_{z,ijs}$	W _{z,ijs,bunde} l
[-]	[%]	[N	/m]			[N/m]	[N/m]
	2	2	49,2	E	3 4+0,2d	11,2	22,5
	2	2	49,2	E	3 4+0,2d	11,2	22,5
	1	2	3,8	A	15+0,4d	19,7	19,7
	1	2	3,8	A	15+0,4d	19,7	19,7
	1	2	4,9	A	15+0,4d	21,3	21,3
		[-] [%]	[-] [%] [N	[-] [%] [N/m] 2 2 49,2 2 2 49,2 1 2 3,8 1 2 3,8	[-] [%] [N/m] 2 2 49,2 E 2 2 49,2 E 1 2 3,8 A 1 2 3,8 A	[-] [%] [N/m] 2 2 49,2 B 4+0,2d 2 2 49,2 B 4+0,2d 1 2 3,8 A 15+0,4d 1 2 3,8 A 15+0,4d	[-] [%] [N/m] [N/m] 2 2 49,2 B 4+0,2d 11,2 2 2 49,2 B 4+0,2d 11,2 1 2 3,8 A 15+0,4d 19,7 1 2 3,8 A 15+0,4d 19,7

Schema voor berekenen horizontale en verticale belasting

Horizontale belasting wordt bepaald voor de wind tegen de geleider en isolatoren boven en onder.

De horizontale component als gevolg van de scheefstand van de afloper wordt per belastingscombinatie apart bepaald De verticale krachten gelden alleen voor de EDS-conditie zonder externe belastingen en temperatuursverandering

De berekeningen zijn weergegeven op het volgende blad.

18-6-2021 7 van 13

ZWO380 D2.2 OSP Mast 19a Portaal 19a

Project: Tower: Number:

Isolatoren					Boven			Onder		
Geleider	G _{isolator}	Lengte	Windopp.	Vormfactor\	Windhoogte	Stuwdruk	F _{h,iso} \	Vindhoogte	Stuwdruk	$F_{h,iso}$
	[kN]	[m]	[m ²]	[-]	[m]	[kN/m²]	[kN]	[m]	[kN/m²]	[kN]
150ct1f1	2,50	4,5	1,0	1,2	14,25	0,79	0,95	3,05	0,49	0,59
150ct1f2	2,50	4,5	1,0	1,2	14,25	0,79	0,95	3,05	0,49	0,59
150ct1f3	2,50	4,5	1,0	1,2	14,25	0,79	0,95	3,05	0,49	0,59
150ct2f1	2,50	4,5	1,0	1,2	14,25	0,79	0,95	3,05	0,49	0,59
150ct2f2	2,50	4,5	1,0	1,2	14,25	0,79	0,95	3,05	0,49	0,59
150ct2f3	2,50	4,5	1,0	1,2	14,25	0,79	0,95	3,05	0,49	0,59
bl1	0,10	0,2	0,1	1,2	0,40	0,49	0,06	0,60	0,49	0,06
bl2	0,10	0,2	0,1		0,40	0,49	0,06	0,60	0,49	0,06
bl3	0,10	0,2	0,1	1,2	0,40	0,49	0,06	0,60	0,49	0,06

Horizontale helasting

oeiasting										
hoogte										
wind	Stuwdruk	G_c	C_c	$d_{toeslag}$	W_y	D _{ijs,toeslag}	$W_{y,ijs}$	F _{w,geleider}	$F_{w,boven}$	F _{w,onder}
[m]	[kN/m²]	[-]	[-]	[mm]	[N/m]	[mm]	[N/m]	[kN]	[kN]	[kN]
8,7	0,67	0,99	1,06	36,96	51,9	55,0	87,4	0,17	1,1	0,8
8,7	0,67	0,99	1,06	36,96	51,9	55,0	87,4	0,17	1,1	0,8
8,7	0,67	0,99	1,06	36,96	51,9	55,0	87,4	0,17	1,1	0,8
8,7	0,67	0,99	1,06	36,96	51,9	55,0	87,4	0,17	1,1	0,8
8,7	0,67	0,99	1,06	36,96	51,9	55,0	87,4	0,17	1,1	0,8
8,7	0,67	0,99	1,06	36,96	51,9	55,0	87,4	0,17	1,1	0,8
0,5	0,49	0,97	1,20	11,99	6,9	55,2	31,6	0,00	0,1	0,1
0,5	0,49	0,97	1,20	11,99	6,9	55,2	31,6	0,00	0,1	0,1
0,5	0,49	0,97	1,20	16,08	9,2	58,3	33,4	0,00	0,1	0,1
	wind [m] 8,7 8,7 8,7 8,7 8,7 0,5	hoogte wind Stuwdruk [m] [kN/m²] 8,7 0,67 8,7 0,67 8,7 0,67 8,7 0,67 8,7 0,67 8,7 0,67 8,7 0,67 0,5 0,49 0,5 0,49	wind Stuwdruk Gc [m] [kN/m²] [-] 8,7 0,67 0,99 8,7 0,67 0,99 8,7 0,67 0,99 8,7 0,67 0,99 8,7 0,67 0,99 8,7 0,67 0,99 8,7 0,67 0,99 0,5 0,49 0,97 0,5 0,49 0,97 0,5 0,49 0,97	hoogte wind Stuwdruk Gc Cc [m] [kN/m²] [-] [-] 8,7 0,67 0,99 1,06 8,7 0,67 0,99 1,06 8,7 0,67 0,99 1,06 8,7 0,67 0,99 1,06 8,7 0,67 0,99 1,06 8,7 0,67 0,99 1,06 0,5 0,49 0,97 1,20 0,5 0,49 0,97 1,20 0,5 0,49 0,97 1,20	wind Stuwdruk Gc Cc dtoeslag [m] [kN/m²] [-] [-] [mm] 8,7 0,67 0,99 1,06 36,96 8,7 0,67 0,99 1,06 36,96 8,7 0,67 0,99 1,06 36,96 8,7 0,67 0,99 1,06 36,96 8,7 0,67 0,99 1,06 36,96 8,7 0,67 0,99 1,06 36,96 8,7 0,67 0,99 1,06 36,96 9,5 0,49 0,97 1,20 11,99 0,5 0,49 0,97 1,20 11,99	hoogte wind Stuwdruk G _c C _c d _{toeslag} w _y [m] [kN/m²] [-] [-] [mm] [N/m] 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 8,7 0,67 0,99 1,06 36,96 51,9 9,5 0,49 <td< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>hoogte wind Stuwdruk G_c C_c d_{toeslag} w_y D_{ijs,toeslag} w_{y,ijs} F_{w,geleider} [m] [kN/m²] [-] [-] [mm] [N/m] [mm] [N/m] [kN] 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67<td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></td></td<>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	hoogte wind Stuwdruk G _c C _c d _{toeslag} w _y D _{ijs,toeslag} w _{y,ijs} F _{w,geleider} [m] [kN/m²] [-] [-] [mm] [N/m] [mm] [N/m] [kN] 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 0,99 1,06 36,96 51,9 55,0 87,4 0,17 8,7 0,67 <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

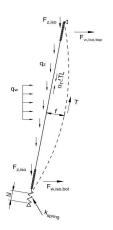
 $\begin{tabular}{ll} \textbf{Verticale belasting} \\ \textbf{Formules:} & F_{z,top} = F_{z,iso,top} + F_{z,cond} + F_{z,iso,bot} + F_{pr} \\ & F_{t,mid} = F_{z,cond}/2 + F_{z,iso,bot} + F_{pr} \\ & F_{z,bot} = -F_{pr} \\ \end{tabular}$ $\begin{aligned} & L_{geleider} = \Delta h - 2 L_{iso} \\ & F_{z,cond} = L_{cond} \times w_z \end{aligned}$

Geleider	$W_{z,G}$	W _{z,ijs}	L _{geleider}	$F_{z,iso}$	$F_{z,gel}$	$F_{z,ijs}$	Pretension	F _{z,boven}	$F_{t,mid}$	F _{z,onder}
	[N/m]	[N/m]	[m]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
150ct1f1	49,2	22,5	6,7	2,5	0,3	0,2	3,0	8,3	5,7	-3,0
150ct1f2	49,2	22,5	6,7	2,5	0,3	0,2	3,0	8,3	5,7	-3,0
150ct1f3	49,2	22,5	6,7	2,5	0,3	0,2	3,0	8,3	5,7	-3,0
150ct2f1	49,2	22,5	6,7	2,5	0,3	0,2	3,0	8,3	5,7	-3,0
150ct2f2	49,2	22,5	6,7	2,5	0,3	0,2	3,0	8,3	5,7	-3,0
150ct2f3	49,2	22,5	6,7	2,5	0,3	0,2	3,0	8,3	5,7	-3,0
bl1	3,8	19,7	-0,4	0,1	0,0	0,0	0,0	0,2	0,1	0,0
b l 2	3,8	19,7	-0,4	0,1	0,0	0,0	0,0	0,2	0,1	0,0
b l 3	4,9	21,3	-0,4	0,1	0,0	0,0	0,0	0,2	0,1	0,0

18-6-2021 8 van 13

ZWO380 D2.2 OSP Mast 19a Portaal 19a

Project: Masttype: Mast:


Auteur: Versie: TBR Geleiderbelastingen v1.9

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

ULS (bez	wijksterkte)	NEN-EN5	0341-2-15:20	019				
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γQ		γa
		°C	G _{k,mast}	$G_{k,ge}$ eider	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,05	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,12	0,00	0,0
ULS 3	Wind+ijs	-5°	1,05	1,05	0,00	0,34	0,97	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,00	0,34	0,97	0,0
ULS 4	Koude+wind	-20°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,00	0,22	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,05	1,05	1,20	0,22	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 7	Permanent	10°	1,15	1,15	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bez	wijksterkte, enkel voor hoekmasten: a	fwezigheid gelei	ders)	γ _G	γo			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,05	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,05	1,05	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,05	1,05	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,05	1,05	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,0	0,24	0,0	0,0
SLS (con	trole van de vervormingen, vermoeiing	g, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	0,94	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,28	0,88	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen	6
Aantal belastingcombinaties ULS	59
Aantal belastingcombinaties SPLS	210
Aantal belastingcombinaties SLS	15
Aantal knooplasten	5112

SchematisationDe trekkracht in de afloper wordt bepaald met de toestandsvergelijking voor een gekromde kabel. In de rekstijfheid van de kabel is de invloed van de veer verdisconteerd.

18-6-2021 9 van 13

Project: Masttype: Mast: Portaal 19a

- Tabellen met geleiderbelastingen

 In de onderstaande drie tabellen is weergegeven:
 De trekkracht per belastingcombinatie en de bijbehorende zeeg en veerverlenging
 De geleiderbelastingen in het lokale assenstelsel voor het onderste bevestigingspunt
- De maximale waarden voor de reacties onder en boven in het globale assenstelsel

Trekkracht, zeeg en veerverlenging

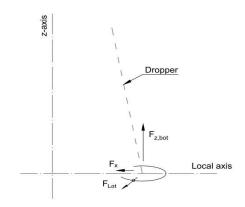
Geleider	Combinatie	Zeea [m]	Veer- verlengin g [m	veer- verlengin g [m]	rek- kracht initieel [kN]	Trek- kracht [kN]
150ct1f1	SLS 1a	0,39	0,008	0,020	5,7	9,8
	SLS 3	0,28	0,005	0,016	5,7	8,2
	SLS 4	0,20	0,004	0,016	5,7	7,9
	SLS 6	0,24	0,002	0,014	5,7	6,8
	SLS 7	0,18	0,000	0,011	5,7	5,7
	ULS 1a	0,42	0,010	0,021	6,1	10,5
	ULS 3	0,29	0,006	0,017	6,2	8,5
	ULS 4	0,21	0,005	0,016	6,1	8,1
	ULS 6b	0,25	0,003	0,014	6,1	6,9
150ct1f2	SLS 1a	0,39	0,008	0,020	5,7	9,8
	SLS 3	0,28	0,005	0,016	5,7	8,2
	SLS 4	0,20	0,005	0,016	5,7	7,9
	SLS 6	0,23	0,002	0,014	5,7	6,8
	SLS 7	0,18	0,000	0,011	5,7	5,7
	ULS 1a	0,42	0,010	0,021	6,1	10,5
	ULS 3	0,29	0,006	0,017	6,2	8,5
	ULS 4	0,21	0,005	0,016	6,1	8,1
	ULS 6b	0,24	0,003	0,014	6,1	6,9
150ct1f3	SLS 1a	0,39	0,008	0,020	5,7	9,8
	SLS 3	0,28	0,005	0,016	5,7	8,2
	SLS 4	0,20	0,005	0,016	5,7	7,9
	SLS 6	0,23	0,002	0,014	5,7	6,8
	SLS 7	0,18	0,000	0,011	5,7	5,7
	ULS 1a	0,42	0,010	0,021	6,1	10,5
	ULS 3	0,29	0,006	0,017	6,2	8,5
	ULS 4	0,21	0,005	0,016	6,1	8,1
	ULS 6b	0,24	0,003	0,014	6,1	6,9

Controle iteratieproces

Geleider	Iteratie	
bl1		0
bl2		0
150ct1f	ок	
150ct1f	ОК	
150ct1f	ОК	
150ct2f	ОК	
150ct2f2	ОК	
150ct2f	ОК	
ЫЗ		0

18-6-2021 10 van 13

Project: Masttype: Mast: Portaal 19a


Belastingen in lokale richting geleider

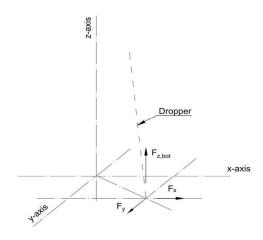
De belastingen op het onderste bevestigingspunt voor het dimensioneren van de ondersteuningsconstructie

De richting van de laterale kracht wordt bepaald door de windrichting en kan in alle richtingen aangrijpen.

De resulterende horizontale kracht kan worden afgeleid uit de vectoriële optelling van de kracht in x-richting en laterale kracht.

	Fx,lok,bot	Flat,bot	Fz_bot
Combinatie1	[kN]	[kN]	[kN]
SLS 1a	1,4	0,7	-7,1
SLS 3	1,2	0,2	-5,4
SLS 4	1,1	0,1	-5,2
SLS 6	1,0	0,1	-4,1
SLS 7	0,8	0,0	-3,0
ULS 1a	1,5	0,9	-7,7
ULS 3	1,2	0,3	-5,6
ULS 4	1,2	0,2	-5,3
ULS 6b	1,0	0,2	-4,1
SLS 1a	1,4	0,7	-7,1
SLS 3	1,2	0,3	-5,5
SLS 4	1,1	0,1	-5,3
SLS 6	1,0	0,1	-4,1
SLS 7	0,8	0,0	-3,0
ULS 1a	1,5	0,9	-7,7
ULS 3	1,2	0,3	-5,6
ULS 4	1,1	0,2	-5,3
ULS 6b	1,0	0,2	-4,1
SLS 1a	1,4	0,7	-7,1
SLS 3	1,2	0,3	-5,5
SLS 4	1,1	0,1	-5,3
SLS 6	1,0	0,1	-4,1
SLS 7	0,8	0,0	-3,0
ULS 1a	1,5	0,9	-7,7
ULS 3	1,2	0,3	-5,6
ULS 4	1,1	0,2	-5,3
ULS 6b	1,0	0,2	-4,1

18-6-2021 11 van 13



ZWO380 D2.2 OSP Mast 19a Portaal 19a

Project: Masttype: Mast:

Maximale waarden in globale assenstelsel

De maximale waarden van de verticale kracht en de resulterende horizontale kracht per belastingcombinatie Zowel voor het bovenste als het onderste bevestigingspunt

Geleider	Combinatie	Fx_top [kN]	Fy_top [kN	Fz_top [kN]	Fx_bot [kN]	Fy_bot [kN]	Fz_bot [kN]
150ct1f1	SLS 1a	1,7	0,3	12,5	-1,6	0,0	-7,1
	SLS 3	0,8	0,0	10,9	-1,0	0,0	-5,4
	SLS 4	0,4	0,0	10,6	-0,7	0,0	-5,2
	SLS 6	0,3	0,0	9,4	-0,7	0,0	-4,1
	SLS 7	0,3	0,0	8,3	-0,5	0,0	-3,0
	ULS 1a	2,0	0,4	13,3	-1,8	0,0	-7,7
	ULS 3	0,9	0,0	11,4	-1,1	0,0	-5,6
	ULS 4	0,4	0,0	10,9	-0,8	0,0	- 5,3
	ULS 6b	0,6	0,0	9,7	-0,8	0,0	-4,1
	ULS 7	0,3	0,0	8,8	-0,6	0,0	- 2,7
150ct1f2	SLS 1a	1,7	0,2	12,5	-1,4	0,0	-7,1
	SLS 3	0,8	0,0	10,9	-0,9	0,0	- 5,5
	SLS 4	0,3	0,0	10,6	-0,6	0,0	- 5,3
	SLS 6	0,3	0,0	9,4	-0,5	0,0	-4,1
	SLS 7	0,2	0,0	8,3	-0,4	0,0	-3,0
	ULS 1a	1,9	0,4	13,3	-1,6	0,0	-7,7
	ULS 3	0,8	0,0	11,4	-0,9	0,0	-5,6
	ULS 4	0,3	0,0	10,9	-0,6	0,0	-5,3
	ULS 6b	0,5	0,0	9,7	-0,7	0,0	-4,1
	ULS 7	0,2	0,0	8,8	-0,4	0,0	- 2,7
150ct1f3	SIS 1a	1,7	0,2	12,5	-1,4	0,0	-7,1
15000115	SLS 3	0,8	0,0	10,9	-0,9	0,0	-5,5
	SLS 4	0,3	0,0	10,6	-0,6	0,0	-5,3
	SLS 6	0,3	0,0	9,4	-0,5	0,0	-4,1
	SLS 7	0,2	0,0	8,3	-0,4	0,0	-3,0
	ULS 1a	1,9	0,4	13,3	-1,6	0,0	-7,7
	ULS 3	0,8	0,0	11,4	-0,9	0,0	-5,6
	ULS 4	0,3	0,0	10,9	-0,6	0,0	-5,3
	ULS 6b	0,5	0,0	9,7	-0,7	0,0	-4,1
	ULS 7	0,2	0,0	8,8	-0,4	0,0	-2,7
150ct2f1	SLS 1a	1,1	2,0	11,2	-0,5	-1,3	- 5,8
	SLS 3	0,3	1,0	9,8	-0,1	-1,2	-4,4
	SLS 4	0,0	0,9	9,4	0,0	-1,0	-4,1
	SLS 6	0,0	0,7	7,8	0,0	-0,8	-2,5
	SLS 7	0,0	0,5	8,3	0,0	-1,0	-3,0
	ULS 1a	1,3	2,3	12,0	-0,6	-1,4	-6,4

Project: ZWO380 D2.2 OSP Mast 19a Masttype: Mast: Portaal 19a **150ct2f1** ULS 3 0,4 1,0 10,2 -0,1 -1,2 -4,5 ULS 4 0,0 1,0 9,5 0,0 -1,0 -3,9 ULS 6b 0,2 0,7 8,9 0,0 -1,1 -3,3 ULS 7 0,0 0,5 8,8 0,0 -1,0 -2,7 150ct2f2 SLS 1a 1,1 2,0 11,2 -0,5 -1,3 -5,8 SLS 3 0,3 1,0 9,8 -0,1 -1,2 -4,4 SLS 4 0,0 0,9 9,4 0,0 -1,0 -4,1 SLS 6 0,0 0,7 7,8 0,0 -0,8 -2,5 SLS 7 0,0 0,5 8,3 0,0 -1,0 -3,0 ULS 1a 1,3 2,3 12,0 -0,6 -1,4 -6,4 ULS 3 0,4 1,0 10,2 -0,1 -1,2 -4,5 ULS 4 0,0 1,0 9,5 0,0 -1,0 -3,9 ULS 6b 0,2 0,7 8,9 0,0 -1,1 -3,3 ULS 7 0,0 0,0 -1,0 -2,7 0,5 8,8 150ct2f3 SLS 1a -0,6 -1,3 -5,7 1,2 2,0 11,0 SLS 3 0,4 1,0 9,7 -0,2 -1,2 -4,2 SLS 4 0,0 1,0 9,4 0,0 -1,0 -4,0 SLS 6 0,0 0,7 7,8 0,0 -0,8 -2,5 SLS 7 0,0 0,6 0,0 -1,1 -3,0 8,3

2,3

1,1

1,0

0,8

0,5

11,8

10,1

9,5

8,8

8,8

-0,7

-0,2

0,0

-0,1

0,0

-1,4

-1,2

-1,0

-1,1

-1,1

-6,2

-4,3

-3,9

-3,2

-2,7

ULS 1a

ULS 3

ULS 4

ULS 6b

ULS 7

1,4

0,5

0,0

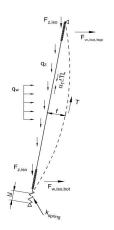
0,2

0,0

18-6-2021 13 van 13

ZWO380 D2.2 OSP Mast 19a Portaal 19a

Project: Masttype: Mast:


Auteur: Versie: TBR Geleiderbelastingen v1.9

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

ULS (bezwijksterkte) NEN-EN503			341-2-15:20)19				
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γQ		γ _a
		°C	G _{k,mast}	G _{k,geleider}	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,15	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,40	0,00	0,0
ULS 3	Wind+ijs	- 5°	1,15	1,15	0,00	0,42	1,30	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,00	0,42	1,30	0,0
ULS 4	Koude+wind	-20°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,00	0,28	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,15	1,15	1,30	0,28	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 7	Permanent	10°	1,30	1,30	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwij	ksterkte, enkel voor hoekmasten: a	fwezigheid geleid	ders)	γ _G	γ _Q			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,15	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,15	1,15	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,15	1,15	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,15	1,15	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,0	0,24	0,0	0,0
SLS (contro	le van de vervormingen, vermoeiing	g, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	1,00	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,30	1,00	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen	6
Aantal belastingcombinaties ULS	59
Aantal belastingcombinaties SPLS	210
Aantal belastingcombinaties SLS	15
Aantal knooplasten	5112

SchematisationDe trekkracht in de afloper wordt bepaald met de toestandsvergelijking voor een gekromde kabel. In de rekstijfheid van de kabel is de invloed van de veer verdisconteerd.

18-6-2021 1 van 5

Project: Masttype: Mast: Portaal 19a

- Tabellen met geleiderbelastingen

 In de onderstaande drie tabellen is weergegeven:

 De trekkracht per belastingcombinatie en de bijbehorende zeeg en veerverlenging

 De geleiderbelastingen in het lokale assenstelsel voor het onderste bevestigingspunt

 De maximale waarden voor de reacties onder en boven in het globale assenstelsel

Trekkracht, zeeg en veerverlenging

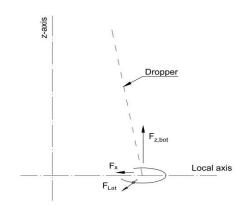
Geleider	Combinatie		Veer-	veer- verlengin g [m]	rek- kracht initieel [kN]	Trek- kracht [kN]
150ct1f1	SLS 1a	0,40	0,009	0,020	5,7	10,0
	SLS 3	0,28	0,005	0,017	5,7	8,3
	SLS 4	0,20	0,005	0,016	5,7	8,0
	SLS 6	0,24	0,002	0,014	5,7	6,8
	SLS 7	0,18	0,000	0,011	5,7	5,7
	ULS 1a	0,45	0,012	0,023	7,0	11,6
	ULS 3	0,32	0,007	0,018	7,1	9,1
	ULS 4	0,23	0,005	0,017	7,0	8,3
	ULS 6b	0,26	0,003	0,014	7,0	7,2
150ct1f2	SLS 1a	0,40	0,009	0,020	5,7	10,0
	SLS 3	0,28	0,005	0,017	5,7	8,3
	SLS 4	0,20	0,005	0,016	5,7	8,0
	SLS 6	0,24	0,002	0,014	5,7	6,8
	SLS 7	0,18	0,000	0,011	5,7	5,7
	ULS 1a	0,45	0,012	0,023	7,0	11,6
	ULS 3	0,32	0,007	0,018	7,1	9,1
	ULS 4	0,23	0,005	0,017	7,0	8,3
	ULS 6b	0,26	0,003	0,014	7,0	7,2
150ct1f3	SLS 1a	0,40	0,009	0,020	5,7	10,0
	SLS 3	0,28	0,005	0,017	5,7	8,3
	SLS 4	0,20	0,005	0,016	5,7	8,0
	SLS 6	0,24	0,002	0,014	5,7	6,8
	SLS 7	0,18	0,000	0,011	5,7	5,7
	ULS 1a	0,45	0,012	0,023	7,0	11,6
	ULS 3	0,32	0,007	0,018	7,1	9,1
	ULS 4	0,23	0,005	0,017	7,0	8,3
	ULS 6b	0,26	0,003	0,014	7,0	7,2

Controle iteratieproces

Geleider	Iteratie	
bl1		0
bl2		0
150ct1f	ок	
150ct1f	ок	
150ct1f	ок	
150ct2f	:OK	
150ct2f	ок	
150ct2f	ОК	
bl3	-	0

18-6-2021 2 van 5

Project: Masttype: Mast: Portaal 19a

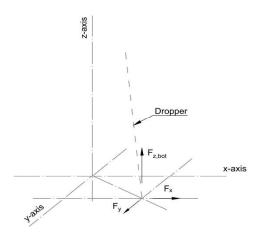

Belastingen in lokale richting geleider

De belastingen op het onderste bevestigingspunt voor het dimensioneren van de ondersteuningsconstructie

De richting van de laterale kracht wordt bepaald door de windrichting en kan in alle richtingen aangrijpen.

De resulterende horizontale kracht kan worden afgeleid uit de vectoriële optelling van de kracht in x-richting en laterale kracht.

Combinatie1	Fx,lok,bot [kN]	Flat,bot [kN]	Fz_bot [kN]
SLS 1a	1,4	0,8	-7,3
SLS 3	1,2	0,3	-5,6
SLS 4	1,1	0,2	-5,3
SLS 6	1,0	0,2	-4,1
SLS 7	0,8	0,0	-3,0
ULS 1a	1,7	1,1	-8,5
ULS 3	1,3	0,4	-5,9
ULS 4	1,2	0,2	-5,2
ULS 6b	1,0	0,2	-4,2
SLS 1a	1,4	0,8	-7,4
SLS 3	1,2	0,3	-5,6
SLS 4	1,1	0,2	-5,3
SLS 6	1,0	0,2	-4,2
SLS 7	0,8	0,0	-3,0
ULS 1a	1,6	1,1	-8,5
ULS 3	1,3	0,4	-5,9
ULS 4	1,2	0,2	-5,3
ULS 6b	1,0	0,2	-4,2
SLS 1a	1,4	0,8	-7,4
SLS 3	1,2	0,3	- 5,6
SLS 4	1,1	0,2	- 5,3
SLS 6	1,0	0,2	-4,2
SLS 7	0,8	0,0	-3,0
ULS 1a	1,6	1,1	-8,5
ULS 3	1,3	0,4	-5,9
ULS 4	1,2	0,2	-5,3
ULS 6b	1,0	0,2	-4,2


18-6-2021 3 van 5

Project: Masttype: Mast: Portaal 19a

Maximale waarden in globale assenstelsel

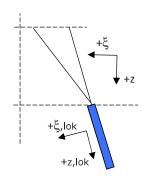
De maximale waarden van de verticale kracht en de resulterende horizontale kracht per belastingcombinatie Zowel voor het bovenste als het onderste bevestigingspunt

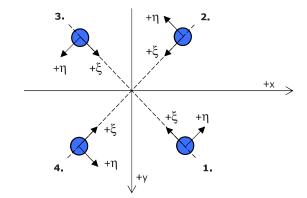
eleider	Combinatie	Fx_top [kN]	Fy_top [kN	Fz_top [kN]	Fx_bot [kN]	Fy_bot [kN]	Fz_bot [kN]
150ct1f1	SLS 1a	1,8	0,3	12,7	-1,6	0,0	- 7,3
	SLS 3	0,9	0,0	11,0	-1,1	0,0	-5,6
	SLS 4	0,4	0,0	10,6	-0,7	0,0	-5,3
	SLS 6	0,3	0,0	9,5	-0,7	0,0	-4,1
	SLS 7	0,3	0,0	8,3	-0,5	0,0	-3,0
	ULS 1a	2,5	0,7	14,6	-2,1	0,0	-8,5
	ULS 3	1,1	0,0	12,2	-1,2	0,0	-5,9
	ULS 4	0,4	0,0	11,4	-0,8	0,0	-5,2
	ULS 6b	0,7	0,0	10,3	-0,9	0,0	-4,2
	ULS 7	0,3	0,0	9,2	-0,6	0,0	- 2,3
150ct1f2	SLS 1a	1,7	0,3	12,7	-1,5	0,0	-7,4
	SLS 3	0,8	0,0	11,0	-0,9	0,0	-5,6
	SLS 4	0,3	0,0	10,6	-0,6	0,0	-5,3
	SLS 6	0,3	0,0	9,5	-0,5	0,0	-4,2
	SLS 7	0,2	0,0	8,3	-0,4	0,0	-3,0
	ULS 1a	2,3	0,7	14,6	-1,9	0,0	-8,5
	ULS 3	1,0	0,0	12,2	-1,1	0,0	-5,9
	ULS 4	0,3	0,0	11,4	-0,6	0,0	-5,3
	ULS 6b	0,6	0,0	10,3	-0,7	0,0	-4,2
	ULS 7	0,2	0,0	9,2	-0,4	0,0	-2,3
150ct1f3	SLS 1a	1,7	0,3	12,7	-1,5	0,0	-7,4
	SLS 3	0,8	0,0	11,0	-0,9	0,0	-5,6
	SLS 4	0,3	0,0	10,6	-0,6	0,0	-5,3
	SLS 6	0,3	0,0	9,5	-0,5	0,0	-4,2
	SLS 7	0,2	0,0	8,3	-0,4	0,0	-3,0
	ULS 1a	2,3	0,7	14,6	-1,9	0,0	-8,5
	ULS 3	1,0	0,0	12,2	-1,1	0,0	-5,9
	ULS 4	0,3	0,0	11,4	-0,6	0,0	-5,3
	ULS 6b	0,6	0,0	10,3	-0,7	0,0	-4,2
	ULS 7	0,2	0,0	9,2	-0,4	0,0	-2,3
150ct2f1	SLS 1a	1,1	2,1	11,4	-0,5	-1,3	-6,1
	SLS 3	0,3	1,0	9,9	-0,1	-1,2	-4,5
	SLS 4	0,0	0,9	9,4	0,0	-1,0	-4,0
	SLS 6	0,0	0,7	7,8	0,0	-0,8	-2,5
	SLS 7	0,0	0,5	8,3	0,0	-1,0	-3,0
		5,5	-,-	-,-	-,-	-,5	-,0

Project: Masttype: ZWO380 D2.2 OSP Mast 19a Portaal

Masttype: Mast:	Portaal 19a						
150ct2f1	ULS 3	0,5	1,2	10,9	-0,2	-1,3	-4,6
	ULS 4	0,0	1,0	9,7	0,0	-0,9	-3,5
	ULS 6b	0,3	0,8	9,4	0,0	-1,1	-3,2
	ULS 7	0,0	0,5	9,2	0,0	-1,1	-2,3
150ct2f2	SLS 1a	1,1	2,1	11,4	-0,5	-1,3	-6,1
	SLS 3	0,3	1,0	9,9	-0,1	-1,2	-4,5
	SLS 4	0,0	0,9	9,4	0,0	-1,0	-4,0
	SLS 6	0,0	0,7	7,8	0,0	-0,8	-2,5
	SLS 7	0,0	0,5	8,3	0,0	-1,0	-3,0
	ULS 1a	1,6	2,8	13,3	-0,8	-1,5	- 7,2
	ULS 3	0,5	1,2	10,9	-0,2	-1,3	-4,6
	ULS 4	0,0	1,0	9,7	0,0	-0,9	-3,5
	ULS 6b	0,3	0,8	9,4	0,0	-1,1	-3,2
	ULS 7	0,0	0,5	9,2	0,0	-1,1	- 2,3
150ct2f3	SLS 1a	1,2	2,1	11,2	-0,7	-1,4	-5,9
	SLS 3	0,4	1,0	9,8	-0,2	-1,2	-4,3
	SLS 4	0,0	1,0	9,4	0,0	-1,0	-4,0
	SLS 6	0,0	0,7	7,8	0,0	-0,8	-2,5
	SLS 7	0,0	0,6	8,3	0,0	-1,1	-3,0
	ULS 1a	1,8	2,8	13,2	-0,9	-1,5	- 7,0
	ULS 3	0,6	1,2	10,8	-0,3	-1,3	-4,4
	ULS 4	0,0	1,0	9,7	0,0	-0,9	- 3,5
	ULS 6b	0,3	0,8	9,2	-0,1	-1,1	-3,1
	ULS 7	0,0	0,5	9,2	0,0	-1,1	-2,3

18-6-2021 5 van 5




Project: ZW-Oost RSD-WDT150

Masttype: Lijnportaal Mast: 19a

Auteur: MKh
Oplegreacties per randstijl Versie: 1.4

Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

Assenstelsels

Maximale drukbelasting

Stijl	Combinatie	R _v	R _v	R _z	R_n	R _F	$R_{\epsilon,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 1a_45 Ba Ct1	-1	-67	-162	-46	-48	-7	-169
2	SPLS 1a_0 Ba All Cts	-25	23	-101	-1	-34	0	-107
3	ULS 3_135	51	36	-203	10	-62	-7	-212
4	ULS 3_135	196	-208	-919	9	-286	-26	-963

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	3	18	58	11	15	4	60
2	ULS 3_0,9_135	178	-163	766	11	241	19	802
3	SPLS 1a_0,9_0,9_45 Ba All Cts	-11	-11	42	0	15	-1	45
4	SPIS 1a 0.9 0.9 0 Ba All Cts	-4	1	8	2	4	-1	9

Maximale torsiebelasting (positief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 4_90 Ba Ct2	-57	64	36	85	4	8	36
2	SPLS 4_90 Ba Ct2	132	-7	281	88	98	-3	298
3	SPLS 4_90 Ba Ct2	87	-51	-111	98	-25	-12	-113
4	SPLS 4_0,9_90 Ba Ct2	36	-167	-453	92	-144	-10	- 475

Maximale torsiebelasting (negatief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 4_0,9_90 Ba Ct1	43	-60	-63	-73	-12	-9	-63
2	SPLS 4_90 Ba Ct1	36	-143	417	-75	127	15	436
3	SPLS 4_90 Ba Ct1	-34	82	-99	-82	-34	0	-104
4	SPLS 4 90 Ba Ct1	163	-49	-499	-81	-150	-19	-520

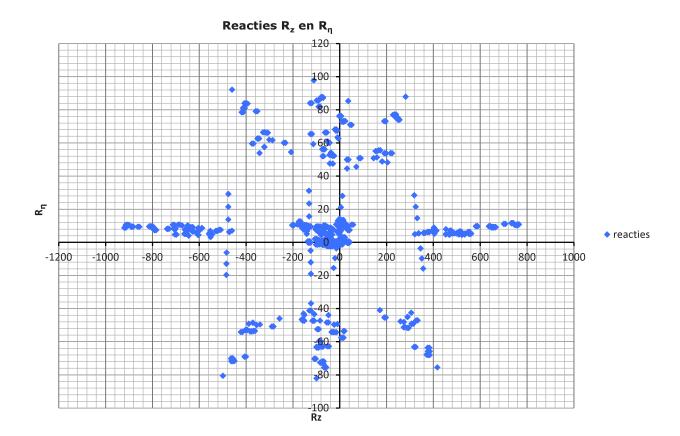
Combinatie Ftrek+Fh

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 4_0,9_90 Ba Ct2	-56	65	43	85	7	8	43
2	ULS 3_0,9_135	178	-163	766	11	241	19	802
3	SPLS 4_90 Ba Ct2	87	-51	-111	98	-25	-12	-113
4	SPLS 4_0,9_90 Ba Ct2	36	-167	-453	92	-144	-10	-475

Permanente belasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SLS 7	-4	5	5	7	0	1	5
2	SLS 7	97	- 87	415	7	130	11	435
3	SLS 7	35	25	-137	7	-43	-4	-143
4	SLS 7	119	-126	-554	5	-173	-15	-581

Omhullenden ongeacht stijl

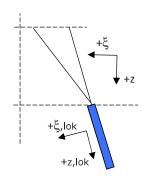

Belasting	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Max. druk	ULS 3_135	196	-208	-919	9	-286	-26	-963
Max. trek	ULS 3_0,9_135	178	-163	766	11	241	19	802
Max. pos. torsie	SPLS 4_0,9_90 Ba Ct2	85	-53	-104	98	-23	-12	-106
Max. neg. torsie	SPLS 4_90 Ba Ct1	-34	82	-99	-82	-34	0	-104
Comb. trek+torsie	ULS 3_0,9_135	178	-163	766	11	241	19	802

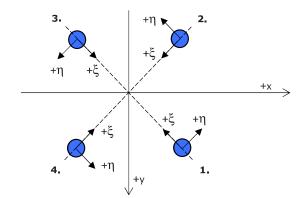
Maximale drukbelasting SLS

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 1a_45	-43	-30	-148	9	-52	2	-157
2	ULS 5a Ba 22	92	-52	319	28	102	6	335
3	ULS 3_135	51	36	-203	10	-62	-7	-212
4	ULS 3_135	196	-208	-919	9	-286	-26	-963

Maximale trekbelasting SLS

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	3	18	58	11	15	4	60
2	ULS 3_0,9_135	178	-163	766	11	241	19	802
3	ULS 1a_0,9_0,9_45	0	-12	13	8	8	-4	15
4	ULS 5a Ba 22	85	-127	-475	29	-150	-12	-498




Project: ZW-Oost RSD-WDT150

Masttype: Lijnportaal Mast: 19a

Auteur: MKh
Oplegreacties per randstijl Versie: 1.4

Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

Assenstelsels

M:	avima	le d	ruk	hela	stina
141	axiiiia	ic u	II UK	DCIG	ıstıllu

Stijl	Combinatie	R_{x}	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 1a_45	-54	-39	-188	11	-66	2	-199
2	SPLS 1a_0 Ba All Cts	-26	24	-106	-1	-36	0	-112
3	ULS 3_135	56	40	-225	11	-68	-8	-235
4	ULS 3 135	217	-231	-1021	10	-317	-30	-1068

Maximale trekbelasting

Stijl	Combinatie	R_{x}	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	4	21	69	12	18	5	71
2	ULS 3_0,9_135	199	-182	855	12	269	21	897
3	ULS 1a_0,9_0,9_45	-8	-20	46	9	20	-4	50
4	SPIS 1a 0.9 0.9 0 Ba All Cts	-4	1	8	2	4	-1	9

Maximale torsiebelasting (positief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 4_90 Ba Ct2	-60	65	35	88	4	8	34
2	SPLS 4_0,9_90 Ba Ct2	138	-9	298	91	104	-3	315
3	SPLS 4_90 Ba Ct2	91	- 52	-118	101	-27	-13	-121
4	SPLS 4_0,9_90 Ba Ct2	37	-172	-466	95	-148	-10	- 489

Maximale torsiebelasting (negatief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 4_0,9_90 Ba Ct1	45	-62	-63	-76	-12	-10	-64
2	SPLS 4_90 Ba Ct1	36	-147	427	-78	129	15	446
3	SPLS 4_90 Ba Ct1	-34	85	-106	-85	-36	0	-112
4	SPLS 4 90 Ba Ct1	169	-51	-518	-83	-156	-20	-540

Combinatie Ftrek+Fh

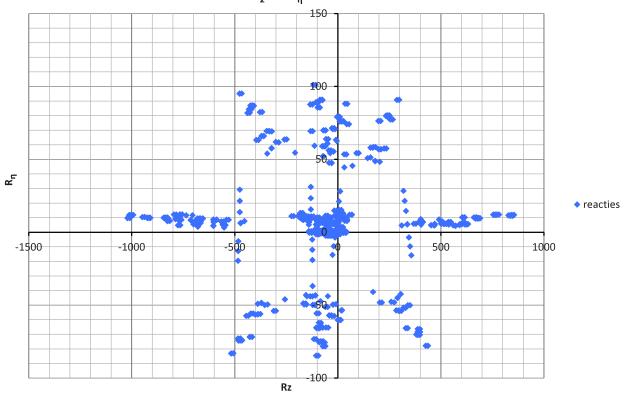
Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R _ξ	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 4_0,9_90 Ba Ct2	-57	68	46	88	7	8	46
2	ULS 3_0,9_135	199	-182	855	12	269	21	897
3	SPLS 4_90 Ba Ct2	91	-52	-118	101	-27	-13	-121
4	SPLS 4_0,9_90 Ba Ct2	37	-172	-466	95	-148	-10	-489

Permanente belasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SLS 7	-4	5	5	7	0	1	5
2	SLS 7	97	- 87	415	7	130	11	435
3	SLS 7	35	25	-137	7	-43	-4	-143
4	SLS 7	119	-126	-554	5	-173	-15	-581

Omhullenden ongeacht stijl

Belasting	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Max. druk	ULS 3_135	217	-231	-1021	10	-317	-30	-1068
Max.trek	ULS 3_0,9_135	199	-182	855	12	269	21	897
Max. pos. torsie	SPLS 4_0,9_90 Ba Ct2	88	-55	-107	101	-23	-13	-109
Max. neg. torsie	SPLS 4_90 Ba Ct1	-34	85	-106	-85	-36	0	-112
Comb. trek+torsie	ULS 3_0,9_135	199	-182	855	12	269	21	897


Maximale drukbelasting SLS

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 1a_45	-54	-39	-188	11	-66	2	-199
2	ULS 5a Ba 22	92	-52	319	28	102	6	335
3	ULS 3_135	56	40	-225	11	-68	-8	-235
4	ULS 3_135	217	-231	-1021	10	-317	-30	-1068

Maximale trekbelasting SLS

i idxiiiidje ti	choclasting of							
Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	4	21	69	12	18	5	71
2	ULS 3_0,9_135	199	-182	855	12	269	21	897
3	ULS 1a_0,9_0,9_45	- 8	-20	46	9	20	-4	50
4	ULS 5a Ba 22	85	-127	-475	29	-150	-12	-498
	•		,			,	,	

Inhoud

- Uitgangspunten
- Mastconstructie
- Tussenresultaten
- Belastingen initiëel
- Belastingen na aanpassing
p. 15

Gegevens

Norm NEN-EN50341-2-15:2019

Initieel

Gevolgklasse CC2 Betrouwbaarheidsniveau Afkeur Referentieperiode 30 jaar

Na aanpassing

Gevolgklasse CC2
Betrouwbaarheidsniveau Verbouw
Referentieperiode 50 jaar

Windgebied III
Windsnelheid 24,5 m/s
Terreincategorie II
Reductie factor Cdir 1,00
IJsgebied B

MasttypeHoekmastMasthoogte32 mMax. veldlengte323 mLijnhoek169°Trekparameter1100 m

Wind span 163 m EDS Weight span 620 m Min. Weight span 162 m Max. Weight span 9412 m

0.0	2021-07-28			
ISSUE	DATE	REVISION	CHK'D	APP'D

Client:

Title:

Berekening masttype H150

JOB No.	-	DATE	-
DRAWN	-	CHKD	-
DESIGN	-	APPD	-

Document name:

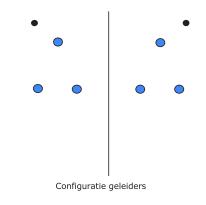
ZWO380 D2.2 OSP Mast 97_H150_97_Report.pdf

Project number:

Project client number:

0.0

Project: Tower: Number: H150


Auteur: TBR Geleiderbelastingen Versie: v11.9

Algemeen

Angelieeri Benaming Masttype Aantal circuits Configuratie Aantal bliksemgeleiders H150 Hoekmast 2-circuit-donau

Uitgangspunten

NEN-EN50341-2-15:2019 Norm Gevolgklasse initieel Betrouwbaarheidsniveau initieel Afkeur CC2-0 30 jaar CC2 Verbouw 50 jaar III Referentieperiode initieel Gevolgklasse na aanpassing Betrouwbaarheidsniveau na aanpassing Referentieperiode na aanpassing Windgebied Windsnelheid (m/s) 24,5 m/s II Terreincategorie Reductiefactor c_{dir} IJsgebied fasegeleider IJsgebied bliksemgeleider 1,00 В

Geleiders Back

Teeslag	
diameter Int	rekwaarden P _{back}
2 %	1100
2 %	1100
2 %	1600
2 %	1600
	2 % 2 % 2 % 2 %

Geleiders Ahead							
Omschrijving	Spanning	Geleider	Bundel	IJsgebied	Toeslag	Toeslag	Intrekwaarden
		Ahead	Ah		gewicht	diameter	P _{ahead}
Circuit 1	150 kV	ACSR 20/224	2	В	2 %	2 %	50
Circuit 2	150 kV	ACSR 20/224	2	В	2 %	2 %	50
Bliksemdraad 1		Niet aanwezig	1	Α	2 %	2 %	1600
Bliksemdraad 2		Niet aanwezig	1	Α	2 %	2 %	1600

Isolatoren	(1)			
Omschrijving	Ophanging	Gewicht	Lengte	Windopp.
		[kN]	[m]	[m ²]
Circuit 1	Afspanketting	1,50	4,50	1,00
Circuit 2	Afspanketting	1,50	4,50	1,00
Bliksemdraad 1	Afspanketting	0,10	0,20	0,10
Bliksemdraad 2	Afspanketting	0,10	0,20	0,10

Eigenschappen gelden voor geheel van de isolatorset

Ophanghoogte en positie in mast

	•				Positie in mast	
Circuits	Aandui	ding Nummer	Ophanghoogte	Aangrijppunt	Horizontale afstand	
Circuit 1	10	150ct1f1	20,9 m	20,9 m	9,5 m	
Circuit 1	11	150ct1f2	20,9 m	20,9 m	4,6 m	
Circuit 1	12	150ct1f3	27,6 m	27,6 m	4,4 m	
Circuit 2	20	150ct2f1	20,9 m	20,9 m	-4,6 m	
Circuit 2	21	150ct2f2	20,9 m	20,9 m	-9,5 m	
Circuit 2	22	150ct2f3	27,6 m	27,6 m	-4,4 m	
Bliksemdraad 1	1	bl1	29,5 m	29,5 m	8,8 m	
Bliksemdraad 2	3	bl2	29,5 m	29,5 m	-8,8 m	

28-7-2021 2 van 21

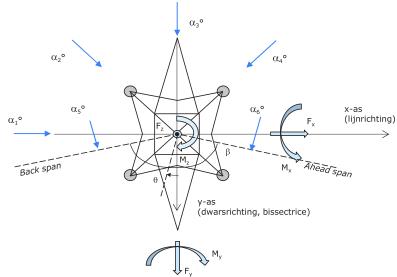
Project: Tower: Number:

Hoogteaanpassing naastgelegen masten (aanpassing wind- en weight span)

	васк	Anead	
Verhoging voor windbelasting	0,0 m	0,0 m	(positief: omhoog)
Verlaging voor verticale belasting	0,0 m	0,0 m	(negatief: omlaag, grotere weight span)

Verlaging: Niet in 0,9EG-combinaties

Hoogteafwijking mastbeeld naastgelegen masten en richtingsverandering t.o.v. Lijnrichting


mooglearwijking mastbeeld naastgelegen masten en nentingsverandering t.o.v. Lijninenting							
			Hoogte	everschil	Richtingsv	Richtingsverandering	
Circuits	Aanduiding	g Nummer	∆h_back	∆h_ahead	∆y_back	∆y_ahead	
Circuit 1	10	150ct1f1	-0,7	-20,6 m	0,0	-2,5 m	
Circuit 1	11	150ct1f2	-0,7	-20,6 m	0,0	-0,4 m	
Circuit 1	12	150ct1f3	-0,1	-27,4 m	0,0	-2,0 m	
Circuit 2	20	150ct2f1	-0,7	-20,6 m	0,0	-0,4 m	
Circuit 2	21	150ct2f2	-0,7	-20,6 m	0,0	2,5 m	
Circuit 2	22	150ct2f3	-0,1	-27,4 m	0,0	2,0 m	
Bliksemdraad 1	1	bl1	0,0	0,0 m	0,0	0,0 m	
Bliksemdraad 2	3	bl2	0,0	0,0 m	0,0	0,0 m	

Lijn- en mastgegevens

		Back	Ahead	
		323,0	3,0 m	
Ruling span $\sqrt{(\Sigma L^3/\Sigma L)}$		316,2	3,0 m	
Lijnhoek	β	169 °		
Rotatie mast t.o.v. bissectrice	θ	0 °		
Vaklengte		632	3 m	
Hoogte onderkant mast t.o.v. ma	aiveld	0,5 m		
Beschouwde windrichtingen	α_1	0 °		
Windrichtingen volgens:	α_2	45 °		
Geleiderbelastingen	α_3	90 °		
	α_4	135 °		
	α_5	84,5 °		
	α_6	95,5 °		

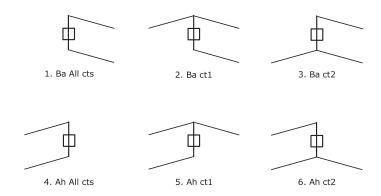
Windrichtingen gelden t.o.v. hoofdrichting mastconstructie, niet t.o.v. bissectrice.

Windrichtingen en positieve richtingen belastingen

Beschouwd aantal windrichtingen	
1a	6
3	6
4	1
6	1
Overig	1

28-7-2021 3 van 21

Project: Tower: Number:


Geleiderafval

		SPLS	SPLS - torsie		kelzijdige trek	5a - geleiderbreuk	
		Aanw.	Afw.	Aanw.	Afw.	Aanw.	Afw.
Circuit 1	150ct1f1	1	0	1	0	1	0
Circuit 1	150ct1f2	1	0	1	0	1	0
Circuit 1	150ct1f3	1	0	1	0	1	0
Circuit 2	150ct2f1	0	1	1	0	1	0
Circuit 2	150ct2f2	0	1	1	0	1	0
Circuit 2	150ct2f3	0	1	1	0	1	0
Bliksemdraad 1	bl1	1	0	1	0	1	0
Bliksemdraad 2	bl2	0	1	1	0	1	0

Belastingsituaties SPLS

Beschouwde situaties SPLS: 1 t/m 6, alle mogelijke situaties.

Principe belastingssituaties:

Belastingsituaties 5a. Geleiderbreuk

Beschouwde situaties geleiderbreuk 5a: 1 en 2, alle mogelijke situaties.

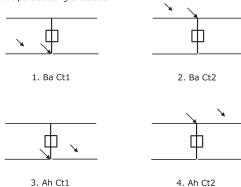
Principe belastingssituaties:

28-7-2021 4 van 21

Project: ZWO380 D2.2 OSP Mast 97

Tower: H150 Number: 97

Belastingsituaties 6. Bouw- en onderhoud

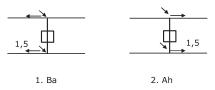

Onder 6a wordt de belasting door aanwezigheid lijnwagen of lijnfiets in combinatie met puntlast op traverse in rekening gebracht. Combinatie 6b bevat geen belastingen in geleider of op traverse. Deze combinatie is toegevoegd om te kunnen combineren met separate controle bordessen etc. De situaties worden in ULS en in iedere SPLS-situatie (in geval van hoekmast) toegepast.

	Fase	Bliksem	
Lijnwagen	3,0 kN	2,0 kN	
Puntlast op traverse	1,0 kN	1,0 kN	

Beschouwde situaties bouw- en onderhoud 6a: 1 en 2, uitgangspunt is symmetrie tussen back / ahead.

Aanwezigheid lijnwagen: Circuit, belasting tegelijk aanwezig in alle geleiders per circuit.

Principe belastingssituaties:


Belastingsituaties 8. Lijndansen als statische belasting

Geleider			
Steunmast fase	0,866 W	1,5 W	
Steunmast bliksem	1,5 EDS	1,5 W	
Hoekmast fase en bliksem	1,5 EDS	1,5 W	

Beschouwde situaties lijndansen 8: Geen (bestaande constructie)

Belasting tegelijk aanwezig in alle geleiders van het circuit.

Principe belastingssituaties:

Belastingcombinatie 8. Lijndansen als dynamische belasting

Alleen van toepassing op hoek- en eindmasten

Belasting bestaat uit EDS-trekbelasting in één van de geleiders aan één zijde van de mast Door gebruiker via het belastingsspectrum van tabel 4.11/NL.1 om te zetten naar spanningspectrum

28-7-2021 5 van 21

ZWO380 D2.2 OSP Mast 97 Project:

H150 Tower: Number:

Mastconstructie

Eigenschappen

Hoekmast H150 0,5 m 32,0 m 140,0 kN Masttype Mastbenaming Voetplaat t.o.v. maaiveld Masthoogte t.o.v. voetplaat Gewicht mast

y-ri. 5,40 m 0,118 -Breedte en helling mast bij fundatie x-ri. 5,40 0,118 Pootsprei Helling van de randstijl Factor spatkracht 1,3 -1,3

Berekening windbelasting

Dynamische invloed G_T 1,00 (Masthoogte < 60 m)

(A1C1sin^2(phi)+A2C2cos^2(phi)) (A1C1sin^2(phi)+A2C2cos^2(phi)) Windbelasting overhoeks op mastlichaam evenredig met: Windbelasting overhoeks op traverse evenredig met:

(1+0,2sin^2(2phi)) (1+0,2sin^2(2phi)) 0,4 Vergroting wind overhoeks mastlichaam Vergroting wind overhoeks traverse

Factor wind evenwijdig t.o.v. haaks op traverse

Eigenschappen mastsecties langsrichting (vooraanzicht, yz-vlak)

h	b_1	b_2	Δh	Δ_{x}	A_0	A_1	$\chi = A_1/A_0$	C_{t}
[m]	[m]	[m]	[m]	[m]	[m ²]	[m ²]	[-]	
7,50	5,40	3,63	7,50	0,118	33,86	6,19	0,18	3,01
14,57	3,63	2,86	7,07	0,054	22,94	5,23	0,23	2,81
21,41	2,86	2,10	6,84	0,056	16,96	4,26	0,25	2,72
25,40	2,10	1,91	3,99	0,024	8,00	2,36	0,30	2,55
29,50	1,91	1,70	4,10	0,026	7,40	2,18	0,29	2,55
32,00	1,70		2,50		2,13	0,29	0,14	3,22
21,41	8,42		2,10		8,84	2,73	0,31	2,51
27,30	7,95		2,20		8,75	2,53	0,29	2,57
	7,50 14,57 21,41 25,40 29,50 32,00 21,41	[m] [m] 7,50 5,40 14,57 3,63 21,41 2,86 25,40 2,10 29,50 1,91 32,00 1,70 21,41 8,42	[m] [m] [m] 7,50 5,40 3,63 14,57 3,63 2,86 21,41 2,86 2,10 25,40 2,10 1,91 29,50 1,91 1,70 32,00 1,70 21,41 8,42	[m] [m] [m] [m] 7,50 5,40 3,63 7,50 14,57 3,63 2,86 7,07 21,41 2,86 2,10 6,84 25,40 2,10 1,91 3,99 29,50 1,91 1,70 4,10 32,00 1,70 2,50 21,41 8,42 2,10	[m] [m] [m] [m] 7,50 5,40 3,63 7,50 0,118 14,57 3,63 2,86 7,07 0,054 21,41 2,86 2,10 6,84 0,056 25,40 2,10 1,91 3,99 0,024 29,50 1,91 1,70 4,10 0,026 32,00 1,70 2,50 21,41 8,42 2,10	[m] [m] <td>[m] [m] [m] [m] [m²] [m²] 7,50 5,40 3,63 7,50 0,118 33,86 6,19 14,57 3,63 2,86 7,07 0,054 22,94 5,23 21,41 2,86 2,10 6,84 0,056 16,96 4,26 25,40 2,10 1,91 3,99 0,024 8,00 2,36 29,50 1,91 1,70 4,10 0,026 7,40 2,18 32,00 1,70 2,50 2,13 0,29 21,41 8,42 2,10 8,84 2,73</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	[m] [m] [m] [m] [m²] [m²] 7,50 5,40 3,63 7,50 0,118 33,86 6,19 14,57 3,63 2,86 7,07 0,054 22,94 5,23 21,41 2,86 2,10 6,84 0,056 16,96 4,26 25,40 2,10 1,91 3,99 0,024 8,00 2,36 29,50 1,91 1,70 4,10 0,026 7,40 2,18 32,00 1,70 2,50 2,13 0,29 21,41 8,42 2,10 8,84 2,73	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Eigenschappen mastsecties dwarsrichting (zijaanzicht, xz-vlak)											
Omschrijving	h	b_1	b_2	∆h	Δ_{x}	A_0	A_1	$\chi = A_1/A_0$	C_t		
	[m]	[m]	[m]	[m]	[m]	[m²]	[m ²]	[-]			
Broekstuk	7,50	5,40	3,63	7,50	0,118	33,86	6,19	0,18	3,01		
Eerste tussenstuk	14,57	3,63	2,86	7,07	0,054	22,94	5,23	0,23	2,81		
Tweede tussenstuk	21,41	2,86	2,10	6,84	0,056	16,96	4,26	0,25	2,72		
Bovenstuk 1	25,40	2,10	1,91	3,99	0,024	8,00	2,36	0,30	2,55		
Bovenstuk 2	29,50	1,91	1,70	4,10	0,026	7,40	2,18	0,29	2,55		
Topstuk	32,00	1,70		2,50		2,13	0,29	0,14	3,22		
Ondertraverse	21,41	8,42		2,10		8,84	2,73	0,31	2,51		
Boventraverse	27,30	7,95		2,20		8,75	2,53	0,29	2,57		

NB: oppervlakte traverse dwarsrichting wordt in berekening gereduceerd.

28-7-2021 6 van 21

Project: ZWO380 D2.2 OSP Mast 97

Project: ZWO3 Tower: H150 Number: 97

Windoppervlak feeders telecominstallaties

Broekstuk Eerste tussenstuk Tweede tussenstuk Bovenstuk 1 Bovenstuk 2

 $\label{eq:constraints} \mbox{Invoer antennes} \\ \mbox{Omschrijving} & \mbox{A (m}^2) & \mbox{h (m)} & \mbox{C}_{\mbox{\tiny f}} (m) \\ \mbox{} \end{array}$

Omschrijving
Antenne top
Antenne o.t.

Belastingen mastsectie langsrichting (x-richting) per windrichting

p_w	F _{x1}	F _{x2}	F _{x3}	F _{x4}	h _{ef}	M_{y1}	M_{y2}	M_{y3}	M_{y4}
[kN/m ²]	[kN]	[kN]	[kN]	[kN]	[m]	[kNm]	[kNm]	[kNm]	[kNm]
0,70	13,0	11,1	0,0	-11,1	3,8	48,9	41,5	0,0	-41,5
0,73	10,7	9,1	0,0	-9,1	11,0	117,8	99,9	0,0	-99,9
0,85	9,8	8,3	0,0	-8,3	18,0	177,0	150,2	0,0	-150,2
0,93	5,6	4,7	0,0	-4,7	23,4	130,6	110,8	0,0	-110,8
0,96	5,4	4,6	0,0	-4,6	27,5	147,4	125,1	0,0	-125,1
1,00	0,9	0,8	0,0	-0,8	30,8	28,6	24,3	0,0	-24,3
0,90	12,4	7,3	0,0	-7,3	22,1	273,1	162,2	0,0	-162,2
0,97	12,6	7,5	0,0	-7,5	28,0	354,3	210,4	0,0	-210,4
	[kN/m ²] 0,70 0,73 0,85 0,93 0,96 1,00 0,90	[kN/m²] [kN] 0,70 13,0 0,73 10,7 0,85 9,8 0,93 5,6 0,96 5,4 1,00 0,9 0,90 12,4	[kN/m²] [kN] [kN] 0,70 13,0 11,1 0,73 10,7 9,1 0,85 9,8 8,3 0,93 5,6 4,7 0,96 5,4 4,6 1,00 0,9 0,8 0,90 12,4 7,3	[kN/m²] [kN] [kN] [kN] 0,70 13,0 11,1 0,0 0,73 10,7 9,1 0,0 0,85 9,8 8,3 0,0 0,93 5,6 4,7 0,0 0,96 5,4 4,6 0,0 1,00 0,9 0,8 0,0 0,90 12,4 7,3 0,0	[kN/m²] [kN] [kN] [kN] [kN] 0,70 13,0 11,1 0,0 -11,1 0,73 10,7 9,1 0,0 -9,1 0,85 9,8 8,3 0,0 -8,3 0,93 5,6 4,7 0,0 -4,7 0,96 5,4 4,6 0,0 -4,6 1,00 0,9 0,8 0,0 -0,8 0,90 12,4 7,3 0,0 -7,3	[kN/m²] [kN] [kN] [kN] [m] 0,70 13,0 11,1 0,0 -11,1 3,8 0,73 10,7 9,1 0,0 -9,1 11,0 0,85 9,8 8,3 0,0 -8,3 18,0 0,93 5,6 4,7 0,0 -4,7 23,4 0,96 5,4 4,6 0,0 -4,6 27,5 1,00 0,9 0,8 0,0 -0,8 30,8 0,90 12,4 7,3 0,0 -7,3 22,1	[kN/m²] [kN] [kN]	[kN/m²] [kN] [kN] [kN] [m] [kNm] [kNm] 0,70 13,0 11,1 0,0 -11,1 3,8 48,9 41,5 0,73 10,7 9,1 0,0 -9,1 11,0 117,8 99,9 0,85 9,8 8,3 0,0 -8,3 18,0 177,0 150,2 0,93 5,6 4,7 0,0 -4,7 23,4 130,6 110,8 0,96 5,4 4,6 0,0 -4,6 27,5 147,4 125,1 1,00 0,9 0,8 0,0 -0,8 30,8 28,6 24,3 0,90 12,4 7,3 0,0 -7,3 22,1 273,1 162,2	[kN/m²] [kN] [kN] [kN] [m] [kNm] [kNm] [kNm] 0,70 13,0 11,1 0,0 -11,1 3,8 48,9 41,5 0,0 0,73 10,7 9,1 0,0 -9,1 11,0 117,8 99,9 0,0 0,85 9,8 8,3 0,0 -8,3 18,0 177,0 150,2 0,0 0,93 5,6 4,7 0,0 -4,7 23,4 130,6 110,8 0,0 0,96 5,4 4,6 0,0 -4,6 27,5 147,4 125,1 0,0 1,00 0,9 0,8 0,0 -0,8 30,8 28,6 24,3 0,0 0,90 12,4 7,3 0,0 -7,3 22,1 273,1 162,2 0,0

Totaal 70,4 53,4 0,0 -53,4 1277,7 924,4 0,0 -924,4

Belastingen mastsectie dwarsrichting (y-richting) per windrichting

Omschrijving	p_{w}	F_{y1}	F_{y2}	F_{y3}	F_{x4}	h_{ef}	$M_{\times 1}$	M_{x2}	M_{x3}	M_{x4}
	[kN/m ²]	[kN]	[kN]	[kN]	[kN]	[m]	[kNm]	[kNm]	[kNm]	[kNm]
Broekstuk	0,70	0,0	11,1	13,0	11,1	3,8	0,0	41,5	48,9	41,5
Eerste tussenstuk	0,73	0,0	9,1	10,7	9,1	11,0	0,0	99,9	117,8	99,9
Tweede tussenstuk	0,85	0,0	8,3	9,8	8,3	18,0	0,0	150,2	177,0	150,2
Bovenstuk 1	0,93	0,0	4,7	5,6	4,7	23,4	0,0	110,8	130,6	110,8
Bovenstuk 2	0,96	0,0	4,6	5,4	4,6	27,5	0,0	125,1	147,4	125,1
Topstuk	1,00	0,0	0,8	0,9	0,8	30,8	0,0	24,3	28,6	24,3
Ondertraverse	0,90	0,0	7,3	4,9	7,3	22,1	0,0	162,2	109,3	162,2
Boventraverse	0,97	0,0	7,5	5,1	7,5	28,0	0,0	210,4	141,7	210,4

Totaal 0,0 53,4 55,4 53,4 0,0 924,4 901,2 924,4

Resulterende belastingen vanuit mastconstructie incl. antenne zonder geleiders niveau fundatie (kar. waarde)

Belasting / windrichting	F _x	F _y	F _z	M _x	M_y	M _z	
	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	
Permanente belasting	0	0	140	0	0	0	
Windrichting 0°	70	0	0	0	1278	0	
Windrichting 45°	53	53	0	924	924	0	
Windrichting 90°	0	55	0	901	0	0	
Windrichting 135°	-53	53	0	924	-924	0	

28-7-2021 7 van 21

Project: Tower: Number:

Tussenresultaten geleiderbelastingen

Gel	eide	ers t	oack

Circuit	Geleider	Diameter	А	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Circuit 2	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Bliksemdraad 1	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05
Bliksemdraad 2	ACSR 30/52 PETREL	11,8	82,4	3,71	105500	1,53E-05

Geleiders ahead

deletaers affeau						
Circuit	Geleider	Diameter	Α	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Circuit 2	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Bliksemdraad 1	Niet aanwezig					
Bliksemdraad 2	Niet aanwezig					

Verticale belasting back

-	or create belaseing back							
Ci	rcuit	Bundel	Toeslag	$W_{z,G}$	IJsgebied	Formule	$W_{z,ijs}$	W _{z,ijs,bundel}
		[-]	[%]	[N/m]			[N/m]	[N/m]
Ci	rcuit 1	2	2	15,5	В	4+0,2d	8,1	16,1
Ci	rcuit 2	2	2	15,5	В	4+0,2d	8,1	16,1
BI	iksemdraad 1	1	2	3,8	Α	15+0,4d	19,7	19,7
BI	iksemdraad 2	1	2	3,8	Α	15+0,4d	19,7	19,7

Verticale belasting ahead											
Circuit	Bundel	Toeslag	$W_{z,G}$	IJsgebied	Formule	$W_{z,ijs}$	W _{z,ijs,bundel}				
	[-]	[%]	[N/m]			[N/m]	[N/m]				
Circuit 1	2	2	15,5	В	4+0,2d	8,1	16,1				
Circuit 2	2	2	15,5	В	4+0,2d	8,1	16,1				
Bliksemdraad 1	1	2		Α	15+0,4d						
Bliksemdraad 2	1	2		A	15+0,4d						

Isolatoren									
Geleider	$G_{isolator}$	Aantal	$F_{v,iso}$	Lengte	Windopp. W	/indhoogte	Stuwdruk	Vormfactor	$F_{h,iso}$
	[kN]	-	[kN]	[m]	[m ²]	[m]	[kN/m ²]	[-]	[kN]
150ct1f1	1,50	1	1,5	4,5	1,0	21,40	0,90	1,2	1,08
150ct1f2	1,50	1	1,5	4,5	1,0	21,40	0,90	1,2	1,08
150ct1f3	1,50	1	1,5	4,5	1,0	28,10	0,97	1,2	1,16
150ct2f1	1,50	1	1,5	4,5	1,0	21,40	0,90	1,2	1,08
150ct2f2	1,50	1	1,5	4,5	1,0	21,40	0,90	1,2	1,08
150ct2f3	1,50	1	1,5	4,5	1,0	28,10	0,97	1,2	1,16
bl1	0,10	1	0,1	0,2	0,1	30,00	0,99	1,2	0,12
bl2	0,10	1	0,1	0,2	0,1	30,00	0,99	1,2	0,12

28-7-2021 8 van 21

Project: ZWO380 D2.2 OSP Mast 97 Tower: H150 Number: 97

Windbelasting back

Willabelastill	g back										
	hoogte										
Geleider	wind	Stuwdruk	G_{c_dwars}	G_{c_trek}	C_c	$d_{toeslag}$	w_y	$W_{y,vak}$	$D_{ijs,toeslag}$	$W_{y,ijs}$	W _{y,ijs,vak}
	[m]	[kN/m²]	[-]	[-]	[-]	[mm]	[N/m]	[N/m]	[mm]	[N/m]	[N/m]
150ct1f1	13,2	0,77	0,58	0,53	1,20	20,75	22,3	20,2	40,2	43,2	39,1
150ct1f2	13,2	0,77	0,58	0,53	1,20	20,75	22,3	20,2	40,2	43,2	39,1
150ct1f3	20,1	0,88	0,62	0,56	1,20	20,75	27,2	24,7	40,2	52,7	47,8
150ct2f1	13,2	0,77	0,58	0,53	1,20	20,75	22,3	20,2	40,2	43,2	39,1
150ct2f2	13,2	0,77	0,58	0,53	1,20	20,75	22,3	20,2	40,2	43,2	39,1
150ct2f3	20,1	0,88	0,62	0,56	1,20	20,75	27,2	24,7	40,2	52,7	47,8
bl1	24,6	0,93	0,64	0,58	1,20	11,99	8,6	7,8	55,2	39,4	35,8
bl2	24,6	0,93	0,64	0,58	1,20	11,99	8,6	7,8	55,2	39,4	35,8

Windbelasti											
	hoogte										
Geleider	wind	Stuwdruk	G_{c_dwars}	G_{c_trek}	C_c	$d_{toeslag}$	W_y	$W_{y,vak}$	D _{ijs,toeslag}	$W_{y,ijs}$	W _{y,ijs,vak}
	[m]	[kN/m²]	[-]	[-]	[-]	[mm]	[N/m]	[N/m]	[mm]	[N/m]	[N/m]
150ct1f1	11,1	0,73	0,57	0,98	1,20	20,75	20,5	35,3	40,2	39,7	68,4
150ct1f2	11,1	0,73	0,57	0,98	1,20	20,75	20,5	35,3	40,2	39,7	68,4
150ct1f3	14,4	0,79	0,59	0,98	1,20	20,75	23,3	38,6	40,2	45,1	74,8
150ct2f1	11,1	0,73	0,57	0,98	1,20	20,75	20,5	35,3	40,2	39,7	68,4
150ct2f2	11,1	0,73	0,57	0,98	1,20	20,75	20,5	35,3	40,2	39,7	68,4
150ct2f3	14,4	0,79	0,59	0,98	1,20	20,75	23,3	38,6	40,2	45,1	74,8
bl1	30,0	0,99	0,66	0,99							
bl2	30,0	0,99	0,66	0,99							

28-7-2021 9 van 21

Project: ZWO380 D2.2 OSP Mast 97 Masttype: H150 Mast: 97

Auteur: Versie: TBR Geleiderbelastingen

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

ULS (bezwijkst	terkte)	NEN-EN50	341-2-15:20	19				
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γο		γa
		°C	$G_{k,mast}$	$G_{k,qeleider}$	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,05	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,12	0,00	0,0
ULS 3	Wind+ijs	-5°	1,05	1,05	0,00	0,34	0,97	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,00	0,34	0,97	0,0
ULS 4	Koude+wind	-20°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,00	0,22	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,05	1,05	1,20	0,22	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 7	Permanent	10°	1,15	1,15	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijks	terkte, enkel voor hoekmasten:	afwezigheid geleid	ers)	γ _G	γQ			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,05	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,05	1,05	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,05	1,05	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,05	1,05	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,0	0,24	0,0	0,0
SLS (controle	van de vervormingen, vermoeiir	ng, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	0,94	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,28	0,88	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen Aantal belastingcombinaties ULS Aantal belastingcombinaties SPLS Aantal belastingcombinaties SLS Aantal knooplasten 6 52 210 15 4432

28-7-2021 10 van 21

Project: Masttype: H150 Mast:

- Samenvattingstabellen geleiderbelastingen
 In de onderstaande vier tabellen is weergegeven:
 De maximale geleiderbelasting in het globale assenstelsel, gesplitst in aandeel van back en ahead span
- De alledaagse (EDS) waarden van de gecombineerde geleiderbelasting (ba+Ah) in het globale assenstelsel met in het lokale assenstelsel de maximaal optredende trekkracht.

 Componenten Fx en Fy als absolute waarde

 De alledaagse (EDS) waarden van de gecombineerde geleiderbelastingen (Ba+Ah) met bijbehorende trekkrachten
- Controle op uplift, waar een negatieve waarde duidt op uplift

Maximale waarden voor back en ahead span

FluxIIIIaic W	au acıı vooi	Duck Cir ai	icaa spaii			
	Fx_ba	Fx_ah	Fy_ba	Fy_ah	Fz_ba	Fz_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	-26,3	0,0	4,7	0,1	4,4	1,1
bl2	-26,3	0,0	4,7	0,1	4,4	1,1
150ct1f1	-39,6	13,0	8,0	0,7	9,2	109,4
150ct1f2	-39,6	15,7	8,0	1,2	9,2	109,4
150ct1f3	-39,7	13,9	9,2	0,7	9,1	145,0
150ct2f1	-39,6	15,7	8,0	1,2	9,2	109,4
150ct2f2	-39,6	11,0	8,0	11,3	9,2	109,4
150ct2f3	-39,7	12,1	9,2	10,0	9,1	145,0

Min. Weight s	pan (m)	Max. Weight span (m)		
Weight spar Co	mbinatie1			Weight spar Combinatie1
Geleider	SLS 1a	SLS 4	SLS 7	Geleider ULS 1a ULS 3
bl1	161,5	161,5	161,5	bl1 161,5 161,5
bl2	161,5	161,5	161,5	bl2 161,5 161,5
150ct1f1	509,7	7118,4	508,6	150ct1f1 954,9 1516,8
150ct1f2	508,7	7118,9	508,6	150ct1f2 974,6 1518,7
150ct1f3	628,1	9411,7	620,0	150ct1f3 1241,3 1963,8
150ct2f1	508,6	7118,9	508,6	150ct2f1 975,2 1518,8
150ct2f2	509,2	7118,2	508,6	150ct2f2 974,3 1518,7
150ct2f3	620.2	9411.3	620.0	150ct2f3 1304.7 1970.4

Omhullende weight span over alle combinaties (incl. 0,9 combinaties)

Voor alle geleiders

9411,7 m Min. weight span 161,5 m

Wind / Weight span verhouding

57,740 -0,991 -

28-7-2021 11 van 21

Project: ZWO380 D2.2 OSP Mast 97 Masttype: H150 Mast: 97

Maximale waarden back+ahead span Maximale waarden trekkracht geleider

	Fx	Fy	Fz	Ft_ba	Ft_ah	
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]	
bl1	26,3	4,8	4,4	-26,7	0,0	
bl2	26,3	4,8	4,4	-26,7	0,0	
150ct1f1	39,6	8,5	109,4	-39,9	15,7	
150ct1f2	39,6	9,1	109,4	-39,9	15,7	
150ct1f3	39,7	9,3	145,0	-40,0	15,7	
150ct2f1	39,6	9,2	109,4	-39,9	15,7	
150ct2f2	39,6	14,3	109,4	-39,9	15,7	
150ct2f3	39,7	13,3	145,0	-40,0	15,7	

EDS-belastingen geleiders

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	0,0	0,6	0,7	-6,1	0,0
bl2	0,0	0,6	0,7	-6,1	0,0
150ct1f1	0,6	1,6	6,8	-17,1	0,8
150ct1f2	0,8	1,6	6,8	-17,1	0,8
150ct1f3	0,7	1,6	8,6	-17,1	0,8
150ct2f1	0,8	1,6	6,8	-17,1	0,8
150ct2f2	0,5	1,6	6,8	-17,1	0,8
150ct2f3	0.6	1.6	8.6	-17.1	0.8

Controle uplift SLS-wind

		Fz_ba	Fz_ah
Combinat	ie: Geleider	[kN]	[kN]
SLS 4	bl1	0,0	0,0
	bl2	0,0	0,0
	150ct1f1	0,0	0,0
	150ct1f2	0,0	0,0
	150ct1f3	0,0	0,0
	150ct2f1	0,0	0,0
	150ct2f2	0,0	0,0
	150ct2f3	0,0	0,0

28-7-2021 12 van 21

Project: ZWO380 D2.2 OSP Mast 97 Masttype: H150 Mast: 97

Auteur: Versie: TBR Geleiderbelastingen

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

ULS (bezwijksterkte) NEN-EN5034			341-2-15:20	19				
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γο		γa
		°C	$G_{k,mast}$	$G_{k,geleider}$	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,15	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,40	0,00	0,0
ULS 3	Wind+ijs	-5°	1,15	1,15	0,00	0,42	1,30	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,00	0,42	1,30	0,0
ULS 4	Koude+wind	-20°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,00	0,28	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,15	1,15	1,30	0,28	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 7	Permanent	10°	1,30	1,30	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwijkst	terkte, enkel voor hoekmasten:	afwezigheid geleid	ers)	γg	γQ			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,15	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,15	1,15	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,15	1,15	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,15	1,15	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,0	0,24	0,0	0,0
SLS (controle v	van de vervormingen, vermoeiin	g, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	1,00	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,30	1,00	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen Aantal belastingcombinaties ULS Aantal belastingcombinaties SPLS Aantal belastingcombinaties SLS Aantal knooplasten 6 52 210 15 4432

28-7-2021 16 van 21

Project: Masttype: H150 Mast:

- Samenvattingstabellen geleiderbelastingen
 In de onderstaande vier tabellen is weergegeven:
 De maximale geleiderbelasting in het globale assenstelsel, gesplitst in aandeel van back en ahead span
- De flaximale geleiderbelasting in net globale assenstelsel, gespiltst in adnoel van back en anead span
 De gecombineerde geleiderbelasting (Ba+Ah) in het globale assenstelsel met in het lokale assenstelsel de maximaal optredende trekkracht.
 Componenten Fx en Fy als absolute waarde
 De alledaagse (EDS) waarden van de gecombineerde geleiderbelastingen (Ba+Ah) met bijbehorende trekkrachten
 Controle op uplift, waar een negatieve waarde duidt op uplift

Maximale waarden voor back en ahead span

	Fx_ba	Fx_ah	Fy_ba	Fy_ah	Fz_ba	Fz_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	-32,1	0,0	5,8	0,2	5,0	1,1
bl2	-32,1	0,0	5,8	0,2	5,0	1,1
150ct1f1	-42,8	13,1	9,8	0,7	10,0	109,6
150ct1f2	-42,8	15,7	9,8	1,5	10,0	109,6
150ct1f3	-44,0	14,0	11,4	0,7	9,9	145,2
150ct2f1	-42,8	15,7	9,8	1,5	10,0	109,6
150ct2f2	-42,8	11,0	9,8	11,3	10,0	109,6
150ct2f3	-44,0	12,1	11,4	10,1	9,9	145,2

Min. Weigh	t span (m)	Max. W	eight span (m)						
Weight spar					Weight spar Combinatie1				
Geleider	SLS 1a	SLS 4	SLS 7	Geleider	ULS 1a	ULS 3			
bl1	161,5	161,5	161,5	bl1	161,5	161,5			
bl2	161,5	161,5	161,5	bl2	161,5	161,5			
150ct1f1	509,8	7118,5	508,6	150ct1f1	1026,5	1309,9			
150ct1f2	508,7	7119,1	508,6	150ct1f2	1048,5	1312,1			
150ct1f3	629,1	9411,8	620,0	150ct1f3	1339,6	1689,1			
150ct2f1	508,6	7119,1	508,6	150ct2f1	1049,1	1312,2			
150ct2f2	509,2	7118,2	508,6	150ct2f2	1048,0	1312,1			
150ct2f3	620.3	9411.4	620.0	150ct2f3	1409.9	1696.7			

Omhullende weight span over alle combinaties (incl. 0,9 combinaties)

Voor alle geleiders

Wind / Weight span verhouding

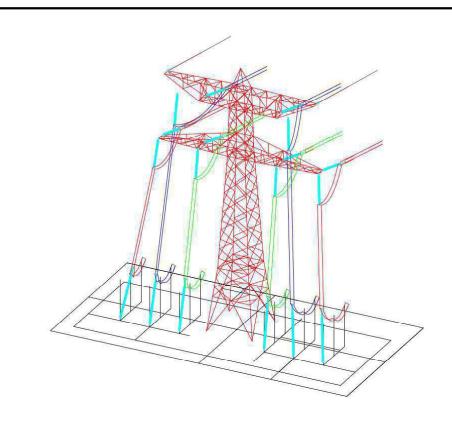
57,741 -0,991 -Max. weight span 9411,8 m Min. weight span 161,5 m

28-7-2021 17 van 21

Project: ZWO380 D2.2 OSP Mast 97 Masttype: H150 Mast: 97

Maximale waarden back+ahead span Maximale waarden trekkracht geleider

	Fx	Fy	Fz	Ft_ba	Ft_ah	
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]	
bl1	32,1	5,9	5,0	-32,5	0,0	
bl2	32,1	5,9	5,0	-32,5	0,0	
150ct1f1	41,4	9,7	109,6	-43,3	15,7	
150ct1f2	41,2	11,2	109,6	-43,3	15,7	
150ct1f3	41,4	11,5	145,2	-44,6	15,7	
150ct2f1	41,2	11,3	109,6	-43,3	15,7	
150ct2f2	41,8	14,7	109,6	-43,3	15,7	
150ct2f3	41,8	13,7	145,2	-44,6	15,7	


EDS-belastingen geleiders

	Fx	Fy	Fz	Ft_ba	Ft_ah
Geleider	[kN]	[kN]	[kN]	[kN]	[kN]
bl1	0,0	0,6	0,7	-6,1	0,0
bl2	0,0	0,6	0,7	-6,1	0,0
150ct1f1	0,6	1,6	6,8	-17,1	0,8
150ct1f2	0,8	1,6	6,8	-17,1	0,8
150ct1f3	0,7	1,6	8,6	-17,1	0,8
150ct2f1	0,8	1,6	6,8	-17,1	0,8
150ct2f2	0,5	1,6	6,8	-17,1	0,8
150ct2f3	0.6	1.6	8.6	-17.1	0.8

Controle uplift SLS-wind

	·	Fz_ba	Fz_ah
Combinat	ie:Geleider	[kN]	[kN]
SLS 4	bl1	0,0	0,0
	bl2	0,0	0,0
	150ct1f1	0,0	0,0
	150ct1f2	0,0	0,0
	150ct1f3	0,0	0,0
	150ct2f1	0,0	0,0
	150ct2f2	0,0	0,0
	150ct2f3	0,0	0,0

28-7-2021 18 van 21

Inhoud

- Uitgangspunten p. 2
- Mastconstructie p. 6
- Tussenresultaten p. 8
- Belastingen initiëel p. 10
- Belastingen na aanpassing p. 15

Gegevens

Norm NEN-EN50341-2-15:2019

Initieel

Gevolgklasse CC2 Betrouwbaarheidsniveau Afkeur Referentieperiode 30 jaar

Na aanpassing

Gevolgklasse CC2
Betrouwbaarheidsniveau Verbouw
Referentieperiode 50 jaar

Windgebied III
Windsnelheid 24,5 m/s
Terreincategorie II
Reductie factor Cdir 1,00
IJsgebied B

Masttype Hoekmast Lijnhoek 169°

0.0	2021-06-18			
ISSUE	DATE	REVISION	CHK'D	APP'D

Client:

Title:

Verticale geleiders H150

JOB No.	-	DATE	-
DRAWN	-	CHKD	-
DESIGN	-	APPD	-

Document name:

ZWO380 D2.2 OSP Mast 97_H150_97_Report.pdf

Project number:

Project client number:										
-										
	ı	ı —	l	I			1		1	
0.0										
										l

Project: Tower: H150 Number:

Auteur: Versie: Geleiderbelastingen afloper v1.9

Algemeen

Benaming
Masttype
Aantal circuits
Configuratie
Aantal bliksemgeleiders H150 Hoekmast 2 2-circuit-donau

Uitgangspunten

Norm NEN-E
Gevolgklasse initieel
Betrouwbaarheidsniveau initieel
Referentieperiode initieel
Gevolgklasse na aanpassing
Betrouwbaarheidsniveau na aanpassing
Referentieperiode na aanpassing NEN-EN50341-2-15:2019 CC2 Afkeur CC2-0 30 jaar CC2 Verbouw 50 jaar Windgebied III 24,5 m/s Windsnelheid (m/s) Terreincategorie Reductiefactor c_{dir} 1,00 IJsgebied fasegeleider B 0 IJsgebied bliksemgeleider

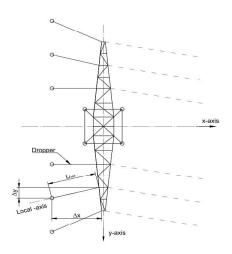
Geleiders

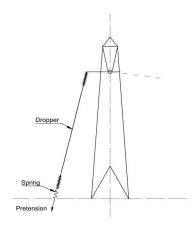
Omschrijving	Spanning	Geleider Back	Bundel Ba	IJsgebied	Toeslag gewicht	Toeslag diameter	
Circuit 1	150 kV	ACSR 20/224	2	В	2 %	2 %	
Circuit 2	150 kV	ACSR 20/224	2	В	2 %	2 %	
Bliksemdraad 1		Niet aanwezig	0	0	0 %	0 %	0
Bliksemdraad 2		Niet aanwezig	0	0	0 %	0 %	0

Isolatoren	(1)			
Omschrijving	Ophanging	Gewicht	Lengte	Windopp.
		[kN]	[m]	[m²]
Circuit 1	Afspanketting	1,50	4,50	1,00
Circuit 2	Afspanketting	1,50	4,50	1,00
Bliksemdraad 1	0	0,00	0,00	0,00
Bliksemdraad 2	0	0,00	0,00	0,00

^{1.} Eigenschappen gelden voor geheel van de isolatorset

Ophanghoogte en positie in mast


Circuits	Nummer	Aanduiding	Ophanghoogte	Aangrijppunt
Circuit 1	10	150ct1f1	20,9 m	20,9 m
Circuit 1	11	150ct1f2	20,9 m	20,9 m
Circuit 1	12	150ct1f3	27,6 m	27,6 m
Circuit 2	20	150ct2f1	20,9 m	20,9 m
Circuit 2	21	150ct2f2	20,9 m	20,9 m
Circuit 2	22	150ct2f3	27,6 m	27,6 m
Bliksemdraad 1	1	bl1	0,0 m	0,0 m
Bliksemdraad 2	3	bl2	0,0 m	0,0 m


18-6-2021 2 van 13

Project: Tower: Number: H150 97

Principe hoekmast met aflopers

Top view tower

Side view tower

Hoogteafwijking mastbeeld naastgelegen masten en richtingsverandering t.o.v. Lijnrichting

			Hoogteverschil	Richtingsvera	ndering	Lokaal ∆x Ler	ngte overspanning	
Circuits	Nummer	Aanduiding	Δh	Δy	Δx	Lhor	L	
Circuit 1	10	150ct1f1	20,6 m	-2,5	4,0	4,7	21,1 m	
Circuit 1	11	150ct1f2	20,6 m	-0,4	3,7	3,7	20,9 m	
Circuit 1	12	150ct1f3	27,4 m	-2,0	1,7	2,6	27,5 m	
Circuit 2	20	150ct2f1	20,6 m	-0,4	4,0	4,0	21,0 m	
Circuit 2	21	150ct2f2	20,6 m	2,5	3,7	4,5	21,1 m	
Circuit 2	22	150ct2f3	27,4 m	2,0	1,7	2,6	27,5 m	
Bliksemdraad 1	1	bl1	0,0 m	0,0	0,0	0,0	0,0 m	
Bliksemdraad 2	3	bl2	0,0 m	0,0	0,0	0,0	0,0 m	
bliksemuraau z	3	DIZ	0,0 m	0,0	0,0	0,0	0,0 m	

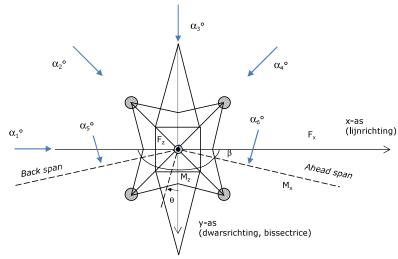
Voorspanning en veerstijfheid

	_		Voorspanning	Veerstijfheid	Effectieve rekstijfheid
Circuits	Nummer	Aanduiding	F _{pr}	k	EA _{fict}
Circuit 1	10	150ct1f1	3,0 kN	500 kN/m	4916 kN/m
Circuit 1	11	150ct1f2	3,0 kN	500 kN/m	4916 kN/m
Circuit 1	12	150ct1f3	3,0 kN	500 kN/m	7159 kN/m
Circuit 2	20	150ct2f1	3,0 kN	500 kN/m	4916 kN/m
Circuit 2	21	150ct2f2	3,0 kN	500 kN/m	4916 kN/m
Circuit 2	22	150ct2f3	3,0 kN	500 kN/m	7159 kN/m
Bliksemdraad 1	1	bl1	0,0 kN	0 kN/m	kN/m
Bliksemdraad 2	3	bl2	0,0 kN	0 kN/m	kN/m

De effectieve rekstijfheid is bepaald met de invloed van de veerstijfheid Deze is berekend door de optelling van de reciproke waarden van de veerstijfheid van geleider en veer.

18-6-2021 3 van 13

Project: Tower: Number:


Lijn- en mastgegevens

Deze invoer is opgenomen voor beschouwde windrichtingen en komt overeen met invoer geleiderbelastingen voor de mast

Lijnhoek	β	169 °
Rotatie mast t.o.v. bissectrice	θ	0 °
Hoogte onderkant mast t.o.v. ma	aaiveld	0,5 m
Beschouwde windrichtingen	α_1	0 °
Windrichtingen volgens:	α_2	45 °
Geleiderbelastingen	α_3	90 °
_	α_4	135 °
	α_5	84,5 °
	α_6	95,5 °

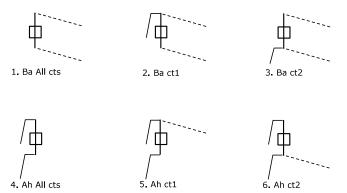
Windrichtingen gelden t.o.v. hoofdrichting mastconstructie, niet t.o.v. bissectrice.

Windrichtingen en positieve richtingen belastingen

Beschouwd aantal windrichtin	gen
1a	
3	6
4	
6	(
Overig	6

18-6-2021 4 van 13

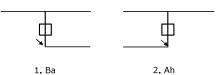
Project: Tower: Number: H150 97


Geleiderafval

		SPLS	SPLS - torsie		kelzijdige trek	5a - geleiderbreuk	
		Aanw.	Afw.	Aanw.	Afw.	Aanw.	Afw.
Circuit 1	150ct1f1	1	0	1	0	1	0
Circuit 1	150ct1f2	1	0	1	0	1	0
Circuit 1	150ct1f3	1	0	1	0	1	0
Circuit 2	150ct2f1	0	1	1	0	1	0
Circuit 2	150ct2f2	0	1	1	0	1	0
Circuit 2	150ct2f3	0	1	1	0	1	0
Bliksemdraad 1	bl1	1	0	1	0		0
Bliksemdraad 2	bl2	0	1	1	0		0

Belastingsituaties SPLS

Beschouwde situaties SPLS: $1\,\mathrm{t/m}$ 6, alle mogelijke situaties. Geleiderbelastingen naar volgende mast geen onderdeel van deze berekening.


Principe belastingssituaties:

Belastingsituaties 5a. Geleiderbreuk

Beschouwde situaties geleiderbreuk 5a: 1 en 2, alle mogelijke situaties.

Principe belastingssituaties:

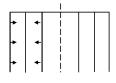
18-6-2021 5 van 13

Project: ZWO380 D2.2 OSP Mast 97

Project: ZWO3 Tower: H150 Number: 97

Belastingsituaties 6. Bouw- en onderhoud

Onder 6a wordt de belasting door aanwezigheid lijnwagen of lijnfiets in combinatie met puntlast op traverse in rekening gebracht. Combinatie 6b bevat geen belastingen in geleider of op traverse. Deze combinatie met 20% wind is geschikt voor controle stijgpunt in combinatie met kortsluitbelastingen.


	Fase	Bliksem
Lijnwagen (nvt.)	0,0 kN	0,0 kN
Puntlast op traverse	1,0 kN	1,0 kN

Belastingsituaties 8. Kortsluiting

Principe belastingssituaties:

Kortsluitkrachten

(Zie separate berekening)

Geleider	w . Ko	rtsluitkra	F _×	F _v	F_z
Geleidei	[N/m]	[kN]	[kN]	[kN]	[kN]
10	150ct1f1	15,6	2,9	-1,9	15,2
11	150ct1f2	15,6	2,8	-0,3	15,3
12	150ct1f3	29,6	1,8	-2,2	29,5
20	150ct2f1	15,6	3,0	-0,3	15,3
21	150ct2f2	15,6	2,7	1,8	15,2
22	150ct2f3	29,6	1,8	2,2	29,5
1	bl1				
3	hl2				

Belastingcombinaties kortsluiting

Belastingcombinatie
ULS 8 Kortsluiting 10-11
ULS 8 Kortsluiting 10-12
ULS 8 Kortsluiting 11-12
ULS 8 Kortsluiting 20-21
ULS 8 Kortsluiting 20-22
ULS 8 Kortsluiting 21-22

18-6-2021 6 van 13

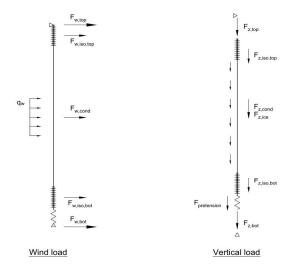
Project: ZWO380 D2.2 OSP Mast 97

Tower: H150 Number: 97

Tussenresultaten geleiderbelastingen

Geleiders

ociciaci 3						
Circuit	Geleider	Diameter	Α	G	E	αΤ
		[mm]	[mm ²]	[N/m]	[N/mm ²]	[-]
Circuit 1	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Circuit 2	ACSR 20/224	20,3	244,5	7,60	66000	2,04E-05
Bliksemdraad 1	Niet aanwezig					
Bliksemdraad 2	Niet aanwezig					


Verticale belasting

Circuit	Bundel	Toeslag	W _{z,G}	;	IJsgebied	Formule	$W_{z,ijs}$	W _{z,ijs,b}	undel
	[-]	[%]	[N/	m]			[N/m]	[N/m]]
Circuit 1		2	2	15,5		3 4+0,2c		8,1	16,1
Circuit 2		2	2	15,5		3 4+0,2c		8,1	16,1
Bliksemdraad 1		0	0)			
Bliksemdraad 2		0	0)			

Schema voor berekenen horizontale en verticale belasting

Horizontale belasting wordt bepaald voor de wind tegen de geleider en isolatoren boven en onder.

De horizontale component als gevolg van de scheefstand van de afloper wordt per belastingscombinatie apart bepaald De verticale krachten gelden alleen voor de EDS-conditie zonder externe belastingen en temperatuursverandering De berekeningen zijn weergegeven op het volgende blad.

18-6-2021 7 van 13

Project: Tower: Number: H150 97

Isolatoren					Boven			Onder		
Geleider	G _{isolator}	Lengte	Windopp.	Vormfactor	Windhoogte	Stuwdruk	F _{h,iso} V	Vindhoogte	Stuwdruk	$F_{h,iso}$
	[kN]	[m]	[m²]	[-]	[m]	[kN/m²]	[kN]	[m]	[kN/m²]	[kN]
150ct1f1	1,50	4,5	1,0	1,2	19,15	0,87	1,04	3,05	0,49	0,59
150ct1f2	1,50	4,5	1,0	1,2	19,15	0,87	1,04	3,05	0,49	0,59
150ct1f3	1,50	4,5	1,0	1,2	25,85	0,95	1,14	2,95	0,49	0,59
150ct2f1	1,50	4,5	1,0	1,2	19,15	0,87	1,04	3,05	0,49	0,59
150ct2f2	1,50	4,5	1,0	1,2	19,15	0,87	1,04	3,05	0,49	0,59
150ct2f3	1,50	4,5	1,0	1,2	25,85	0,95	1,14	2,95	0,49	0,59
bl1	0,00	0,0	0,0	1,2	0,50	0,49	•	0,50	0,49	•
b l 2	0,00	0,0	0,0	1,2	0,50	0,49		0,50	0,49	

Horizontale belasting

norizontale	belasting										
	hoogte										
Geleider	wind	Stuwdruk	G_c	C_c	$d_{toeslag}$	W_y	$D_{ijs,toeslag}$	$W_{y,ijs}$	F _{w,geleider}	F _{w,boven}	F _{w,onder}
	[m]	[kN/m²]	[-]	[-]	[mm]	[N/m]	[mm]	[N/m]	[kN]	[kN]	[kN]
150ct1f1	11,1	0,73	0,97	1,20	20,75	35,0	40,2	67,9	0,20	1,2	0,8
150ct1f2	11,1	0,73	0,97	1,20	20,75	35,0	40,2	67,9	0,20	1,2	0,8
150ct1f3	14,4	0,79	0,97	1,20	20,75	38,4	40,2	74,4	0,35	1,5	0,9
150ct2f1	11,1	0,73	0,97	1,20	20,75	35,0	40,2	67,9	0,20	1,2	0,8
150ct2f2	11,1	0,73	0,97	1,20	20,75	35,0	40,2	67,9	0,20	1,2	0,8
150ct2f3	14,4	0,79	0,97	1,20	20,75	38,4	40,2	74,4	0,35	1,5	0,9
bl1	0,5	0,49	0,84								
bl2	0,5	0,49	0,84								

 $\begin{tabular}{ll} \textbf{Verticale belasting} \\ \textbf{Formules:} & F_{z,top} = F_{z,iso,top} + F_{z,cond} + F_{z,iso,bot} + F_{pr} \\ & F_{t,mid} = F_{z,cond}/2 + F_{z,iso,bot} + F_{pr} \\ & F_{z,bot} = -F_{pr} \\ \end{tabular}$ $L_{geleider} = \Delta h - 2L_{iso}$ $F_{z,cond} = L_{cond} \times w_z$

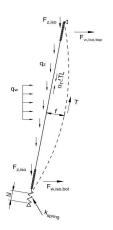
Geleider	$W_{z,G}$	W _{z,ijs}	L _{geleider}	$F_{z,iso}$	F _{z,gel}	$F_{z,ijs}$	Pretension	F _{z,boven}	$F_{t,mid}$	F _{z,onder}
	[N/m]	[N/m]	[m]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
150ct1f1	15,5	16,1	11,6	1,5	0,2	0,2	3,0	6,2	4,6	-3,0
150ct1f2	15,5	16,1	11,6	1,5	0,2	0,2	3,0	6,2	4,6	-3,0
150ct1f3	15,5	16,1	18,4	1,5	0,3	0,3	3,0	6,3	4,6	- 3,0
150ct2f1	15,5	16,1	11,6	1,5	0,2	0,2	3,0	6,2	4,6	- 3,0
150ct2f2	15,5	16,1	11,6	1,5	0,2	0,2	3,0	6,2	4,6	- 3,0
150ct2f3	15,5	16,1	18,4	1,5	0,3	0,3	3,0	6,3	4,6	- 3,0
bl1			0,0				0,0			
b l 2			0,0				0,0			

18-6-2021 8 van 13

Project: Masttype: Mast:

Auteur: Versie: TBR Geleiderbelastingen v1.9

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar


ULS (bezwijksterkte) NEN-EN5034)19				
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γQ		γ _a
		°C	G _{k,mast}	G _{k,geleider}	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,05	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,05	0,00	1,12	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,12	0,00	0,0
ULS 3	Wind+ijs	- 5°	1,05	1,05	0,00	0,34	0,97	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,00	0,34	0,97	0,0
ULS 4	Koude+wind	-20°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,00	0,22	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,05	1,05	1,20	0,22	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,00	0,22	0,00	0,0
ULS 7	Permanent	10°	1,15	1,15	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezwij	ksterkte, enkel voor hoekmasten: a	fwezigheid geleid	ders)	γ _G	γq			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,05	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,05	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	-5°	1,05	1,05	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,05	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,05	1,05	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,05	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,05	1,05	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,05	1,05	0,0	0,24	0,0	0,0
SLS (contro	le van de vervormingen, vermoeiing	g, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SLS 1a	Wind	10°	1,00	1,00	0,0	0,94	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,28	0,88	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,19	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen	6
Aantal belastingcombinaties ULS	57
Aantal belastingcombinaties SPLS	210
Aantal belastingcombinaties SLS	15
Aantal knooplasten	4512

Schematisation

De trekkracht in de afloper wordt bepaald met de toestandsvergelijking voor een gekromde kabel.

In de rekstijfheid van de kabel is de invloed van de veer verdisconteerd.

18-6-2021 9 van 13

Project: Masttype: Mast:

- Tabellen met geleiderbelastingen

 In de onderstaande drie tabellen is weergegeven:

 De trekkracht per belastingcombinatie en de bijbehorende zeeg en veerverlenging

 De geleiderbelastingen in het lokale assenstelsel voor het onderste bevestigingspunt

 De maximale waarden voor de reacties onder en boven in het globale assenstelsel

Trekkracht, zeeg en veerverlenging

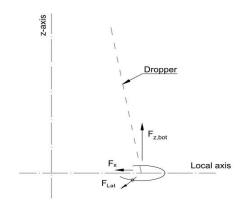
Geleider	Combinatie	Zeeg [m]	Veer- verlengin g [m	veer- verlengin g [m]	rek- kracht initieel [kN]	Trek- kracht [kN]
150ct1f1	SLS 1a	0,45	0,009	0,018	4,6	9,2
	SLS 3	0,33	0,007	0,016	4,7	7,9
	SLS 4	0,19	0,006	0,015	4,6	7,3
	SLS 6	0,25	0,002	0,011	4,6	5,6
	SLS 7	0,22	0,000	0,009	4,6	4,6
	ULS 1a	0,48	0,011	0,020	4,9	9,9
	ULS 3	0,35	0,007	0,017	5,0	8,3
	ULS 4	0,21	0,006	0,015	4,9	7,5
	ULS 6b	0,28	0,003	0,012	4,9	6,1
150ct1f2	SLS 1a	0,42	0,009	0,018	4,6	9,0
	SLS 3	0,29	0,006	0,015	4,7	7,7
	SLS 4	0,14	0,006	0,015	4,6	7,4
	SLS 6	0,19	0,002	0,011	4,6	5,4
	SLS 7	0,17	0,000	0,009	4,6	4,6
	ULS 1a	0,45	0,010	0,019	4,9	9,7
	ULS 3	0,31	0,007	0,016	5,0	8,1
	ULS 4	0,15	0,006	0,015	4,9	7,4
	ULS 6b	0,24	0,003	0,012	4,9	6,0
150ct1f3	SLS 1a	0,49	0,012	0,021	4,6	10,5
155001115	SLS 3	0,32	0,009	0,018	4,8	9,2
	SLS 4	0,14	0,009	0,019	4,6	9,3
	SLS 6	0,21	0,003	0,013	4,6	6,3
	SLS 7	0,10	0,000	0,009	4,6	4,6
	ULS 1a	0,53	0,014	0,023	5,0	11,5
	ULS 3	0,35	0,010	0,019	5,1	9,7
	ULS 4	0,16	0,010	0,019	5,0	9,4
	ULS 6b	0,24	0,004	0,013	5,0	6,6

Controle iteratieproces

teratie
0
0
K
K
K
K
K
K

18-6-2021 10 van 13

Project: Masttype: Mast:

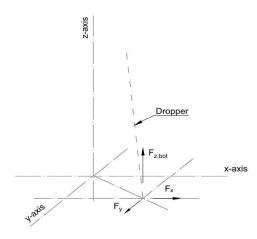

Belastingen in lokale richting geleider

De belastingen op het onderste bevestigingspunt voor het dimensioneren van de ondersteuningsconstructie

De richting van de laterale kracht wordt bepaald door de windrichting en kan in alle richtingen aangrijpen.

De resulterende horizontale kracht kan worden afgeleid uit de vectoriële optelling van de kracht in x-richting en laterale kracht.

Combinatie1	Fx,lok,bot [kN]	Flat,bot [kN]	Fz_bot [kN]
SLS 1a	2,1	0,7	-7,6
SLS 3	1,8	0,3	-6,3
SLS 4	1,7	0,1	-5,8
SLS 6	1,3	0,1	-4,0
SLS 7	1,1	0,0	-3,0
ULS 1a	2,3	0,9	-8,2
ULS 3	1,9	0,3	-6,6
ULS 4	1,7	0,2	-5,8
ULS 6b	1,4	0,2	-4,4
SLS 1a	1,6	0,7	-7,4
SLS 3	1,4	0,3	-6,1
SLS 4	1,3	0,1	-5,8
SLS 6	1,0	0,1	-3,8
SLS 7	0,8	0,0	-3,0
ULS 1a	1,7	0,9	-8,0
ULS 3	1,5	0,3	-6,3
ULS 4	1,3	0,2	-5,8
ULS 6b	1,1	0,2	-4,3
SLS 1a	1,0	0,9	-8,9
SLS 3	0,9	0,4	-7,5
SLS 4	0,9	0,2	-7,7
SLS 6	0,6	0,2	-4,6
SLS 7	0,4	0,0	-3,0
ULS 1a	1,1	1,1	-9,8
ULS 3	0,9	0,4	-7,9
ULS 4	0,9	0,2	-7,7
ULS 6b	0,6	0,2	-4,9


18-6-2021 11 van 13

Project: Masttype: Mast:

Maximale waarden in globale assenstelsel

De maximale waarden van de verticale kracht en de resulterende horizontale kracht per belastingcombinatie Zowel voor het bovenste als het onderste bevestigingspunt

Geleider	Combinatie	Fx_top [kN]	Fy_top [kN	Fz_top [kN]	Fx_bot [kN]	Fy_bot [kN]	Fz_bot [kN]
150ct1f1	SLS 1a	2,5	0,4	10,8	- 2,6	0,0	- 7,6
	SLS 3	1,4	0,0	9,6	-2,0	0,0	- 6,3
	SLS 4	1,3	0,0	8,9	-1,6	0,0	- 5,8
	SLS 6	0,9	0,0	7,2	-1,2	0,0	-4,0
	SLS 7	0,7	0,0	6,2	-1,0	0,0	- 3,0
	ULS 1a	2,9	0,5	11,6	-2,8	0,0	- 8,2
	ULS 3	1,6	0,0	10,1	-2,1	0,0	-6,6
	ULS 4	1,3	0,0	9,1	-1,6	0,0	- 5,8
	ULS 6b	1,1	0,0	7,8	-1,5	0,0	-4,4
	ULS 7	0,7	0,0	6,5	-1,1	0,0	- 2,8
150ct1f2	SLS 1a	2,4	1,2	10,5	-2,4	0,0	-7,4
	SLS 3	1,3	0,4	9,4	-1,8	0,0	-6,1
	SLS 4	1,2	0,1	8,9	-1,5	0,0	-5,8
	SLS 6	0,8	0,2	7,0	-1,1	0,0	-3,8
	SLS 7	0,7	0,0	6,2	-1,0	0,0	-3,0
	ULS 1a	2,8	1,4	11,4	-2,6	0,0	-8,0
	ULS 3	1,4	0,5	9,9	-1,9	0,0	-6,3
	ULS 4	1,2	0,2	9,1	-1,5	0,0	- 5,8
	ULS 6b	0,9	0,2	7,6	-1,4	0,0	-4,3
	ULS 7	0,7	0,0	6,5	-1,0	0,0	-2,8
150ct1f3	SLS 1a	2,0	0,8	12,2	-1,4	0,0	- 8,9
	SLS 3	1,0	0,0	11,0	-1,0	0,0	-7,5
	SLS 4	0,5	0,0	10,9	-0,6	0,0	-7,7
	SLS 6	0,3	0,0	7,9	-0,4	0,0	-4,6
	SLS 7	0,2	0,0	6,3	-0,3	0,0	-3,0
	ULS 1a	2,4	1,0	13,2	-1,6	0,0	-9,8
	ULS 3	1,2	0,1	11,6	-1,0	0,0	-7,9
	ULS 4	0,5	0,0	11,1	-0,6	0,0	-7,7
	ULS 6b	0,7	0,0	8,3	-0,6	0,0	-4,9
	ULS 7	0,2	0,0	6,6	-0,3	0,0	-2,8
150ct2f1	SLS 1a	2,5	1,2	10,5	-2,5	0,0	- 7,4
	SLS 3	1,3	0,4	9,4	-1,9	0,0	-6,1
	SLS 4	1,3	0,2	8,9	-1,6	0,0	-5,7
	SLS 6	0,9	0,2	6,9	-1,2	0,0	-3,7
	SLS 7	0,7	0,0	6,2	-1,0	0,0	-3,0
	ULS 1a	2,9	1,4	11,3	-2,8	0,0	-8,0

Project: Masttype:

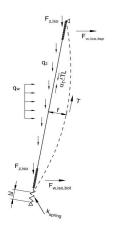
97						
ULS 3	1,5	0,5	9,9	-2,1	0,0	-6,3
ULS 4	1,3	0,2	9,0	-1,6	0,0	-5,7
ULS 6b	1,0	0,2	7,6	-1,5	0,0	- 4,3
ULS 7	0,7	0,0	6,5	-1,1	0,0	-2,8
SLS 1a	2.4	2 1	10.0	-23	-0.9	-6,8
			,		•	-5,5
					•	-5,2
						-3,1
SLS 7	0,7		6,2	-1,0		-3,0
ULS 1a	2,8	2,5	10,8	-2,5	-1,0	-7,4
ULS 3	1,4	1,3	9,3	-1,8	-0,8	-5,7
ULS 4	1,1	1,0	8,5	-1,4	-0,7	-5,1
ULS 6b	0,9	0,8	7,2	-1,3	-0,6	-3,9
ULS 7	0,7	0,5	6,5	-1,0	- 0,7	- 2,8
CIC 1a	2.0	2.1	11 7	-1 /	-0.8	-8,4
		•			•	-6,8
					•	-7,3
						-3,8
						-3,0
			•		•	-9,2
ULS 3	1,2					-7,2
ULS 4	0,5	1,0	10,7	-0,6	-0,5	-7,3
ULS 6b	0,7	0,7	7,8	-0,6	-0,5	-4,4
ULS 7	0,2	0,3	6,6	-0,3	-0,4	-2,8
	ULS 3 ULS 4 ULS 6b ULS 7 SLS 1a SLS 3 SLS 4 SLS 6 SLS 7 ULS 1a ULS 3 ULS 4 ULS 6b ULS 7 SLS 1a SLS 1 ULS 7	97 ULS 3 1,5 ULS 4 1,3 ULS 6b 1,0 ULS 7 0,7 SLS 1a 2,4 SLS 3 1,3 SLS 4 1,1 SLS 6 0,7 SLS 7 0,7 ULS 1a 2,8 ULS 3 1,4 ULS 4 1,1 ULS 6b 0,9 ULS 7 0,7 SLS 1a 2,0 SLS 1a 2,0 SLS 3 1,0 SLS 4 0,5 SLS 6 0,3 SLS 6 0,3 SLS 7 0,2 ULS 1a 2,4 ULS 3 1,2 ULS 4 0,5 ULS 3 1,2 ULS 4 0,5 ULS 6b 0,7	97 ULS 3	97 ULS 3	97 ULS 3	97 ULS 3

18-6-2021 13 van 13

Project: Masttype: Mast:

Auteur: Versie: TBR Geleiderbelastingen v1.9

Uitgangspunten Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar


ULS (bezv	vijksterkte)	NEN-EN50	341-2-15:20)19				
Belastingsgeval	omschrijving	Temp	γ _G	γ _G		γο		γ _a
		°C	G _{k,mast}	G _{k,geleider}	Q_{pk}	Q_{wk}	Q_{ik}	A_k
ULS 1a	Wind	10°	1,15	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9	Wind 0,9Gk alleen mast	10°	0,90	1,15	0,00	1,40	0,00	0,0
ULS 1a_0,9_0,9	Wind 0,9Gk ook geleider	10°	0,90	0,90	0,00	1,40	0,00	0,0
ULS 3	Wind+ijs	-5°	1,15	1,15	0,00	0,42	1,30	0,0
ULS 3_0,9	Wind+ijs 0,9	-5°	0,90	1,15	0,00	0,42	1,30	0,0
ULS 4	Koude+wind	-20°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,00	0,28	0,00	0,0
ULS 5a	Torsiebelastingen	10°	1,00	1,00	1,00	0,00	0,00	1,0
ULS 5b	Longitudinale belastingen	10°	1,00	1,00	0,00	0,00	0,00	1,0
ULS 6	Bouw en onderhoud	5°	1,15	1,15	1,30	0,28	0,00	0,0
ULS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,00	0,28	0,00	0,0
ULS 7	Permanent	10°	1,30	1,30	0,00	0,00	0,00	0,0
ULS 8	Special	10°	1,00	1,00	0,00	0,00	0,00	1,0
SPLS (Bezv	vijksterkte, enkel voor hoekmasten: a	fwezigheid geleid	ders)	γ _G	γ _Q			
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	A_k
SPLS 1a	Wind	10°	1,15	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9	Wind 0,9	10°	0,90	1,15	0,0	0,78	0,00	0,0
SPLS 1a_0,9_0,9	Wind 0,9	10°	0,90	0,90	0,0	0,78	0,00	0,0
SPLS 3	Wind+ijs	- 5°	1,15	1,15	0,0	0,36	0,34	0,0
SPLS 3_0,9	Wind+ijs 0,9	- 5°	0,90	1,15	0,0	0,36	0,34	0,0
SPLS 4	Koude+wind	-20°	1,15	1,15	0,0	0,24	0,00	0,0
SPLS 4_0,9	Koude+wind 0,9	-20°	0,90	1,15	0,0	0,24	0,00	0,0
SPLS 6	Bouw en onderhoud	5°	1,15	1,15	1,2	0,24	0,0	0,0
SPLS 6_0,9	Bouw en onderhoud	5°	1,15	1,15	0,0	0,24	0,0	0,0
SLS (cont	role van de vervormingen, vermoeiing	g, EDS)						
				G_k	Q_{pk}	Q_{wk}	Q_{ik}	\mathbf{A}_{k}
SLS 1a	Wind	10°	1,00	1,00	0,0	1,00	0,0	0,0
SLS 3	Wind+ijs	-5°	1,00	1,00	0,0	0,30	1,00	0,0
SLS 4	Wind	-20°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 6	Bouw en onderhoud	5°	1,00	1,00	0,0	0,20	0,0	0,0
SLS 7	PB (EDS, geen wind)	10°	1,00	1,00	0,0	0,00	0,0	0,0

Aantal windrichtingen	6
Aantal belastingcombinaties ULS	57
Aantal belastingcombinaties SPLS	210
Aantal belastingcombinaties SLS	15
Aantal knooplasten	4512

Schematisation

De trekkracht in de afloper wordt bepaald met de toestandsvergelijking voor een gekromde kabel.

In de rekstijfheid van de kabel is de invloed van de veer verdisconteerd.

18-6-2021 1 van 5

Project: Masttype: Mast:

- Tabellen met geleiderbelastingen

 In de onderstaande drie tabellen is weergegeven:

 De trekkracht per belastingcombinatie en de bijbehorende zeeg en veerverlenging

 De geleiderbelastingen in het lokale assenstelsel voor het onderste bevestigingspunt

 De maximale waarden voor de reacties onder en boven in het globale assenstelsel

Trekkracht, zeeg en veerverlenging

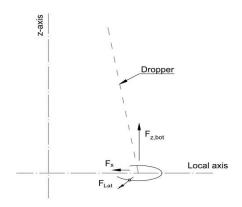
HERRIACH,	zeeg en veer	enenging		rotare	тек-	
Geleider	Combinatie	Zeeg [m]	Veer- verlengin g [m	veer- verlengin g [m]	kracht initieel [kN]	Trek- kracht [kN]
150ct1f1	SLS 1a	0,46	0,010	0,019	4,6	9,4
	SLS 3	0,34	0,007	0,016	4,7	8,1
	SLS 4	0,20	0,006	0,015	4,6	7,4
	SLS 6	0,26	0,002	0,011	4,6	5,7
	SLS 7	0,22	0,000	0,009	4,6	4,6
	ULS 1a	0,52	0,013	0,022	5,6	11,0
	ULS 3	0,38	0,009	0,018	5,7	9,0
	ULS 4	0,22	0,006	0,015	5,6	7,7
	ULS 6b	0,30	0,004	0,013	5,6	6,4
150ct1f2	SLS 1a	0,43	0,009	0,018	4,6	9,2
	SLS 3	0,30	0,007	0,016	4,7	7,9
	SLS 4	0,14	0,006	0,015	4,6	7,4
	SLS 6	0,20	0,002	0,011	4,6	5,4
	SLS 7	0,17	0,000	0,009	4,6	4,6
	ULS 1a	0,49	0,012	0,022	5,6	10,8
	ULS 3	0,34	0,008	0,017	5,7	8,7
	ULS 4	0,17	0,006	0,015	5,6	7,6
	ULS 6b	0,26	0,003	0,013	5,6	6,3
150ct1f3	SLS 1a	0,51	0,012	0,022	4,6	10,9
	SLS 3	0,34	0,010	0,019	4,8	9,4
	SLS 4	0,15	0,009	0,019	4,6	9,3
	SLS 6	0,22	0,003	0,013	4,6	6,3
	SLS 7	0,10	0,000	0,009	4,6	4,6
	ULS 1a	0,58	0,017	0,026	5,6	12,9
	ULS 3	0,40	0,012	0,021	5,8	10,6
	ULS 4	0,19	0,010	0,019	5,6	9,7
	ULS 6b	0,27	0,005	0,014	5,6	7,0

Controle iteratieproces

Geleider	Iteratie
bl1	0
bl2	0
150ct1f:	OK
150ct1f	OK
150ct1f:	OK
150ct2f:	OK
150ct2f	OK
150ct2f:	ОК
150ct1f: 150ct2f: 150ct2f:	ок ок ок

18-6-2021 2 van 5

Project: Masttype: Mast:

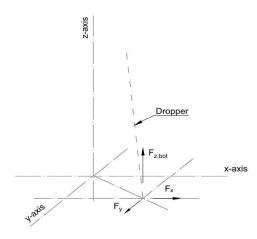

Belastingen in lokale richting geleider

De belastingen op het onderste bevestigingspunt voor het dimensioneren van de ondersteuningsconstructie

De richting van de laterale kracht wordt bepaald door de windrichting en kan in alle richtingen aangrijpen.

De resulterende horizontale kracht kan worden afgeleid uit de vectoriële optelling van de kracht in x-richting en laterale kracht.

Combinatie1	Fx,lok,bot [kN]	Flat,bot [kN]	Fz_bot [kN]
SLS 1a	2,2	0,8	-7,8
SLS 3	1,9	0,3	-6,4
SLS 4	1,7	0,2	- 5,8
SLS 6	1,3	0,2	-4,1
SLS 7	1,1	0,0	-3,0
ULS 1a	2,5	1,1	-9,2
ULS 3	2,1	0,4	-7,1
ULS 4	1,8	0,2	-5,9
ULS 6b	1,5	0,2	-4,6
SLS 1a	1,7	0,8	-7,6
SLS 3	1,4	0,3	-6,2
SLS 4	1,3	0,2	-5,8
SLS 6	1,0	0,2	-3,8
SLS 7	0,8	0,0	- 3,0
ULS 1a	2,0	1,1	- 9,0
ULS 3	1,6	0,4	-6,8
ULS 4	1,4	0,2	-5,8
ULS 6b	1,1	0,2	-4,4
SLS 1a	1,0	0,9	-9,2
SLS 3	0,9	0,4	- 7,6
SLS 4	0,9	0,2	-7,7
SLS 6	0,6	0,2	-4,7
SLS 7	0,4	0,0	-3,0
ULS 1a	1,2	1,3	-11,0
ULS 3	1,0	0,5	- 8,5
ULS 4	0,9	0,3	- 7,8
ULS 6b	0,7	0,3	-5,1


18-6-2021 3 van 5

Project: Masttype: Mast:

Maximale waarden in globale assenstelsel

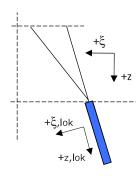
De maximale waarden van de verticale kracht en de resulterende horizontale kracht per belastingcombinatie Zowel voor het bovenste als het onderste bevestigingspunt

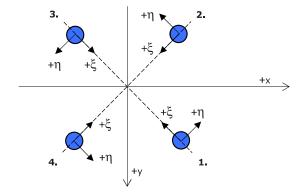
Geleider	Combinatie	Fx_top [kN]	Fy_top [kN	Fz_top [kN]	Fx_bot [kN]	Fy_bot [kN]	Fz_bot [kN]
150ct1f1	SLS 1a	2,6	0,4	11,0	-2,7	0,0	- 7,8
	SLS 3	1,5	0,0	9,8	-2,0	0,0	-6,4
	SLS 4	1,3	0,0	9,0	-1,6	0,0	- 5,8
	SLS 6	0,9	0,0	7,3	-1,3	0,0	-4,1
	SLS 7	0,7	0,0	6,2	-1,0	0,0	- 3,0
	ULS 1a	3,5	0,8	12,9	-3,2	0,0	- 9,2
	ULS 3	1,7	0,0	11,0	-2,3	0,0	-7,1
	ULS 4	1,3	0,0	9,5	-1,7	0,0	-5,9
	ULS 6b	1,1	0,0	8,2	-1,6	0,0	-4,6
	ULS 7	0,7	0,0	6,8	-1,1	0,0	- 2,6
150ct1f2	SLS 1a	2,6	1,2	10,8	-2,5	0,0	- 7,6
	SLS 3	1,4	0,4	9,6	-1,9	0,0	-6,2
	SLS 4	1,2	0,2	9,0	-1,5	0,0	-5,8
	SLS 6	0,8	0,2	7,0	-1,1	0,0	-3,8
	SLS 7	0,7	0,0	6,2	-1,0	0,0	-3,0
	ULS 1a	3,4	1,8	12,6	-3,0	0,0	-9,0
	ULS 3	1,7	0,6	10,7	-2,1	0,0	-6,8
	ULS 4	1,2	0,3	9,4	-1,5	0,0	- 5,8
	ULS 6b	1,0	0,3	8,1	-1,5	0,0	-4,4
	ULS 7	0,7	0,0	6,7	-1,0	0,0	-2,6
150ct1f3	SLS 1a	2,2	0,8	12,5	-1,5	0,0	- 9,2
	SLS 3	1,1	0,0	11,2	-1,0	0,0	-7,6
	SLS 4	0,5	0,0	11,0	-0,6	0,0	-7,7
	SLS 6	0,3	0,0	8,0	-0,4	0,0	-4,7
	SLS 7	0,2	0,0	6,3	-0,3	0,0	-3,0
	ULS 1a	2,9	1,3	14,8	-2,0	0,0	-11,0
	ULS 3	1,4	0,2	12,7	-1,2	0,0	-8,5
	ULS 4	0,5	0,0	11,5	-0,6	0,0	-7,8
	ULS 6b	0,8	0,0	8,9	-0,7	0,0	-5,1
	ULS 7	0,2	0,0	6,8	-0,3	0,0	-2,5
150ct2f1	SLS 1a	2,6	1,3	10,8	-2,6	0,0	- 7,6
	SLS 3	1,4	0,4	9,5	-2,0	0,0	-6,2
	SLS 4	1,3	0,2	8,9	-1,6	0,0	-5,7
	SLS 6	0,9	0,2	7,0	-1,2	0,0	-3,8
	SLS 7	0,7	0,0	6,2	-1,0	0,0	-3,0
	ULS 1a	3,5	1,8	12,6	-3,2	0,0	-9,0

Project: Masttype:

Mast:	97						
150ct2f1	ULS 3	1,7	0,6	10,7	-2,3	0,0	-6,8
	ULS 4	1,3	0,3	9,4	-1,6	0,0	-5,7
	ULS 6b	1,0	0,3	8,1	-1,6	0,0	-4,4
	ULS 7	0,7	0,0	6,7	-1,1	0,0	-2,6
150ct2f2	SLS 1a	2,6	2,2	10,2	-2,4	-1,0	-7,0
	SLS 3	1,4	1,2	9,0	-1,8	-0,8	-5,6
	SLS 4	1,1	1,0	8,4	-1,4	-0,7	-5,2
	SLS 6	0,7	0,8	6,3	-1,0	-0,5	-3,1
	SLS 7	0,7	0,5	6,2	-1,0	-0,7	-3,0
	ULS 1a	3,4	3,0	12,1	- 2,9	-1,2	-8,4
	ULS 3	1,7	1,4	10,1	- 2,0	-0,9	-6,2
	ULS 4	1,1	1,1	8,7	-1,4	-0,7	-5,0
	ULS 6b	1,0	0,9	7,6	-1,4	-0,6	-3,9
	ULS 7	0,7	0,4	6,8	-1,0	-0,7	- 2,6
150ct2f3	SLS 1a	2,2	2,2	12,0	-1,5	-0,8	-8,7
	SLS 3	1,1	1,2	10,5	-0,9	- 0,7	-7,0
	SLS 4	0,5	0,9	10,6	- 0,6	-0,5	-7,3
	SLS 6	0,3	0,7	7,2	-0,4	-0,2	-3,9
	SLS 7	0,2	0,3	6,3	-0,3	-0,4	-3,0
	ULS 1a	2,9	3,0	14,3	-1,9	-0,9	-10,5
	ULS 3	1,4	1,5	12,0	-1,2	-0,8	-7,8
	ULS 4	0,5	1,0	11,0	-0,6	-0,4	-7,2
	ULS 6b	0,8	0,8	8,3	-0,7	-0,5	-4,5
	ULS 7	0,2	0,3	6,8	-0,3	-0,4	- 2,5

18-6-2021 5 van 5




Project: ZW-Oost RSD-MDK150 Masttype: Winkelmast 150°

Mast: 97

Auteur: SSHD Oplegreacties per randstijl Versie: 1.4

Betrouwbaarheidsniveau Referentieperiode Afkeur CC2-0 30 jaar

Assenstelsels

Maximale drukbelasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 1a_45 Ba All Cts	- 27	- 25	-179	1	-37	7	-182
2	SPLS 1a_0 Ba All Cts	-19	17	-128	- 2	-25	4	-130
3	ULS 3_135	62	69	-545	- 5	- 93	2	- 553
4	ULS 3 <u></u> 95,5	96	-101	-787	3	-139	8	-800

Maximale trekbelasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	42	54	425	8	68	3	431
2	ULS 3_0,9_95,5	80	- 83	668	-2	115	-4	678
3	SPLS 1a_0,9_0,9_45 Ba All Cts	-16	-15	109	-1	22	-4	111
4	SPLS 1a 0.9 0.9 0 Ba All Cts	- 9	7	58	1	11	-1	59

Maximale torsiebelasting (positief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_90 Ba Ct2 Ba Ct1	-20	67	226	61	34	4	229
2	SPLS 6a_90 Ba Ct2 Ba Ct1	72	5	271	54	48	- 2	275
3	SPLS 6a_90 Ba Ct2 Ba Ct1	79	- 6	-313	60	- 52	-1	-317
4	SPLS 6a_90 Ba Ct2 Ba Ct1	6	- 97	-399	64	- 73	7	-405

Maximale torsiebelasting (negatief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_90 Ba Ct1 Ba Ct2	53	- 20	148	-51	23	2	150
2	SPLS 6a_90 Ba Ct1 Ba Ct2	0	- 83	351	- 58	59	0	356
3	SPLS 6a_90 Ba Ct1 Ba Ct2	-12	80	-275	- 65	-48	2	-279
4	SPLS 6a_90 Ba Ct1 Ba Ct2	97	-11	-438	-61	-77	4	-444

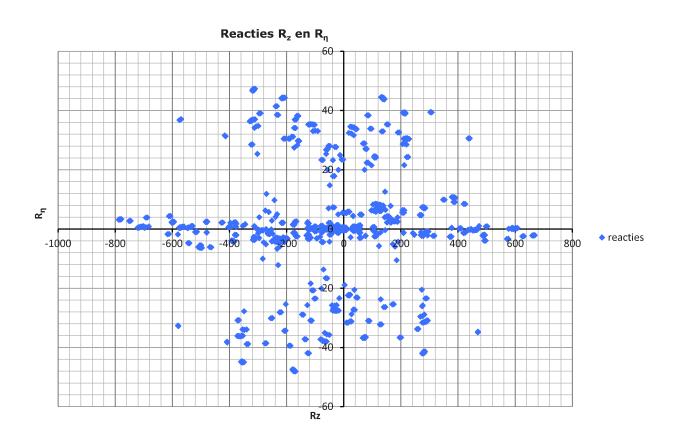
Combinatie Ftrek+Fh

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	42	54	425	8	68	3	431
2	ULS 3_0,9_95,5	80	- 83	668	-2	115	-4	678
3	SPLS 6a_90 Ba Ct1 Ba Ct2	-12	80	-275	- 65	-48	2	- 279
4	SPLS 6a 90 Ba Ct2 Ba Ct1	6	- 97	-399	64	- 73	7	-405

Permanente belasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SLS 7	16	21	164	3	26	1	166
2	SLS 7	24	- 26	211	-1	35	0	214
3	SLS 7	32	34	-263	-1	-46	2	- 267
4	SLS 7	38	- 40	-310	1	- 55	4	-315

Omhullenden ongeacht stijl

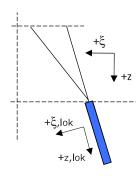

Belasting	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Max. druk	ULS 3_95,5	96	-101	-787	3	-139	8	-800
Max. trek	ULS 3_0,9_95,5	80	- 83	668	- 2	115	-4	678
Max. pos. torsie	SPLS 6a_90 Ba Ct2 Ba Ct1	6	- 97	-399	64	- 73	7	- 405
Max. neg. torsie	SPLS 6a_90 Ba Ct1 Ba Ct2	- 12	80	- 275	-65	-48	2	- 279
Comb. trek+torsie	ULS 3_0,9_95,5	80	-83	668	-2	115	-4	678

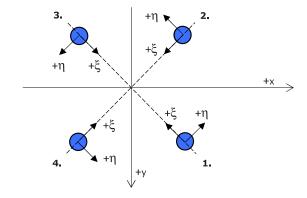
Maximale drukbelasting SLS

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 1a_0,9_0,9_45	-18	- 9	-53	7	-19	10	- 56
2	SLS 1a_0	4	-8	72	-3	9	3	72
3	ULS 3_135	62	69	-545	- 5	- 93	2	-553
4	ULS 3_135	92	- 96	-751	3	-133	8	- 762

Maximale trekbelasting SLS

Stijl	Combinatie	R_x	R_v	R_z	R_n	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	42	54	425	8	68	3	431
2	ULS 3_0,9_135	75	- 79	630	-2	109	-4	640
3	ULS 1a_0,9_0,9_45	- 2	4	-50	-4	- 2	-7	- 50
4	SLS 1a_0	20	- 23	-180	2	-31	1	-183




Project: ZW-Oost RSD-MDK150 Masttype: Winkelmast 150°

Mast: 97

Auteur: MKh
Oplegreacties per randstijl Versie: 1.4

Betrouwbaarheidsniveau Referentieperiode Verbouw CC2 50 jaar

Assenstelsels

Maxima	le dr	ukbel	astina
PIGAIIIIG	IC 41	unde	usting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 1a_45 Ba All Cts	- 28	- 25	-182	2	-38	7	-186
2	SPLS 1a_0 Ba All Cts	- 20	17	-131	-2	-26	4	-134
3	ULS 3_135	74	82	-649	-6	-110	2	-658
4	ULS 3_95,5	115	-121	-945	4	-167	9	-959

Maximale trekbelasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	52	66	518	10	83	3	524
2	ULS 3_0,9_95,5	98	-101	814	-2	141	- 5	827
3	SPLS 1a_0,9_0,9_45 Ba All Cts	-16	-15	109	-1	22	-4	111
4	SPLS 1a 0.9 0.9 0 Ba All Cts	- 9	7	58	1	11	-1	59

Maximale torsiebelasting (positief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_90 Ba Ct2 Ba Ct1	- 20	69	232	63	34	4	234
2	SPLS 6a_90 Ba Ct2 Ba Ct1	74	5	276	56	48	- 2	280
3	SPLS 6a_90 Ba Ct2 Ba Ct1	82	-6	-326	62	- 54	-1	-330
4	SPLS 6a_90 Ba Ct2 Ba Ct1	7	-100	-412	66	-76	7	-419

Maximale torsiebelasting (negatief)

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SPLS 6a_90 Ba Ct1 Ba Ct2	54	-21	152	- 53	23	2	153
2	SPLS 6a_90 Ba Ct1 Ba Ct2	0	- 85	359	-60	60	0	364
3	SPLS 6a_90 Ba Ct1 Ba Ct2	-12	83	-286	-67	-51	3	-291
4	SPLS 6a_90 Ba Ct1 Ba Ct2	101	-11	-452	- 63	- 79	4	- 459

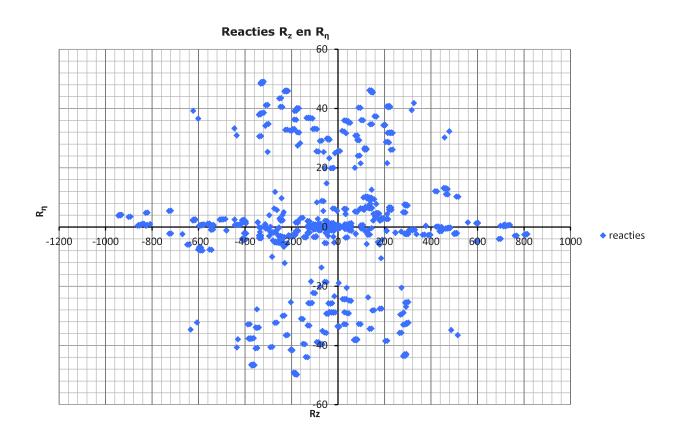
Combinatie Ftrek+Fh

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	52	66	518	10	83	3	524
2	ULS 3_0,9_95,5	98	-101	814	-2	141	- 5	827
3	SPLS 6a_90 Ba Ct1 Ba Ct2	-12	83	-286	- 67	-51	3	-291
4	SPLS 6a 90 Ba Ct2 Ba Ct1	7	-100	-412	66	-76	7	-419

Permanente belasting

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	SLS 7	16	21	164	3	26	1	166
2	SLS 7	24	- 26	211	-1	35	0	214
3	SLS 7	32	34	-263	-1	-46	2	- 267
4	SLS 7	38	- 40	-310	1	- 55	4	-315

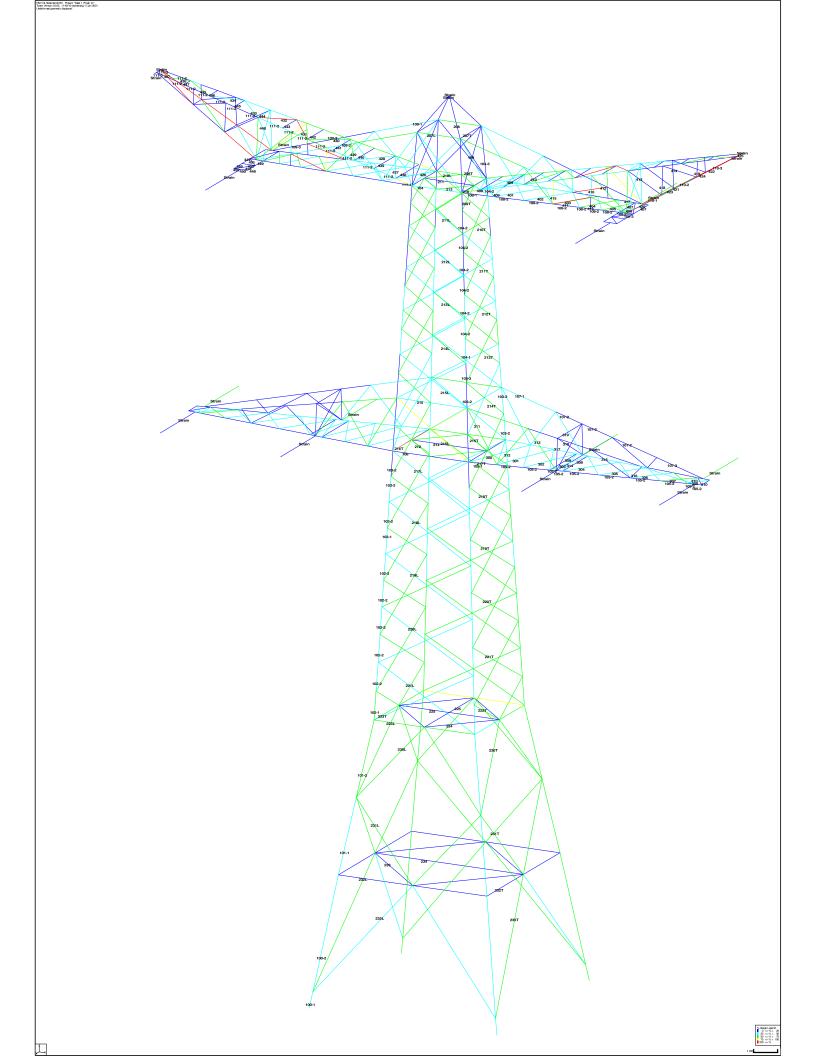
Omhullenden ongeacht stijl


Belasting	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Max. druk	ULS 3_95,5	115	-121	-945	4	-167	9	- 959
Max. trek	ULS 3_0,9_95,5	98	-101	814	-2	141	- 5	827
Max. pos. torsie	SPLS 6a_90 Ba Ct2 Ba Ct1	7	-100	-412	66	- 76	7	- 419
Max. neg. torsie	SPLS 6a_90 Ba Ct1 Ba Ct2	- 12	83	-286	-67	-51	3	-291
Comb. trek+torsie	ULS 3_0,9_95,5	98	-101	814	-2	141	- 5	827

Maximale drukbelasting SLS

Stijl	Combinatie	R_x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 1a_0,9_0,9_45	- 25	-14	-90	8	-28	13	- 94
2	SLS 1a_0	3	- 7	63	-3	7	3	63
3	ULS 3_135	74	82	-649	-6	-110	2	-658
4	ULS 3_135	110	-115	-901	3	-160	9	-915

Maximale trekbelasting SLS


Stijl	Combinatie	R _x	R_y	R_z	R_{η}	R_{ξ}	$R_{\xi,lok}$	$R_{z,lok}$
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	ULS 3_0,9_135	52	66	518	10	83	3	524
2	ULS 3_0,9_135	92	- 96	769	-3	133	- 5	780
3	ULS 1a_0,9_0,9_45	-8	-1	-17	- 5	6	- 9	-15
4	SLS 1a_0	19	- 22	-172	2	-29	1	-174

APPENDIX B

PLS-tower output

Assessment of groups for initial mast (afkeur level)

ZW380 Oost D2.3 GT-BD Hoekmast H1 Mast 1

50 53 46	0.35 0.44 0.33 0.23	32	11 51 00	19 44 56	0.46	68	.65	60	0.63	0.00	.68	0.67	.08	00	42	48	44	52	0.51	58	0.69	.54	0.52	.00	0.20	0.01	0.33	.42	0.25	0.44	0.33	.32	.16	0.00	000	00
			89.3	8.8	0 0	4.0	4 4 5	0 0	0 0 1	0.0	5.1	0 0	0 0	0 0	0 0	9 9	0 0	200	7	9.6	0 0	3.5	3.5 0.	0 7.0	0 0	0 0	0 0	0 0	7.2	2.7	2.7				П	
3524.5 0.0 3524.5 3172.0 0.0	2265.7 2014.0 0.0 1208.4	74	191	55.55	55	41	14 4	41	25	ō iš	37	25	18	n o	37	22.2	33.	33.0	25	22	221	33.	33	147	45	12.	131	133	2.7.	7	7.	226		43.6	2 2	12
2357.3 2357.3 2372.2 0.0	1694.4	508.3	117.6	338.9	338.9	254.2	254.2	254.2	169.4	58.8	254.2	169.4	169.4	28.8	254.2	169.4	254.2	254.2	169.4	169.4	169 4	254.2	254.2	84.7	338.9	169.4	117.6	117.6	75.4	75.4	75.4	75.4	0.0	37.7	37.7	37.7
1710.7 1795.4 1710.7 1548.5 1623.9	1520.3 1220.3 1301.9 1220.3	599.7	235.9	356.4 356.4	356.4	356.4	356.4	356.4	250.3	106.8 74.3	229.6	250.3	159.0	179.7	362.3	176.4	205.3	205.3	196.0	176.4	176.4	205.3	205.3	124.4	277.6	131.8	120.2	120.2	65.9	65.9	332.1	332.1	939.8	81.2	37.4	37.4
0,9 105 0,9 105 0,9 105 0,9 105	ULS 1a 0,9 105 ULS 3 0,9 105 ULS 1a 0,9 105 ULS 3 0,9 105	0,9 105 93 Ba Ct1	tt Ba Ct2	ULS 3_105 Sa Ct1 Ba Ct2 Sa Ct1 Ba Ct2	112 Ba Ct1 111 Ba Ct2	11 Ba Ct2	HI Ba Ct2	tt Ba Ct2	tt Ba Ct2 _0,9_105	0,9 135	112 Ba Ct1 111 Ba Ct2	712 Ba Cf.1 711 Ba Cf.2	S 1a_105 S 1a_105	0,9 135 LS 3_135	712 Ba Ct1 711 Ba Ct2	12 Ba Ct1	71 Ba Ct2	11 Ba Ct2	22 Ba Ct1	71 Ba Ct2	11 Ba Ct2	11 Ba Ct2 93 Ba Ct1	LS 3_105 31 Ba Ct2	0.9 105	ULS 3 105 ULS 1 93	5 1a 0,9 45 Ba Ct1 5 1a 0,9 93 Ba Ct2	3 0,9 93	3 0,9 93	3 0,9 93	ULS 3 93	3 0,9 93 ULS 3 93	ULS 3 0,9 93	3 0,9 93	ULS 18_105	ULS 14_103	5 14_133
ULS 18 ULS 18 ULS 18 ULS 18	ULS 18 ULS 3 ULS 3 ULS 3	ULS 3 SPLS 1a_0,9_	SPLS 6a 93 Ba Ct1 E	ULS 3 SPLS 6a 93 Ba Ct1 Ba SPLS 6a 93 Ba Ct1 Ba	LS 6a_93 Ba C LS 6a_93 Ba C	LS 6a 93 Ba C LS 6a 93 Ba C S 6a 93 Ba C	LS 6a 93 Ba C	LS 6a 93 Ba C	LS 6a_93 Ba C ULS 1a	ULS 1a	LS 6a 93 Ba C LS 6a 93 Ba C	LS 6a 93 Ba C LS 6a 93 Ba C	55	ULS 13	LS 6a_93 Ba C LS 6a_93 Ba C	SPLS 3 1	LS 6a_93 Ba C	LS 6a 93 Ba C	SPLS 6a 93 Ba Ct2 Ba Ct1	LS 6a 93 Ba C	LS 6a 93 Ba C	LS 6a 93 Ba Ct1 F SPLS 1a 0,9 93 F	ULS 3 SPLS 6a 93 Ba Ct1 Ba	1		SPLS 1a 0,9 SPLS 1a 0,9	STIN	OLS	SIN	SIN	OULS	STIN	STIN III	5 =	•	5
813.0 820.0 859.9 821.5 748,9	539,5 539.1 431.8 229,4				Ш	132,2 SPI 172,5 SPI 137,7 SPI	166.3 SP	153.2 SP	85.0			103.8 SP 112.9 SP					91.0 SP		86.9 SP	98.4 SP	116.1 SP	111,6 SPI 8,5	Ш	Ш	Ш			49,4	16,7	28.9	20,2	24.1	146,0	0.0	0,0	0.0
	D D 4 14 1																						-													
0.64	0.47	0.15	0.51	0.50	0.43	0.57	0.54	0.62	0.80	0.05	0.63	0.68	0.09	0.00	0.57	0.54	0.47	0.53	0.53	0.53	0.62	0.50	0.00	0.01	60.0	0.03	0.35	0.42	0.32	0.39	0.21	0.00	0.39	0.00	0.13	0.03
3628.8 3265.9 0.0	2332.8 2073.6 0.0 1244.2	0.0	216.0	570.2 570.2 570.2	570.2	427.7	427.7	427.7	259.2	75.6	388.8	259.2 259.2	233.3	86.4	388.8	233.3	349.9	349.9	259.2	233.3	233.3	349.9	349.9	1516.3	466.6	155.5	151.2	151.2	86.4	86.4	86.4	172.8	0.0	51.8	43.2	43.2
2357.3 2357.3 2372.2 0.0	1694.4 1694.4 0.0 1016.6	0.0	58.8 58.8	E 6 8	6.88	24.2	24.2	24.2	69.4	58.8	54.2 54.2	169.4	69.4	2 8 2	2 4 2	69.4	54.2	24.2	9.4	9.4	59.4	54.2	54.2	34.7	338.9	69.4	117.6	17.6	75.4	75.4	75.4	75.4	0.0	37.7	37.7	37.7
235	101	2 25	(3")	Z 22 22	m m	22 22	22 2	2 2 2	16	u, u,	25	2 2	21 21	,, ,,	25	31 31	22	25	91 2	1919	16	25	25	3 /	33	10	22	Ξ.				1 6				
1652.2 1652.2 1652.2 1456.3	1482.7 1164.7 1167.6 1227.3	380.1	192.4	339.4	326.1	313.2	305.9	291.4	249.0	39.2	262.0	194.0	147.3	29.5	217.6	180.2	196.7	214.5	187.1	184.4	201.6	227.7	97.3	82.8	208.3	204.1	101.2	122.3	58.5	77.9	105.6	355.1	790.6	41.4	23.5	57.6
			l Ba Ct2	മ മ	l Ba Ct2 l Ba Ct2	888	8 8 8	88	eg G		2 Ba Ct1 1 Ba Ct2	ng ng			Ba Ct1	Ba CH	B 8 CH	B Ct1	Ba Ct1	Ba Ct2	Ba Ct2	1 Ba Ct2 t1	l Ba Ct2			=										
1a 105 1a 105 1a 105 3 105 3 105	14 105 3 105 3 105 3 105 1 05	3 105 1a_93	3 93 6a 93 Ba Ct1 Ba Ct2 3 135	3_0,9_93 6a_93 Ba Ct. 6a_93 Ba Ct	6a 93 Ba Ct1 6a 93 Ba Ct1	6a 93 Ba Ct 6a 93 Ba Ct 6a 93 Ba Ct	6a 93 Ba Ct	6a 93 Ba Ct 6a 93 Ba Ct	6a 93 Ba Ct. 3_105	1a_45 7	6a 6a	S 6a 93 Ba Ct. S 6a 93 Ba Ct.	1a_0,9_105 1a_0,9_105	18_135	6a_93 Ba Ct. 6a_93 Ba Ct.	5 0,9 95 Ba	6a 93 Ba Ct	6a 93 Ba Ct	5 6a 93 Ba Ct2 Ba Ct1 6a 93 Ba Ct2 Ba Ct1 6a 93 Ba Ct2 Ba Ct1	6a 93 Ba Ct 6a 93 Ba Ct	6a 93 Ba Ct 6a 93 Ba Ct	6a 93 Ba Ct	6a 93 Ba Ct1	3 135	3 0,9 93	1a 135 Ba Ct1	3 93	3 93	3 105	3 0,9 93	3 93	3 93	3 93	1a_105	1a_45	1a 105
1020.3 ULS 1051.3 ULS 1001.1 ULS -931.2 ULS	-696.3 ULS -710.6 ULS -598.5 ULS -310.4 ULS	245.3 ULS	-282.2 ULS -59.7 SPLS -0.5 ULS	48.1 ULS 169.9 SPLS 197.5 SPLS	140.7 SPLS 185.8 SPLS	176.8 SPLS 176.8 SPLS	162.0 SPLS 136.4 SPLS	-158.2 SPLS	135.5 SPLS 104.3 ULS	-2.1 ULS -0.2 ULS	-161.2 SPLS -162.0 SPLS	114.6 SPLS 112.2 SPLS	-13.8 ULS						-29.6 SPLS			2 2	2	-0.6 ULS	-18.7 ULS	2.3 SPLS 12.6 SPLS	35.5 ULS	-49.5 ULS	-18.7 ULS	-29.3 ULS	-15.7 ULS	2	2	-20.4 ULS	2	-1.1 ULS
	50 37 37					101	106							Ш			Ш	Ш																	Ш	
20.00	80808	8 8 8 8	00 00	0 22 00	52	52 52	52	52	00	00 50	20	20 20	20	0.00	33	25 2	25 22	225	2 8 2	2 22 23	52	00	000	8 8	88	00	53	53	2 22 25	22 22	252	8 8	00 00	1.00	00.1	1.00
50 0.50 0 50 0.50 0 50 0.50 0 40 2.40 1	t 2.37 2.40 1.00 tt 2.40 2.43 1.00 2.37 2.40 1.00 2.48 2.12 1.00	73 2.76 1	00 1 00 1	52 0 52 0 1 00 1 00 1 00 1 00 1 00 1	52 0.52 0 52 0.52 0	52 0 52 0	52 0.52 0 52 0.52 0	52 0.52 0	00 1 00 1	00 1.00 1 00 0.50 0	00 0.50 0	00 0 50 0	00 0.50 0	00 1 00 1	00 0 33 0	52 0 52 0	52 0.52 0	52 0.52 0	1.00 1.00 1.00	52 0.52 0	52 0 52 0 52 0 52 0	00 1 00 1 52 0 52 0	00 1.00 1 00 1.00 1	00 1.00 1	00 2.00 1	54 0.54 0	53 0 53 0	53 0 53 0	55 0 55 0	56 0.56 0	55 0 55 0	00 1 00 1	26 1 00 1	1.00 1.00 1	00 1 00 1	00 1.00 1
14M24-5.6t 0 14M24-5.6t 0 14M24-5.6t 1	10M24-5.6t 2 10M24-5.6t 2 6M24-5.6t 2	M24-5.6t 1	12M20-5.6t 2 2M20-5.6t 1 1M20-5.6t 1	M24-5.6t 2 M24-5.6t 0 M24-5.6t 1	4M24-5.6t 0	M24-5.6t 0 M24-5.6t 0 M24-5.6t 0	M24-5.6t 0	M24-5 6t 0	M24-5.6t 1 M24-5.6t 1	1M20-5.6t 1 1M20-5.6t 1	M24-5.6t 1 M24-5.6t 1	M24-5.6t 1 M24-5.6t 1	M24-5.6t 1 M24-5.6t 1	M20-5.6t 1	M24-5.6t 1	M24-5.6t 0	3M24-5.6t 0	3M24-5.6t 0	M24-5.6t 1 M24-5.6t 1	2M24-5.6t 0	2M24-5 6t 0	3M24-5.6t 1 1M24-5.6t 0	M24-5.6t 1 M24-5.6t 1	1M24-5.6t 1	M24-5.6t 1	2M24-5.6t 1 2M24-5.6t 0	M20-5,6t 0	M20-5.6t 0	M16-5,6t 0	M16-5.6t 0	ZM16-5-6t 0 ZM16-5-6t 1	M16-5 6t 1 2M24-5 6t 1	2	1M16-5.6t 1 2M16-5.6t 1	M16-5,6t 1	M16-5.6t 1
	1 9	, ,	1 2 1	0 4 4	4.4	m m r	9 10 10	mm	2 2	1	mm	7 7	2 2		mm	7 7 7	N (M) (A)	100	4140	122	2 6		5 3		4.0	2 2	2 2	2 6	121	2 2	2 2	1 2	-			-
0x20 5235 0x20 5235 0x20 5235 0x18 5235 0x18 5235	200x200x18 5235 180x180x16;5235 180x180x16;5235 180x180x16;5235	0x11 S235 0x11 S235	0x10 S235 0x10 S235 9 S235	0x10 5235 0x11 5235 0x11 5235	0x11 S235 0x11 S235	0x11 5235 0x11 5235 0x11 5235	0x11 5235 0x11 5235 0x11 5235	0x11 S235 0x11 S235	0x10 S235 0x10 S235	7# S235 6 S235	x10 S235 x10 S235	0x10 S235 0x10 S235	9 S235 9 S235	0x8 S235	x10 S235 x10 S235	0X10 5235 9 5235	5235	5235	5 5235 10 5235 10 5235	9 S235	9 S235 9 S235	9 S235 6 S235	9 S235 9 S235	8 S235 0x134S235	9 5235	5 S235 0x6 S235	7# 5235	7# \$235	5 5235	5 5235	5 S235 x10 S235	x10 S235 0x15 S235	0x15 S235	5 5235 5 5235 5 5235	5235	5 5235
200×201 200×201 200×201 200×201 200×201	200×200 180×181 180×181 180×181	120×12 120×12	100x100 2 90x90x6	110x11 120x12 120x12	120x12 120x12	120x12 120x12 120x12	120x12 120x12 130x13	120×12	110×111	1 75×75×. 65×65×¢	150x90; 150x90;	110x11 110x11	90,90x 90,90x	100×10x	160x80 160x80	90x90x	000000 000000	000006 000006	ш	ш	ш	Ш		80x80x	90×90× ×02×02	70×70× 100×10	75x75x 75x75x	75x75x 60x60x	60×60×	x09x09	60x60x		ш	65x65x6	50×50×	50x50x
n member n member in member in member	ain member n member n member	member member	om diagonal .	3 1 ona1 3	2.5	3 3	1 4 5) 5 100na1 4	r under 1	agonal under	gonal 1 tonal 1	gonal 2 tonal 2	under 1 under 1	g under 1 under 1	ona 1	tont 4			tonal side 4			F	horizontal front ragm diag	agm horiz	horiz side	horiz side	Under	Jnder	Juder	Juder	Juder 18-2 under	38.4 under member bottom	member botton	nt diag 2	nt diag 4	t diag 6
BRASI K - Main member Eerste TSNSTK - Main member Tweede TSNSTK - Main member Tweede TSNSTK - Main member	Tweede TSNSTK - Main men Derde TSNSTK - Main memb Derde TSNSTK - Main memb Derde TSNSTK - Main memb Bounderick - Main member	Bovenstuk - Main member Bovenstuk - Main member	Onderfraverse lower horizontal front Derde TSNSTK - Bottom diagonal 2 Derde TSNSTK - Bottom horizontal 2	SNSTK - Hor SNSTK - CD 1 SNSTK - Diag	SNSTK - CD :	SNSTK - CD :	TSNSTK - CD	TSNSTK - CC	TSNSTK - Ho	TSNSTK - Di: TSNSTK - CD	TSNSTK - Diac FSNSTK - Diag	Eerste TSNSTK - Diagonal 2 Eerste TSNSTK - Diagonal 2	TSNSTK - Hor	ISNSTK - Dia	BRKSTK - Front diagonal 1 BRKSTK - Front diagonal 1	tuk CD front 1	Bovenstuk CD front 3	tuk CD front 5	SNSTK - Diag	tuk CD side 1	Bovenstuk CD side 3 Bovenstuk CD side 4	Bovenstuk diag side 1 Bovenstuk CD side 5	averse upper averse diaphr.	averse diaphr	Boventraverse lower horiz side	raverse upper	Eerste DWSRM CD1 U Eerste DWSRM CD2 U	Eerste DWSRM CD3 U	DWSRM CD5 L	DWSRM CD7 L	ste DWSRM CD9 Under	DWSRM Horiz.	DWSRM Main	te DWSRM - Front diag 1 te DWSRM - Front diag 2	DWSRM - Fron	WSRM - Fron
Eerste Tweede	Tweede Derde T Derde T	Bovenstul	Derde T	Derde T Derde T	Derde T	Derde T	Tweede	Tweede	Tweede	Tweede	Eerste Terste T	Eerste 7	Eerste 7	Eerste 1	BRKSTI	Bovenst	Bovenst	Bovenst	Derde T	Bovenst	Bovenst	Bovenst	Ondertr	Boventr	Boventr	Boventr Top cap	Eerste L	Eerste D	Eerste D	Eerste D	Eerste D	Eerste D	Eerste D	Eerste D	Eerste I	Eerste [

Date Author Version

Assessment of groups for initial mast (afkeur level)

ZW380 Oost D2.3 GT-BD Hoekmast H1 Mast 1

4 0.54																									0 0.01	ľ	0 0.41	0.50	2 1.12 arschulving, stull	2 0.00	00.00	8 0.31	2 0.23	.8 0.37																			.0 0.01		
																																																					188.2 189.0		
																																																					1739.7 18		
ULS 1a_135	ULS 1a 135	ULS 1a_135	ULS 3_105	ULS 3 105	ULS 3_105	ULS 3_105	ULS 1a 93	ULS 14 03	ULS 14(33	ULS 3 0,9 93	ULS 3 105		ULS 3_105	ULS 1a_105	ULS 1a 105	UIS 1a 135	ULS 3_0,9_93		4	ULS 64_93 B4 Ct2	ULS 3 0,9 93	ULS 1a 0,9 0,9 0	SPLS 1a_0,9_0 Ba All Cts	015 3 0,9 93	ULS 3 0,9 93	ULS 1a 93	ULS 3 105	ULS 3_105	ULS 3 0.9 93	56-6'0-5 ETO	LS 1a 0,9 0,9 0 Ba All Cts	ULS 1a_0,9_0,9_0	ULS 10.9 105	ULS 3 0,9 105	ULS 1a 0,9 0,9 0	SPLS 1a 0.9 0.9 0 Ba All Cts	ULS 3 135	ULS 1a_0,9_0,9_0	ULS 3_93	ULS 3 93	ULS 1a 0,9 0,9 135	ULS 1a 0,9 0,9 0	SPLS 1a_0,9_0,9_135 Ba Ct2	ULS 1a 135	LS 1a 0,9 0,9 0 Ba All Cts	0LS 3_93	LS 1a_0,9_0,9_0 Ba All Cts	015 3 0,9 135	ULS 3_105	ULS 3_105	ULS 6a_93 Ba Ct1	ULS 1a 75	ULS 1a_93	S 1a 0,9 0,9 75 Ba All Cts	
134,3	104.1	95.5	26,2	31.4	34.8	34,4	80 F	12.7	12.2	11,0	26,3	knik 0.0	24.2	1,7	1,8	2.1	10,4	0'0	0.0	14.6	34,2	3.9	0.4	160,3	118,1	128.2	146,6		arschulving, stulk		0,1 SP	7.6	13.6	11,9	14,3		8,3	2,2	14.5	20.7	0,2			0.7	0.2 SP	9.2	0.3 SP	0.7	104.5	124.3	12,6	11.9	1.9	0,2 SPL	
00.00	00.00	00.00	0.41	0.45	0.44	0.48	0.50	0.20	0.44	0.43	0,75	1,49	0.00	00.00	0.00	0.55	0.71	0.04	0.02	0.00	60.0	0.02	0.22	0.48	0.01	00.00	0.00	_	1.92 Knik,	1.85	0.02	0.48	0.49	0,55	0.68	1.33	0.09	0,35	0.04	0.00	0,03	0.03	0.02	0.01	0.10	0.01	0.02	0.00	0.75	0.63	00.00	0.02	0.02	0.11	
570.2	0.0	570.2	86.4	86.4	86.4	86.4	86.4	122 8	43.2	51.8	86,4	43.2	43.2	43.2	43.2	43.7	43.2	43.2	43.2	43.2	43.2	43.2	43.2	1684.8	0.0	291.6	0.0	291.6	21.8	51.8	172.8	43.2	43.2	43,2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	181.4	0.0	121.0	220.5	235.2	58.8	
338.9	0.0	338,9	75.4	75.4	75.4	75.4	75.4	75.4	37.7	37,7	75,4	37.7	37.7	37.7	3/./	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	847.2	0.0	176.4	0.0	176.4	3/./	37.7	75.4	37.7	37.7	37,7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	113.0	0.0	75.4	188.2	188.2	60.3	
143.6	84.0	84.1	63.1	71.3	76.0	82.0	87.4	303.7	20.4	122.7	26.8	24.8	18.8	24.7	29.0	7.75	24.0	38.4	59.2	20.2	18.4	42.0	55.4	733.2	827.4	48.0	48.0	48.0	31.6	23.9	391.0	20.2	26.1	24,4	20.2	25.4	28.4	30.0	32.7	61.0	18.3	20.3	22.7	30.0	35.1	41.1	48.0	55.5	140.4	145.5	142.6	562.6	1602.3	29.0	
								O 135 By All Che	93		93				50	8			3 Ba Ct1 Ba Ct2	9 O Ra All Cre	Ba All Cts	Ba Ct2			6 63			6 0,9 93			5	105	105	0 6,0 6	93		0 6'0 6	105	,9 0,9 0 Ba Ct1	26	3 Ba Ct1 Ba Ct2	: Ba Ct2		.9 0 Ba Ct1		,9 0,9 0 Ba All Cts	5	E Parcel	105	105		9 0.9 135	6 0,0 93		
0'0	0.0	0.0	25.6 ULS 3 100	32.3 ULS 3 105	33 4 ULS 3 100	36.3 ULS 3 105	37 8 ULS 3 105	-15.3 ULS 18 90	9.0 ULS 3 0.9	-16.0 ULS 3 100	20 1 ULS 3 0,9	37 1 ULS 3 105	0.0	0'0	0'0	-20.9 UIS 3 10	-17.0 ULS 3 93	1.4 ULS 1a 75	-0.9 SPLS 6a_9	-1.2 SPIS 1a 0,	1.7 SPLS 1a 0	-0.9 ULS 6a 93	-8.2 ULS 3 10	350 3 ULS 3 100	501 6 ULS 3 10:	0.0	0'0	-0.2 ULS 1a 0,	50 4 ULS 3 93	-44.1 ULS 3 93	1.5 ULS 1a 13	98 ULS 3 0,9	-12.8 ULS 3 0.9	13.4 ULS 1a 0,	-13.8 ULS 3 0,9	33.8 ULS 3 0.9	2.7 ULS 1a 0,	-10.6 ULS 3_0,9	-1.5 SPLS 1a_0	0.0	0.5 SPLS 6a 9	-0.6 ULS 6a 93	0.6 ULS 3.75	-0.3 SPLS 1a 0	3.4 ULS 1a 1	0.3 SPLS 1a 0	-0.7 ULS 1a_13	0.4 SPLS 1a C	84 9 ULS 3 0,9	918 ULS 3 0,9	0'0	4.3 ULS 1a 0,	-3.0 ULS 1a_0,	-6.7 ULS 1a 9	
	525	229	118	103	96	86	78	7/	239	20	203	183	222	183	791	15	187	128	69	252	226	117	82	25	14	291	291	291	173	200	24	227	207	199	211	179	165	158	147	100	226	211	195	158	139	120	101	82	83	85	81	40	15	102	
1.49 1.00	2.73 1.00	1.00	0.52 0.52	0.52 0.52	0.52 0.52	0.52 0.52	0.52 0.52	1 00 1 00	1.00 1.00	100	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00		1.00	1.00 1.00	1.00 1.00	1.00	1 00 1 00	1 00 1 00	1.00 1.00	1.00 1.00	1.00	8 6	1.00 1.00	1.00 1.00	1.00 1.00	1 00 1 00	100	1.00 1.00	1.00 1.00	1.00 1.00 1.00	1,00 1,00	1.00	100	1.00 1.00	1.00 1.00	1 00 1 00 1 00	1.00 1.00	1.00 1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00 1.00	1 00 1 00 1 00	2.32 1.00	2.68	1.00	100	2.00 2.00 2.00	1.00	l
4M24-5.6t		4M24-5.6t	2M16-5.6t	2M16-5.6t	2M16-5.6t	2M16-5.6t	ZM16-5.6t	2M16-5.01	1M16-5.6t	1M16-5.6t	2M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5 of	1M16-5 6t	1M16-5.6t	1M16 5 6t	10M24-5.6t		3M20-5.6t		3M20-5.6t	IM16-5.60	1M16-5.6t	2M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5-6t	1M16-5.6t	1M16-5-6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5 6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5 6t	IM16-5-61	3M16-5.6t		- 1			1M16-8.8t	
_	L	_		5 5235	П		5 5235	5	3	ľ.		l	5 \$235						5 5235			П	5 5235	0x1345235	0x1345235	9 5235	L			5 S235			5 5235			5 5235		Ш	5 5235		l	5 S235	5 5235	ı	5 5235	П		5235	24		7# \$235		5355		
r top 90x90x1		Н	60x60x5	60x60x5	60x60x5	60x60x5	60x60x5	120×120×10				ľ			50x20x2	50x50x5	3 50x50x5		50×50×5		П	er raised 50x50x5	er raised 50x50x	er bottom 140x14	er bottom 140x140x13	er top 90x90x9	er top 90x90x9	er top 90x90x	er bot rais 55X55X	er bot rais 55x55x6	nember 120x80;	55×55×5	55x55x6	55x55x5	50x50x5	50x50x5	50×50×5		50x50x5			50x20x2	50×50×5			50x50x5		50X50X5	er top rais	er top rais 75x75x	er top rais 75x75x7	oriz (new) UNP160			
Eerste DWSRM - Main member top	ste DWSRM - Main membe	ste DWSRM - Main membe	Iweede DWSRM - CD1 Under	Tweede DWSRM - CD2 Under	weede DWSRM - CD4 Under	Tweede DWSRM - CD5 Under	eede DWSRM - CD6 Under	I Weede DWSKM = CD/ Under	sede DWSRM - Front diag 3	Tweede DWSRM - Front diag 2	sede DWSRM - Front diag	sede DWSRM - Front diag .	sede DWSRM - Front diag !	eede DWSRM - Front diag o	weede DWSRM - Front diag	Iweede DWSRM = Front vert 2	weede DWSRM - Front vert 3	Iweede DWSRM - Front vert 4	weede DWSRM - Front vert 5	Iweede DWSRM = Diag 1 under raised Tweede DWSRM = Diag 2 inder raised	Tweede DWSRM - Diag 3 under raised	Iweede DWSRM - Horiz 1 under raised	Tweede DWSRM - Horiz 2 under raised 50x50x5	Iweede DWSRM - Main member bottom 140x140x1335235	Weede DWSKM - Main member bottom Weede DWSRM - Main member bottom	sede DWSRM - Main memb	ede DWSRM - Main memb	Tweede DWSRM - Main member top	eede DWSKM - Main memb	Tweede DWSRM - Main member bot rais 55x55x6	sede DWSRM - Edge cap m	weede DWSRM - Top diag 1	Tweede DWSRM - Top diag 2	Iweede DWSRM - Top diag 4	Fweede DWSRM - Top diag 5	ede DWSRM - Top diag 7	Tweede DWSRM - Top diag 8	weede DWSRM - Top diag 9	Tweede DWSRM - Top diag 10	Weede DWSRM - Top diag 12	weede DWSRM - Top horiz 1	Tweede DWSRM - Top horiz 2	Iweede DWSRM - Top horiz 3	Weede DWSRM - Top horiz 5	Iweede DWSRM - Top horiz 6	weede DWSRM - Top horiz 7	weede DWSRM - Top horiz 8	weede DWSRM - Top horiz 9	weede DWSRM - Main member	Fweede DWSRM - Main member top rais 75x75x7#	Tweede DWSRM - Main member top rais 75x75x74	sede DWSRM - Extension h	Tweede DWSRM - Ketting beam (new) HEB160	Tweede DWSRM - Diag between UNP	

Assessment of groups for strengthened mast (afkeur level)

ZW380 Oost D2.3 GT-BD Hoekmast H1 Mast 1

4.0	0.5	0.0	0.3	0.3	0.4	0.32	0.1	0.5	0.1	0.4	0.56	0.5	0.5	0.54	9,0	0.60	0.56	0.4	0.0	0 0	0.6	9.0	0.0	0.0	0.0	0.4	0.4	0.4	0.45	0.5	0.5	0.5	4.0	0.5	39.0	0.5	0.1	0.5	0.0	0.3	0.7	0.0	0.3	0.3	0 0	0.2	2.0	9.0	0.3	0.3	0.1	0 0
3524.5	3524.5	0.0	2265,7	0.0	830.8	0.0	2265.7	198.3	755.2	553.8	553.8	553.8	427.7	415.4	415.4	415.4	415.4	251.7	69.4	376.1	376.1	251.7	181.3	181.3	59.5	375.4	375.4	226.6	226.6	338.5	338.5	251.7	251.7	226.6	226.6	338.5	62.5	338.5	100.7	1472.7	145.9	125.0	138.8	138.8	138.8	72.7	72.7	72.7	72.7	0.0	2265.7	0.0
2357.3	2357.3	0.0	1694,4	0.0	1016.6	0.0	999.7	117.6	508.3	338.9	338.9	338.9	254.2	254.2	254.2	254.2	254.2	169.4	58.8	25.8	254.2	169.4	169.4	169.4	58.8	254.2	254.2	169.4	169.4	254.2	254.2	169.4	169.4	169.4	169.4	254.2	84.7	254.2	84.7	762.5	169.4	169.4	117.6	117.6	117.6	75.4	75.4	75.4	75.4	75.4	7.666	0.0
1710.7	1710.7	1623.9	1548,5	1301.9	513.2	599.7	834.4	235.9	412.6	356.4	356.4	356.4	356.4	356.4	356.4	356.4	356.4	250.3	106.8	229.6	229.6	250.3	159.0	159.0	82.9	362,3	362.3	176.4	176.4	205.3	205.3	196.0	196.0	176.4	176.4	205.3	76.0	205.3	124.4	737.4	152.8	131.8	120.2	120.2	120.2	629	629	629	332 1	332.1	834.4	939.8
815.2 ULS 1a_0,9_105 822.5 ULS 1a_0,9_105	863.7 ULS 1a_0,9_105	752.7 ULS 1a_0,9_105	542,6 ULS 1a_0,9_105 541.3 IIIS 3 0 9 105	434,3 ULS 1a_0,9_105	237.3 ULS 3_0,9_105	193,6 ULS 3 0,9 105	20	60.0 SPLS 6a_93 Ba Ct1 Ba	79.0 ULS 3_105	150.4 SPLS 6a_93 Ba Ct1 Ba	190.9 SPLS 6a 93 Ba Ct1 Ba	190.2 SPLS 6a 93 Ba Ct1 Ba	132.2 SPLS 6a_93 Ba Ct1 Ba	137.8 SPLS 6a_93 Ba Ct2 Ba	100 7 CDIC 6a 03 Ba Ct1 Ba	153.4 SPLS 6a_93 Ba Ct1 Ba	143.6 SPLS 6a 93 Ba Ct1 Ba	83.7 ULS 1a_0,9_105	2.1 ULS 1a_0,9_135	156.9 SPIS 6a 93 Ba C12 Ba	159,5 SPLS 6a_93 Ba Ct1 Ba	104.5 SPLS 6a_93 Ba Ct2 Ba	115,0 SPLS 62_93 Ba Ct1 Ba	11,4 ULS 1a_135	2.0 ULS 1a 0,9 135 0.0 III S 3 135	107,8 SPLS 6a_93 Ba Ct2 Ba	107.5 SPLS 6a_93 Ba Ct1 Ba	81.0 SPLS 6a_93 Ba Ct2 Ba	83.9 SPLS 6a_93 Ba Ct2 Ba	102.5 SPLS 6a_93 Ba Ct2 Ba	107.0 SPLS 6a 93 Ba Ct1 Ba	87,2 SPLS 6a_93 Ba Ct2 Ba	79.9 SPLS 6a_93 Ba Ct1 Ba	99.1 SPLS 64 93 B4 Ct1 B4	115,5 SPLS 6a_93 Ba Ct1 Ba	116.6 SPLS 6a_93 Ba Ct1 Ba 113.3 SPLS 6a_93 Ba Ct1 Ba	8.8 SPLS 1a_0,9_93 Ba Ct	104.2 ULS 3_105 88 1 SPIS 6a 93 Ba C11 Ba		242.7 ULS 3_0,9_105 FG 0 IIIC 3_105		1.6 SPLS 1a_0,9_45 Ba Ct	w.	40,3 ULS 3_93	49,6 ULS 3_0,9_93 31.4 ULS 3_0,9_93	16,8 ULS 3 0,9 93	21.8 ULS 3_0,9_93 29.1 ULS 3_93	39.5 ULS 3 0,9 93	20.0 ULS 3 0,9 93	24,3 ULS 3_93	150,2 ULS 3_0,9_93	143./ ULS 3_0,9_93
3628.8 0.62	3628.8 0.64			0.0 0.51		0.0 0.49		0.0	77.6 0.20	0.2 0.50	70.2 0.58	0.2 0.56	7.	27.7 0.50	0.64	. 7.	27.7 0.56	59.2 0.63	9 0	288 8 0.01	88.8 0.64		233.3 0.10		86.8 0.11		388.8 0.52		233.3 0.50		349.9 0.53		259.2 0.60	33.3 0.63		349.9 0.61	77.8 0.21	0.00	103.7 0.01	m v	0 4	ıçi ı	2 0	2	151.2 0.42	4	86 4 0.31	16.4 0.59	172 8 0.21		32.8 0.41	
					85	c c	233	21	77	57	57	57	427	42	42	427	42	25	7	D SC	38	25	23	23	Φα	38.0	38	23	23	34	34	25	25	23	23	34 34		34	10	151	18						20 00		8 21	17	233	
2357.3	2357.3	0.0	1694.4	0 0	1016.6	0.0	999.7	117.6	508.3	338.9	338.9	338.9	254.2	254.2	254.2	254.2	254.2	169.4	58.8	25.0	254.2	169.4	169.4	169.4	58.8	254.2	254.2	169.4	169.4	254.2	254.2	169.4	169.4	169.4	169.4	254.2	84.7	254.2	84.7	762.5	169.4	169.4	117.6	117.6	117.6	75.4	75.4	75.4	75.4	75.4	999.7	0.0
05 1652.9			05 1482.7 5 1164.7		5 502.4			Ct1 Ba	93 243.3	93 Ba Ct2 Ba 339.4	93 Ba Ct1 Ba 349.4	93 Ba Ct1 Ba 332.7	93 Ba Ct2 Ba 313.2	93 Ba Ct1 Ba 298.7	93 Ba Ct1 Ba 305.9	93 Ba Ct1 Ba 291.4	93 Ba Ct1 Ba 295.1	5 249.0	39.2	93 Ba Ct J Ba 22.5	93 Ba Ct1 Ba 262.0	93 Ba Ct2 Ba 194.0	93 Ba Utz Ba 194 U	ш	5 25.0	93 Ba Ct2 Ba 217,6	93 Ba Ct2 Ba 217.6	93 Ba Ct2 Ba 180.2	93 Ba Ct2 Ba 187.7	93 Ba Ct1 Ba 205.6	93 Ba Ct2 Ba 214.5	93 Ba Ct2 Ba 187.1	93 Ba Ct2 Ba 186.3	93 Ba Ct1 Ba 192.7	93 Ba Ct1 Ba 201,6	93 Ba Ct1 Ba 227.7	105 Ba Ct1 69.3	97.3 93 Ra C#1 Ra 205.8		105 725.3	,				122.3	Ш						
-1025.6 ULS 1a 105	1055.8 ULS 1a 105	33.8 ULS 3_10	599 0 ULS 1a 1	599.8 ULS 3 10	304.0 ULS 3_10	247 0 ULS 3 10	78.2 ULS 3 93	59.7 SPLS 6a	47.8 ULS 3_0,9	69.7 SPLS 6a	40 9 SPLS 6a	186.0 SPLS 6a 93 Ba Ct1 Ba	77 2 SPLS 6a	126.8 SPLS 6a	36 5 SPLS 6a	158.4 SPLS 6a	143.0 SPLS 6a	107.2 ULS 3 10	-2.3 ULS 1a_4	61.8 SPIS 68	162.0 SPLS 6a	114.2 SPLS 6a	14.7 UIS 1a 0	-11.9 ULS 1a_0	-2.6 ULS 1a 4	122.9 SPLS 6a_9	112.3 SPLS 6a_	74.7 SPLS 6a	85.4 SPLS 6a 9	99.1 SPLS 6a	113.2 SPLS 6a 9	91.1 SPLS 6a	101.8 SPLS 6a_	106.2 SPLS 6a	106.9 SPLS 6a	14.5 SPLS 6a	-14.6 SPLS 1a 105 Ba Ct1	0.0 87.7 CPI C 63.0	0.9 ULS 3 13	-420.0 ULS 3 105	0.0	-2.3 SPLS 1a	35.6 ULS 3 0,9	42.8 ULS 3 93	-49,7 ULS 3_93 -22,7 ULS 3_105	18.7 ULS 3_10	21.4 ULS 3 93 29.4 ULS 3 0.9	44.4 ULS 3 93	16.2 ULS 3_93	0.0	346.0 ULS 3_93	304.5 ULS 3 73
43 -1										ш				109			111	108	225	113	113	131	126	126	352	130			104					101	ш				П						106						- 47	
0.33	0.50	1.00	1,00	1.00	1,00	1.00	1.00	1.00	1.00	0.52	1.00	0.52	0.52	0.52	0.52	0.52	1.00	1.00	1.00	0.50	0.50	0.50	0.50	0.50	0.50	0,33	0.33	0.52	0.52	0.52	0.52	1.00	0.52	0.52	0,52	1.00	0.52	00.1	1.00	1.00	1,00	1.00	0.53	0,53	0.53	0,55	0.55	0.58	0.55	1,00	00.1	1,00
0.33	0.50	2.45	2.40	2.40	2.12	2.76	1.00	1.00	1.00	0,52	1.00	0.52	0.52	0.52	0,52	0,52	1.00	1.00	1.00	0.00	0,50	0.50	0.50	0.50	0.50	0,33	0.33	0.52	0,52	0.52	0.52	1.00	0.52	0.52	0.52	1.00	0.52	0 0	1.00	2.00	1,00	1.00	0.53	0.53	0.53	0.55	0.55	0.58	0.55	1.00	1.00	0.1
0.33	0.50	2.40	2,37	2.37	2,12	2.73	2.00	1.00	2.00	0,52	1.00	0.52	0.52	0.52	0,52	0,52	1.00	1.00	1.00	8 6	1.00	1.00	1.00	1,00	1.00	1,00	1.00	0.52	0.52	0.52	0.52	1.00	0.52	0.52	0,52	1.00	0.52	00.1	1.00	1.00	1.00	1.00	0.53	0.53	0.53	0,55	0.55	0.58	0.55	1,00	1.00	97.7
14M24-5.6t	14M24-5.6t	14654-3.00	10M24-5.6t	10 11 11 11	6M24-5.6t	49.24CMA	12M24-5.6t	2M20-5.6t	6M24-5.6t	4M24-5.6t	4M24-5.6t	4M24-5.6t	3M24-5.6t	3M24-5.6t	3M24-5.6t	3M24-5.6t	3M24-5.6t	2M24-5.6t	1M20-5.6t	3M24-5.6t	3M24-5.6t	2M24-5.6t	2M24-5.6t	2M24-5.6t	1M20-5.6t	3M24-5.6t	3M24-5.6t	2M24-5.6t	2M24-5.6t	3M24-5.6t	3M24-5.6t	2M24-5.6t	2M24-5.6t	2M24-5.6t	2M24 -5.6t	3M24-5.6t 3M24-5.6t	1M24-5.6t	3M24-5.6t 2M24-5.6t	1M24-5.6t	9M24-5.6t	2M24-5.6t	2M24-5.6t	2M20-5.6t	2M20-5.6t	2M20-5.6t 2M16-5.6t	2M16-5.6t	ZM16-5.6t ZM16-5.6t	2M16-5.6t	2M16-5.6t	2M16-5.6t	12M24-5.6t	AMAG E CE
5235	5235	5235	5235	# S235	5235	5235	5235				5235	5235	5235	5235	5235		5235		5235		5235	5235	5235	ш		5235	5235				5235		5235	5235	5235	5235	5235	5235			5235	5235	5235	5235	S235 S235	5235	5235	5235	5235		5235	- 11
00x200x20	00x200x20	00x200x18	300x200x18	80x180x16	20x120x11	20x120x11	40x140x15	00x100x10	110×110×10	120x120x11	120x120x11	120×120×11	20×120×11	20x120x11	20×120×11	20x120x11	20x120x11	10x110x10	,5x75x7#	150x90x10	150x90x10	110x110x10	90x90x9	6×06×06	0x70x6	60x80x10	60x80x10	6×06×0	6×06×0	6×06×0	90x90x9	90x90x10	90x90x10	6x06x0	6×06×0	6×06×06	0x70x6	6×06×0	80x80x8	40x140x13	0x70x7	0x70x6	75x75x7#	75x75x7#	75x75x7# 60x60x6	60x60x5	0x60x5	60x60x5	60x60x5	120x80x10	140x140x15	40x140x15
BRKSTK - Main 200x200x20 Eerste TSNSTK 200x200x20	Eerste TSNSTK 200x200x20	Tweede TSNSTI 200x200x18	eede TSNSTF2	Derde TSNSTK 180x180x16#	venstuk - Ma 1	venstuk - Ma 1	Ondertraverse 140x140x15	rde TSNSTK 1	Derde TSNSTK 1	Derde TSNSTK 1	rde TSNSTK	Derde TSNSTK 1	weede TSNSTI 120x120x1	Tweede TSNSTI 120x120x11	weede ISNSIF120x120x1	Tweede TSNST 120x120x11	Tweede TSNSTi 120x120x11	veede TSNSTI 1	reede TSNSTF	rete TSNSTK 1	rste TSNSTK 1	Eerste TSNSTK 1	Eerste ISNSTK 9	Eerste TSNSTK 9		KSTK - Front 1	KSTK - Front 1	Bovenstuk CD f 90x90x9	venstuk CD f g	venstuk CD f 9	venstuk CD f 5	Derde TSNSTK 9	rde TSNSTK s	Bovenstuk CD s 90x90x9	venstuk CD s 9	Bovenstuk CD s9 Bovenstuk diag 9	Bovenstuk CD s 70x70x6	Ondertraverse (90x90x9	Boventraverse (80x80x8	Boventraverse 140x140	Boventraverse (70x70x7	Boventraverse (70x70x6	Eerste DWSRM 7	Eerste DWSRM 7	Eerste DWSRM 7 Eerste DWSRM 6	rste DWSRM 6	Eerste DWSRM 6 Eerste DWSRM 6	ste DWSRM 6	Eerste DWSRM 6	Eerste DWSRM 1	Eerste DWSRM 1	rste DWSKm

Date Author Version

Assessment of groups for strengthened mast (afkeur level)

ZW380 Oost D2.3 GT-BD Hoekmast H1 Mast 1

0.0	0.2	0.0	0 0	0.0	0.54	0.3	0.40	0.46	0.48	0.54	0.61	0.40	0.26	0.26	0.42	0.00	0.08	0.07	0.71	0.11	000	0.00	0.02	0.82	0.78	0.02	0.22	0.14	0.00	0.40	0,55	0.78	0.11	00'0	0.29	0.50	0.48	0,51	0.65	0.07	0.26	0.13	60.0	0.78	0.01	0.0	0.03	0.02	0.0	0.43	0.0	0.0	0.9	0.00	0,51	0.21	0.0	0.0
25.1	25.1	25.1	25.1	43.6	549.4	549.4	72.7	72.7	72.7	72.7	72.7	72.7	0.0	43.6	72.7	40.9	20.9	25.1	25.1	25.1	25.1	25.1	25.1	25,1	52.0	25.1	1636.4	0.0	0.0	0.0	267.8	69.3	0.0	0.0	31.8	31.8	31.8	25.1	52.0	59.4	25.1	25.1	25.1	25.1	25.1	25.1	25.1	25.1	25.1	25.1	25.1	25.1	178,3	0.0	43.3	202.5	189.0	1.45
37.7	37.7	37.7	37.7	37.7	338.9	338.9	75.4	75.4	75.4	75.4	75.4	75.4	75.4	37.7	75.4	60.3	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	500.3	37.7	847.2	0.0	176.4	0.0	176,4	120.6	120.6	75.4	37.7	37.7	37.7	37.7	60.3	60.3	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	113.0	0.0	60,3	188.2	188.2	200
37.4	37.4	37.4	37.4	72.6	249.5	249.5	64.0	64.9	64.9	63.0	63.0	58.3	391.7	81.2	57.7	61.2	37.4	37.4	37.4	37.4	37.4	37.4	37.4	37.4	2.5.3	37.4	737.4	827.4	347.6	361.7	235,2	142.7	142.7	332.1	46.1	46.1	46.1	37.4	75.3	98.8	37.4	37.4	37.4	37.4	37.4	37.4	37.4	37.4	37.4	37.4	37.4	37.4	157.3	180.7	62.7	422.1	1739.7	0.10
			-	9 0,9 105	5 1		2	м	0 10	. 10		- 63	93	93			5		Ba Ct2	60	2		9 0,9 135		0 0 0	9_0 Ba All (93	93	2			93	1 0 0 0 0 Ba	9 0,9 0 Ba	0 6'0	105	105	0 6'0	105	9_0,9_0 Ba	0	0.60			3 Ba Ct2 Ba	0.00	0 6'0	0,9 135	9_0,9_0 Ba	0000	9_0,2_v pd	9 0,9 0 Ba		Ra C+2 Ra	93 CLE DG	200	5	
0.0	7 ULS 3_135	0,0	9.0 5.3 0.9	0 SPLS 1a 0,	17 ULS 1a 135	5 UIS 1a 13	25.7 ULS 1a_105	7 ULS 1a 105	.6 ULS 18 105	8 ULS 1a 105	3 ULS 1a 93	1.2 ULS 1a_0,9	64 ULS 3 0,9	6 0LS 3 0.9	4 ULS 3_105	0.0	7 ULS 1a 10	.8 ULS 1a_75	.9 ULS 6a_93	2.7 ULS 1a 45	6,0 6 600 40	0.0	6 SPLS 1a_0,	6 ULS 3_105	8 ULS 3 U.9	0.4 SPLS 1a_0,9_0 Ba All (1 ULS 3 0,9	119.6 ULS 3 0,9	5 1 2 1 3 0,9	146.0 ULS 3_105	.0 ULS 3_105	8 ULS 3 0,9	1 SPIS 1 0.9	1 SPLS 1a 0,	2 ULS 1a 0,9	9 ULS 3 0,9	2 ULS 3 0.9	7 ULS 1a 0,9	6'0 E SIN 8'	9 SPLS 1a_0,	5 ULS 3 135	9 ULS 14 0,9	4 ULS 5a Ba 1	.7 ULS 3_93	2 SPLS 6a 93	1 50 5 12 0,9	.9 ULS 1a 0.9	.6 ULS 1a 0,9	2 SPLS 1a_0,	9 ULS 3 93	6 ULS 1a 0,9	3 SPLS 1a 0,	104,3 ULS 3_105	0 CDIC 63 03	1 ULS 3 0,9	6 ULS 1a 105	,2 ULS 1a 139	CT PT CIO
	•				134	26	25	29	34	83	38	23	51	6	24				17	7			0	20	9	, 0	191	119	121	146	97	23	36		6	15	. 51	12	33			, 1		16				0		10	, 0	0	104	277	22	38	71	
0.14	0.00	0.03	0.06	0.08	0.00	0.00	0.40	0.44	0.45	0.48	0.50	0.26	0.01	0,40	0.62	0.77	0.00	0.00	0.16	0.59	0.01	0.03	0.73	90'0	0.07	0.31	0,47	0.44	0.01	0.00	0,12	0.82	0.75	0.05	0.59	0.44	0.51	0.86	0.11	0.69	0.12	0.26	0.44	00.00	0.03	0.04	0.04	0.01	60.0	0,01	0.01	0.03	0.75	0.00	0,33	0.08	0.00	10.0
43.2	43.2	43.2	43.2	51.8	570.2	570.2	86.4	86.4	86.4	86.4	86.4	86.4	172.8	51.8	86.4	70.6	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	4.0.4	43.2	1684.8	0.0	2916	0.0	291.6	82.3	82.3	172.8	43.2	43.2	43.2	43.2	9.07	70.6	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	181.4	1210	58.8	220.5	235.2	20.00
37.7	37.7	37.7	37.7	37.7	338.9	338.9	75.4	75.4	75.4	75.4	75.4	75.4	75.4	37.7	75.4	60.3	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	50.3	37.7	847.2	0.0	176.4	0.0	176.4	120.6	120.6	75.4	37.7	37.7	37.7	37.7	60.3	60.3	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	113.0	0.0	60,3	188.2	188.2	60.0
23.5	20.7	57.6	3.58	32.1	143.6	84.1	63.1	9.99	76.0	82.0	87.4	91.7	392.7	122.7	26.8	52.6	24.7	29.0	47.1	56.7	38.4	59.2	17.7	20.2	1.62	55.4	733.2	691.4	827.4	48.0	48.0	81.5	92.0	391.0	20.2	20.5	24.4	20.2	35.8	53.8	28.4	32.7	48.7	61.0	18.3	20.3	25.8	30.0	35.1	41.1	55.5	6.09	140.4	119.1	51,6	565.7	1602.3	24.0
3		35	Ra Ct1				92	05	0.5		e	05	0,9_135 Ba C	2	3 Ba Ct2	n.			-93	n.	u	, in	0 6'0 6'	0,9 0 Ba All C	D Ba All Cts	5	2	5	56-6		6'0 6'			35	9_105	0 6,0 6,	0 6 0 6	- 6-6	eg 0 6'0 6'0	93	0 6,0 6,	0 6 0 6	93		93 Ba Ct1 Ba	n	9 135	0,9 0 Ba Ct1	35	0,9 0,9 0 Ba	35 0 Ba Ct2	35	105	105		35	0,9_105 Ba C	105 Ba CT2
3.2 ULS 1a_9	0.0	-1.3 ULS 1a_135	-1-0 SPIS 1a	-2.5 ULS 3 93	0.0	0.0	25.0 ULS 1a_1	29.3 ULS 1a 1	-32-8 ULS 18 1	36.0 ULS 1a 9	37.6 ULS 1a 9	19.6 ULS 1a_1	-0.6 SPLS 1a	15 1 ULS 3 10	16.7 ULS 6a 93 Ba	40 4 ULS 3 10	0.0	0.0	-5.9 ULS 3_0,	22.0 ULS 3 10	-1-4 III S 1a 4	-1.1 ULS 3 10	12.8 ULS 1a 0	-1.2 SPLS 1a	2.1 SPLS 18	11.8 ULS 3_10	347 5 ULS 3_10	300.9 ULS 3 105	-/.2 ULS 18_U	0.0	-5.6 ULS 1a_0	66.9 ULS 3 93	-69.0 ULS 3_93	3.4 ULS 1a 1	11.9 ULS 3_0,9	9.0 ULS 1a 0	12.3 ULS 1a 0	17 3 ULS 3 0,9	-3.9 SPLS 1a	36.9 ULS 3 0,9	-3.5 ULS 1a_0	2.5 UIS 1a 0	16.7 ULS 3 0,9	0.0	-0.6 SPLS 6a	0 / ULS 3 10	-1.0 ULS 1a 0	0.3 SPLS 1a	-3.2 ULS 1a_1	0.4 SPLS 1a	0.4 SPLS 1a	-1.0 ULS 1a 1	-84.5 ULS 3_0,9_105	71.5 ULS 3 U.	16.9 ULS 3 93	-	0.1 SPLS 1a	-0.0 SPLS 10
		Ш			Ш						П						183		П			ı		П			П	63							П													П					Ш			33	15	707
1,00	1.00	1.00	0.52	1,00	1.00	1.00	0.52	0.52	0.52	0.52	0.52	0.52	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1,00	900	1.00	1,00	1.00	9 9	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100	1.00	1,00	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.50	1.00	2.00	1.00
		Ш			Ш						П								Ш			ı					l	1.93							П													П					Ш			Н		
1.00	1.00	1.00	0.52	1,00	1.00	1.00	0.52	0.52	0.52	0.52	0.52	0.52	000	1,00	1.00	1.00	1.00	1.00	1.00	1.00	100	1.00	1.00	1,00	00.1	1.00	1.00	1.00	2.07	4.49	4.68	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	3 27	0.50	1.00	2.00	1,00
1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	4M24-5.6t	4M24-5.6t	2M16-5.6t	2M16-5.6t	2M16-5 6t	2M16-5.6t	2M16-5.6t	2M16-5.6t	2M16-5.6t	1M16-5.6t	2M16-5.6t	1M16-8-8t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5 6t	1M16-5 6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-8.8t	1M16-5.6t	10M24-5.6t		3M20.5 6P	20000000	3M20-5.6t	1M16-8.8t	1M16.8.8t	2M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5-6t	1M16-5.6t	1M16-8,8t	1M16-8.8t	1M16-5.6t	1M16-5 6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.50	1M16-5-6t	1M16-5.6t	1M16-5-6t	1M16-5.6t	1M16-5.6t	1M16-5-6t	3M16-5.6t	2M16.5 6t	1M16-8.8t	2M20-8.8t	2M20-8.8t	THID G OF
5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5355	5235	5235	5235	5235	5233	5235	5235	5235	5355	5235			- 1	5235	5235	5355	5355	5235	5235	5235	5235	5235	5355	5355	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5355	5355	5355	5333
M 50x50x5	M 50x50x5	Eerste DWSRM 50x50x5	M SOXSOXS	Eerste DWSRM 60x60x6	Eerste DWSRM 90x90x11	Ferste DWSRM 90x90x11	Tweede DWSRI 60x60x5	RN 60×60×5	RP 60x60x5	Tweede DWSRP 60x60x5	Tweede DWSR1 60x60x5	Tweede DWSRP 60x60x5	Tweede DWSRF 120x120x10	R1 65x65x6	Tweede DWSRN 50x50x5	Tweede DWSRI 60x60x6	RI SOXSOXS	Tweede DWSRP 50x50x5	RI 50x50x5	Tweede DWSRN 50x50x5	RI SOXSOXS	RI 50x50x5	RI 50x50x5	Tweede DWSRP 50x50x5	Kr SSXSSXB	Tweede DWSRP 50x50x5	Fweede DWSRN 140x140x13#	Tweede DWSRN 140x140x13#	KP 140X140X13# RP 90Y90Y9	Tweede DWSRP 90x90x9	RI- 90x90x9	RI-70x70x7	Rh 70x70x7	RI-120x80x10	RN 55x55x5	Tweede DWSRP 55x55x5	RP 55x55x5	RP 50x50x5	Tweede DWSR1 55x55x6	Tweede DWSRI 60x60x6	Tweede DWSRF 50x50x5	Tweede DWSRP 50x50x5	RI 50x50x5	Tweede DWSRN 50x50x5	RN 50x50x5	Kr SUXSUXS	RP 50x50x5	Tweede DWSRN 50x50x5	Tweede DWSRI 50x50x5	Tweede DWSRP 50x50x5	RP 50x50x5	Tweede DWSRP 50x50x5	Tweede DWSRh 75x75x7#	Weede DWSRF /5x/5x/#	Tweede DWSRP 50x50x7#	Tweede DWSRh UNP160	RN HEB160	I weede DWSRP 50X50X5
arste DWSR	erste DWSR	erste DWSR	riste DWSR	erste DWSR	erste DWSR	riste DWSR	veede DWS	veede DWS	veede DWS	veede DWS	veede DWS	weede DWS	Iweede DWS	Tweede DWSRI 65x65x6	weede DWS	veede DWS	Tweede DWSRP 50x50x5	weede DWS	weede DWS	Tweede DWSRN 50x50x5	Tweede DWSRN 50x50x5	veede DWS	weede DWS	weede DWS	Tweede DWSRP	veede DWS	weede DWS	weede DWS	weede DWS	weede DWS	weede DWS	veede DWS	veede DWS	veede DWS	veede DWS	veede DWS	veede DWS	weede DWS	weede DWS	weede DWS	weede DWS	veede DWS	Tweede DWSRP	weede DWS	weede DWS	Tweede DWSRP 50X50X5	veede DWS	veede DWS	veede DWS	Tweede DWSRP	Tweede DWSRN	reede DWS	reede DWS	veede Dwc	veede DWS	reede DWS	Tweede DWSRN HEB160	eede Dws

Date Author Version

Assessment of groups for strengthened mast (verbouw level)

ZW380 Oost D2.3 GT-BD Hoekmast H1 Mast 1

trek) 40.9 40.9 34.1 69.3 69.3 69.3 69.3 52.0 55.0 89.0 34.1 34.1 34.1 huif 60.3 60.3 120.6 0.0 120.6 60.3 60.3 60.3 60.3 60.3 0451. 61.2 51.0 75.3 142.7 75.3 333.7 75.3 98.8 62.7 422.1 1739.7 51.0 51.0 Track Combinate track

0.0

80.2 Us 2.105

40.1 Us 2.09.28

40.0 Us 2.09.20

40.1 SPIC LOS 2.09.20

40.2 Us 2.09.20

40.2 Us 2.09.20

40.2 Us 2.09.20

50.6 Us 3.09.20

50.6 Us 3.09.20 0.91 0.00 0.00 0.00 0.11 0.84 0.40 0.10 0.00 0.00 4006 70.6 58.8 70.6 82.3 70.6 70.6 70.6 58.8 58.8 58.8 Ming 60.3 60.3 120.6 120.6 60.3 60.3 60.3 60.3 60.3 60.3 60.3 Druk Combinatie druk Koik

177 ULS 3_105

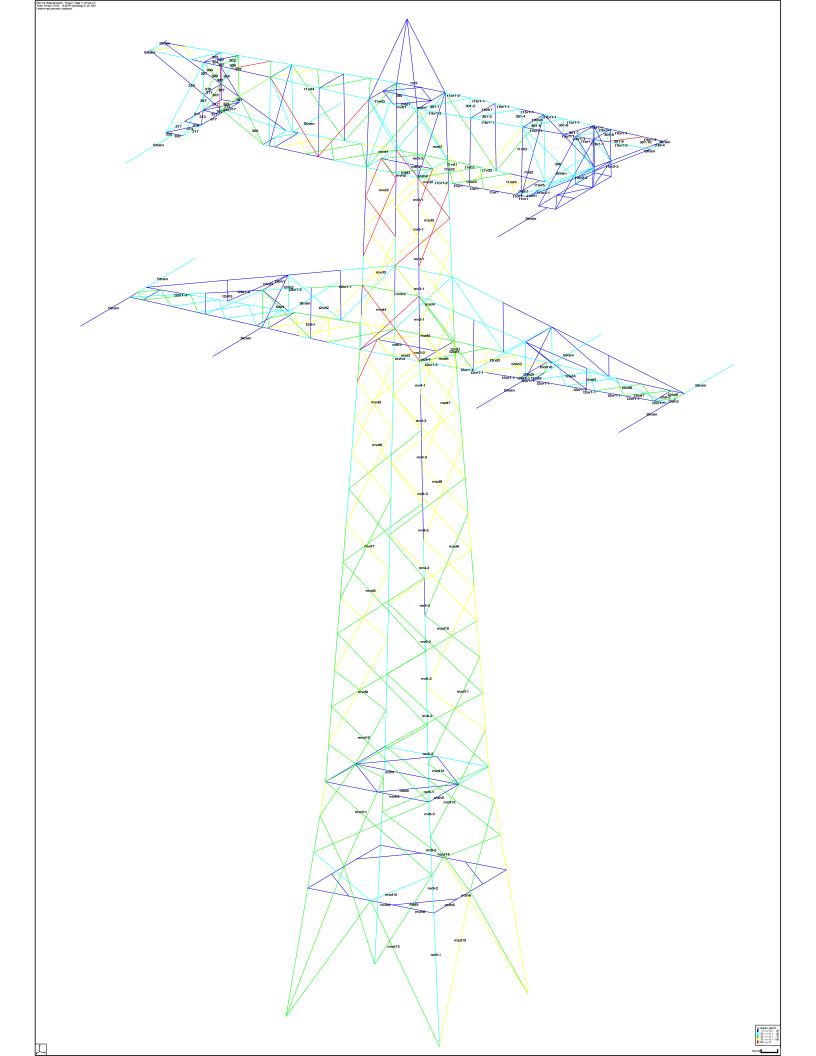
18.1 SPE 14.0 BAII CS 29.1

18.1 SPE 14.0 BAII CS 29.1

18.1 SPE 14.0 BAII CS 29.1

18.2 ULS 3_193

18.2 ULS 3_193


18.3 ULS 3_193

18.4 ULS 3_193

18.5 ULS 3_193 151 222 207 207 134 1156 1180 119 39 115 102 64 64 64 64 RIVE SECTION OF THE S Bouten 1M16-8,8t 1M16-8,8t 1M16-8,8t 1M16-8,8t 1M16-8,8t 1M16-8,8t 2M20-8,8t 2M20-8,8t 2M20-8,8t 1M16-8,8t 1M16-8,8t 1M16-8,8t 1M16-8,8t 1M16-8,8t Staaf 412 412 412 110-2 1110-2 1110-2 1110-2 1110-2 448 448 448 448 459 450 453 453

1 trek)
0.00
0.89
0.94
0.94
0.13
0.09
0.09
0.09
0.09
0.09
0.012
0.012
0.00

The bolted connections on groups 110-1 and 110-3 require strengthening using plates. Refer to Appendix D and E.
 Groups 448 t/m 453 are new groups which were added for the upper conductor attachment extension

Assessment of groups for initial mast (afkeur level)

ZW380 Oost D2,3 RSB-RSD Hoekmast H150° 11

Exceedance (Tons)		nettodsn., stulk stulk nettodsn., stulk nettodsn., stulk		nettodsn.
10.00 (1.00	38.4 0.45 61.0 0.45 64.4 0.00 64.4 0.00 32.0 0.00 32.0 0.00 44.8 0.00 64.8 0.03 65.4 0.00 65.4 0.00 65.5 0	2592 0.37 7.6 1.21 7.76 1.06 7.80 0.79 7.80 0.	23.24 0.104 23.33 0.000 33.24 0.000 33.24 0.000 33.25	38.4 0.55 38.4 0
000 Bashing (CC) 000 Ba	33.7. 50.3. 33.7.7. 33.7.7. 33.7.7. 37. 3	8884 2 117.6 1	33.7.7 33.7.7 33.7.7 33.7.7 33.7.7 58.8 69.0 0.0 0.0 117.6 75.4 75.4	377, 377, 377, 377, 377, 377, 377, 377,
Sutton Shear (U	142.5 142.7 104.8 104.8 104.8 332.1 84.7 94.8 84.7 94.8 37.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31	283.9 76.4 115.4 133.1 46.1 143.9 26.7 99.7 46.1	35.9 46.1 72.6 60.5 46.1 46.1 1178.8 1178.8 479.4 332.1 104.8 332.1 104.8	81.2 89.6 80.6 80.6 80.6 80.6 80.6 80.6 80.6 80
A STATE OF CONTROL OF	15 66 90 80 CT 18 80 CT 18 18 18 18 18 18 18 18 18 18 18 18 18	ULS 3 10,9 76 Ba Ct 2 Ba Ctl Ba St Ct 3 Ba Ct 2 Ba Ct 3 Ba Ct 3	a Ct1 Ba Ct2 String 108.11 a Ct2 Ba Ct1 a Ct2 Ba Ct1 a Ct2 Ba Ct1 a Ct1 Ba Ct2	A B CT B C C C C C C C C C C C C C C C C
korsluithe korsluithe korsluithe korsluithe spiese of one spiese of one spiese of one spiese of one spiese one spiese spiese one spiese one spiese spiese one spiese	रं रं रं रं रं रं रं रं			10, 6, 6, 8, 14, 5, 14,
Total of 100 (2000) Total of 100 (2000) 111	Senie, afschröung, stulk Son (Control of Control of Con	Rnik 9527 Rnik 8927 8924 8044 9249 9449 9540 6740 61407	0.0 0.0 0.0 1.15 0.0 0.0 0.0 0.0 1.395.4 1.395.4 1.395.4 1.395.4 3.95.3 3.95.3	23.4 23.4 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5
(Comp) Exceed	0.07 0.30 0.30 0.02 0.02 0.05 0.05 0.04 0.04 0.07 0.71 0.71 0.71 0.71 0.73 0.83	1.04 1.04 1.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.73 0.73 0.00 0.00 0.01 0.01 0.78 0.78 0.00 0.00	0.064 0.064 0.064 0.066
Graph 1977 1977 1977 1977 1977 1977 1977 197	81.8 82.8 82.8 60.5 60.5 60.5 60.5 60.5 129.6 259.2 259.2	259.2 129.6 1129.6 151.2 151.2 151.2 151.2 151.2 151.2 154.4	43.2 43.2 51.8 43.2 43.2 43.2 43.2 43.6 64.8 9.8 0.0 0.0 172.8 172.8 172.8	51.8 51.8 51.8 51.8 51.8 51.8 51.8 50.5 50.5 50.5 50.5 50.5 50.5 50.5 50
Comp. Deat. 1995 Beat. 1997 J.	93.7 93.7 93.7 93.7 93.7 93.7 93.7 93.7 110.6 188.4	1884 117.6 117.6 117.6 117.6 17.7 17.4 17.6 17.6 17.6 17.6	37.7 37.7 37.7 37.7 37.7 37.7 37.7 58.8 29.0 0.0 0.0 135.8 117.6 75.4	93.7 93.7 93.7 93.7 93.7 93.6 93.6 93.6 93.6 93.6 93.6 93.6 93.6
Buchling St. 25.46 St. 25.	34.2 40.5 40.5 40.5 50.2 35.8 37.6 10.2 10.2 23.10 5.8 23.10 5.8 5.5 17.7 17.7	262.2 86.2 84.8 84.6 16.0 16.0 16.7 10.7 10.7 10.7 10.7 10.7 10.7	38.3 28.3 35.6 25.5 23.9 63.1 63.1 16.1 36.5 79.8 36.5 79.8 36.9 44.6 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36	98.2 98.2 99.4 99.5 100.6 100.6 110.6 110.1 110.1 110.1 110.1 110.1 110.1 110.1 110.1 110.1 110.1 110.1 110.1 110.1 110.1 110.0 110.
Less (e.g. (Communication) benchlarisetting 1183.2 kerdeluteketting 1183.2 kerdeluteketting 1183.2 kerdeluteketting 1183.2 kerdeluteketting 1183.2 kerdeluteketting 1183.2 kerdeluteketting 1183.2 kerdeluteketting 1183.2 siptis 2, o Ba AII Cas kerdeluteketting 1183.2 siptis 2, o Ba AII Cas kerdeluteketting 1183.2 king 2, o Ba AII Cas kerdeluteketting 1183.2 ULS 3, o Ba Cas Ba CI siptis 8, ap Ba CI Ba CI Siptis 8, ap Siptis 8, ap	SPES 10 × 76 Me Of Control (1982) Co	SPL SPL	SPIC Set 10 (20 Miles) Northeline Marin (18 miles) Northeline Marin (18 miles) SPIC Set 20 Miles (18 miles)	SPIC 66, 90 BG CSPIC 66, 90 BG
13.2 Compression Local Gibbs 14.4 Control Gibbs 14.5 Control Gib	158 158 159 159 159 159 159 159 159 159 159 159		1014 - 2.0.2 1029 - 2.0.2 1030 - 2.0.2 1030 - 2.0.2 1031	
RIV. Slendam. 15-59 10-5	100 100 100 100 100 100 100 100 100	1.00 0.52 0.53 0.53 1.00 1.00 1.00 1.00	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	1100
NEW 2010 100 100 100 100 100 100 100 100 10	8.66 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	5.64 2.00 1.00 5.64 2.00 1.00 5.64 0.52 0.52 5.64 0.52 0.52 5.64 1.00 1.00 5.64 1.00 1.00 5.64 1.00 1.00 5.64 0.50 0.50 5.64 0.50 0.50 5.64 0.50 0.50 5.64 0.50 0.50 5.64 1.00 1.00 5.64 1.00 1.00	5.61 0.51 0.51 5.61 1.00 1.00 5.61 1.00 1.00	5.56 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Quality 2016 6 4 4012-5 et 4012-5 et 1016-5 et	1116-5,8 M 116-5,8 M 116-5,8 M 116-5,6 M 116-5	2M20-5,6K 2M20-5,6K 2M20-5,6K 2M20-5,6K 3M20-5,6K 3M20-5,6K 3M20-5,6K 3M20-5,6K 3M20-5,6K 3M20-5,6K	11116-5,05 1116-5,05 116-5,05 116-5,05 116-5,05 116-5,0	1 MIG-5 of
S235 S235 S235 S235 S235 S235 S235 S235	00000000000000000000000000000000000000	55,665,66 55,665,66 55,665,66 55,655,66 55,655,66 55,655,67 55,655,78 55,655,78 55,655,78 57,75,8	6004 5235 6006 5235 6006 5235 6008 5235 6008 5235 605X 5235 605X 5235 65x6 5235 65x6 5235 65x6 5235 65x7 5274 65x8 5235 65x8 5235	65,655,65,65,65,65,65,65,65,65,65,65,65,
	Market M	N 20 20 20 20 20 20 20 20 20 20 20 20 20	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
March 1865 Cosciption Coscietion Cosciption Coscietion Cosciption Cosciption Cosciption Cosciption Cosciption Cosciption Cosciption Cosciption Cosciption Cos	Why	mwh2 mwh2 mzd2 mzd3 mzd3 mzd3 mzd4 mwd3 mzd4 mzd4 2vd1 t2vd1 2br1-2 t2br1-2 2br1-2 t2br1-2 2br1-3 t2br1-3 mwd4 mwd4 mwd4 mwd4 mwd4 mwd4 mwd4 mwh3 mwd4 mwh3 mwd4 mwh3 mwh3 mwh3 mwh3 mwh3 mwh3 mwh3 mwh3	2241 2241 2241 2241 2242 2242 2242 2242	2028 2028 2028 2028 2028 2028 2028 2028

Date Author Version

Assessment of groups for initial mast (afkeur level)

ZW380 Oost D2.3 RSB-RSD Hoekmast H150° 11

6pvm	90x90x8 S235	0,52 0,52	118 -99,9	SPLS 6a_90 Ba Ct2 Ba	150,5	145,4	190.1	69'0		SPLS 6a 90 Ba Ct2 Ba Ct1	241.5	145,4	140.8	0,74
mzd11	90x90x8 S235	0.52	122	-111.4 SPLS 6a_90 Ba Ct1 Ba Ct2	146.0	145.4	190.1	0.77		SPLS 6a_90 Ba Ct2 Ba Ct1	241.5	145.4	140.8	0.77
mvd10		0.52 0.52	126	PLS 6a_90 Ba Ct2 Ba	141.6	145.4	190.1	0.69	П	eg S	155.3	145.4	140.8	0.62
mzd12	90x90x8 S235		121	PLS 6a 90 Ba Ct2 Ba	147.5	145,4	190.1	0.67		SPLS 6a_90 Ba Ct1 Ba Ct2	155.3	145,4	140.8	0,71
mzd13		1.00 1.00	127	PLS 6a_90 Ba Ct2 Ba	140.4	145.4	190.1	0.54	П	æ	155.3	145.4	140.8	0.55
mth4		1.00	295	SPLS 6a_90 Ba Ct2 Ba	19.0	58.8	64.8	0.00	0.1	ULS 3 0,9 104	65.7	58.8	33.3	0.00
mzh5	1	1.00 1.00	103	-40.7 ULS 3_90	171.1	145.4	190.1	0.28	33,3	ULS 3_0,9_90	241.5	145.4	140.8	0.24
mtd4		1,00 1,00	220	-2,3 ULS 1a_76	23,1	28.8	54.0	0,10	2,0	ULS 1a 0,9 90	54.7	28,8	27.7	0.07
mvh5		1.00	103	ULS 3 90	171.1	145.4	190.1	0.28	30,7	ULS 3_0,9_90	241.5	145.4	140.8	0.22
mvd11	90x90x8 5235	0.54	138	ž	127.3	145.4	190.1	0.56	82.2	SPLS 6a_90 Ba Ct2 Ba Ct1	155.3	145.4	140.8	0.58
Onderstuk main member	160×160×15±S235	2.31 2.38	57	-855.4 ULS 3_90	945.2	0.0	0.0	0,91	761.4	ULS 3 0,9 90	1097.7	0.0	0.0	69.0
Onderstuk main member	160×160×15±S235	0.33 0.33	44	Ľ	1007.1	1444.5	1782.0	0.84	738.5	0F 3 0'9 90	1024.1	1444.5	1320.0	0.72
Onderstuk main member	x15	1.20 2.08	46	ULS	996.4	1444.5	1782.0	0.89	782.8	0F 3 0,9 90	1024.1	1444.5	1518.0	0.76
mzd14	90x90x8 S235	2M22-5-6t 1.00 0.50 0.50	111	ᅜ	151.6	145.4	190.1	0.68	93.6	SPLS 6a_90 Ba Ct1 Ba Ct2	155.3	145.4	140.8	99'0
mvd12	90x90x8 S235	2M22-5.6t 1.00 1.00 1.00	135	-78.8 SPLS 6a 90 Ba Ct2 Ba Ct1	130.5	145.4	190.1	09.0	67.7	SPLS 6a 90 Ba Ct2 Ba Ct1	155.3	145.4	140.8	0.48
mzh6	70×70×7 S235	1M22-5 6t 1.00 1.53 1.00	107	IS	97.3	72.7	83.2	0.08	3.9	ULS 1a 90	92.7	72.7	58.7	0.07
mzd15	1×10	0,33	84	-110.1 SPLS 6a 90 Ba Ct2 Ba Ct1	275.5	145,4	237.6	0,76	101.2	SPLS 6a 90 Ba Ct1 Ba Ct2	217.7	145,4	176.0	0.70
myh6	70x70x7 S235	1.00 1.53	107	SI	97.3	72.7	83.2	0.12	7.7	0F2 3 30	92.7	72.7	58.7	0.13
mtd5	60x60x5 S235	1.00 1.00	175	2	31.7	58.8	54.0	0.05	1.2	ULS 1a 0.9 0.9 45	54.7	58.8	27.7	0.04
mvd13	100×100×10 S235	0,33	84	-112.7 SPLS 6a 90 Ba Ct2 Ba Ct1	275.5	145,4	237.6	0.78	94.6	SPLS 6a 90 Ba Ct2 Ba Ct1	217.7	145,4	176.0	0.65
Bovenstuk Boven Diaphram Hrz	55x55x5 S235		160	0.0	40.8	75.4	86,4	0.00	0.2	0F 3 30	59.4	75.4	26.0	00.00
Bovenstuk Bovenvlak Diag	55x55x5 S235	1M16-5 6t 1.00 1.00 1.00	178	-18.5 kortsluitbelasting 11812	28.6	37.7	43.2	0.65	5,1	0LS 3 0,9 76	46.1	37.7	28.0	0.18
Bovenstuk Bovenvlak Diag	55x55x5 S235	1M16-5-6t 1.00 1.00 1.00	169	-5.5 ULS 3 0,9 76	30.4	37.7	43.2	0.18	20.7	kortsluitbelasting 11&12	46.1	37.7	28.0	0.74
Bovenstuk Bovenvlak Diag	55x55x5 S235	1M16-5 6t 1.00 1.00 1.00	160	-22.0 kortsluitbelasting 11&12	32.7	37.7	43.2	0.67	6.2	ULS 3_0,9_76	46.1	37.7	28.0	0.22
Bovenstuk Bovenvlak Diag	55x55x5 S235	1,00	152	-6.4 ULS 3 0,9 76	34.8	37,7	43.2	0,18	24,4	korts uitbelasting 11812	46.1	37,7	28.0	0.87
Bovenstuk Bovenvlak Diag			136	korts uitbe asting	39.7	37.7	43.2	0.75	0.5	SPLS 1a_0,9_135 Ba Ct1	46.1	37.7	28.0	0.02
Bovenstuk Bovenvlak Diag			130	-0.4 SPLS 1a_0,9_135 Ba Ct1	41.9	37.7	43.2	0.01	30,2	korts uitbelasting 11812	46.1	37.7	28.0	1.08 stuik
Bovenstuk Bovenvlak Diag		1M16-8 8t 1.00 1.00 1.00	123	-24.7 kortsluitbelasting 11812	48.0	60.3	58.8	0.51	9.0	ULS 3_0,9_76	62.7	60.3	38.1	0.02
Bovenstuk Bovenvlak Diag		1.00 1.00	113	nrs :	52.9	60.3	58.8	0.43	0.5	SPLS 1a_0,9_45 Ba Ct1	62.7	60.3	38.1	0.01
Bovenstuk Bovenvlak Diag		1.00	113	-0.4 SPLS 1a_0,9_0 Ba All Cts	48.3	37.7	43.2	0.01	28.1	ULS 3_76	46.1	37.7	28.0	1.00 stuik
Bovenstuk Bovenvlak Diag	55x55x5	1.00 1.00	106	ULS 3	51.0	37.7	43.2	0.85	0.3	SPLS 1a 0,9 0 Ba All Cts	46.1	37.7	28.0	0.01
Boventraverse upper horizontal (new)	50×50×5		113		52.9	60.3	58.8	0.00	20.2	kortsluitbelasting 10&12	62.7	60.3	38.1	0.53
Boventraverse upper horizontal (new	50x50x5	1.00 1.00	106	-1.3 kortsluitbelasting 10&12	56.9	60.3	58.8	0.02	7.2	ULS 3_0,9_76	62.7	60.3	38.1	0.19
Boventraverse upper CD (new)		0.52 0.52	9	ES.	9.96	60.3	58.8	0,11	16.0	01S 3 90	62.7	60,3	38.1	0.42
Boventraverse lower CD (new)		0.50 0.50	114	-28.4 kortsluitbelasting 11812	58.6	60.3	58.8	0.48	25.1	kortsluitbelasting 11812	62.7	60.3	38.1	99.0
Boventraverse vertical new frame		1.00 1.00	140		45.9	60.3	58.8	1.00 knik	19.3	kortsluitbelasting 118:12	62.7	60.3	38.1	0.50
Boventraverse diag new frame	50×50×5 S355	1.00	152	-0.8 SPLS 1a_0,9_0,9_45 Ba Ct2	36.2	60.3	58.8	0.02	23,5	kortsluitbelasting 11&12	62.7	60.3	38.1	0.62
Boventraverse diag new frame		1M16-8 8t 1 00 1 00 1 00	123	-22.6 kortsluitbelasting 11&12	47.7	60.3	58.8	0.47	33.1	korts uitbelasting 11812	62.7	60,3	38.1	0.87
Boventraverse horiz new frame	50×50×5	1.00 1.00	112	-0.1 SPLS 1a_0,9_76 Ba Ct2	53.4	60.3	58.8	0.00	3,2	kortsluitbelasting 10&12	62.7	60.3	38.1	0.08
Boventraverse under horiz new frame	50x50x5	1M16-8.8t 1.00 1.00 1.00	62	-0.1 ULS 1a_0,9_0,9_76	86.2	60.3	58.8	0.00	0.3	kortsluitbelasting 10&12	62.7	60.3	38.1	0.01
Boventraverse under diag new frame	ne 50x50x5 S355	1M16-8.8t 1.00 1.00 1.00	134	-0.4 ULS 1a 0,9 104	43.0	60,3	58.8	0.01	0,3	ULS 1a 0,9 0,9 76	62.7	60,3	38.1	0,01
Boventraverse under diag new frame	ne 50x50x5 S355	1M16-8.8t 1.00 1.00 1.00	133	-1.0 ULS 1a_0,9_104	43.2	60.3	58.8	0.02	0.5	SPLS 1a_0,9_76 Ba Ct2	62.7	60.3	38.1	0.01
Boventraverse under diag new frame	ne 50x50x5 S355	1M16-8.8t 1.00 1.00 1.00	130	-1.0 ULS 1a 0,9 104	44.4	60.3	58.8	0.02	0.6 SPL	S 1a 0,9 0,9 76 Ba All Cts	62.7	60,3	38.1	0.02
Boventraverse under horiz new frame	50×50×5		62	0,0 SPLS 1a 0,9 0,9 76 Ba All Cts	86.3	60,3	58.8	0.00	0,3	korts uitbelasting 10&12	62.7	60,3	38.1	0.01
Boventraverse overhang diag new frame 80x80x8		1M20-8-8t 1.00 1.00 1.00	178	-0.4 SPLS 1a 0,9 0,9 104 Ba All Cts	74.5	94.1	117.6	0.01	34.3	kortsluitbelasting 10&12	181.9	94.1	83.2	0.41
Boventraverse overhang diag new frame 80x80x8	frame 80x80x8 S355	1M16-8-8t 1.00 1.00 1.00	71	-24.5 kortsluitbelasting 11812	244.0	60.3	94.1	0.41	0.5	ULS 1a 0,9 135	194.4	60.3	69.7	0.01
Boventraverse ketting connection beam HEB160		2M20-8.8t 2.00 2.00 2.00	15	-1.0 ULS 1a_90	1602.3	188.2	235.2	0.01	1.7	ULS 1a 0,9 0,9 90	1739.7	188.2	166.3	0.01
Boventraverse horiz new frame		1M16-8.8t 1.00 1.00 1.00	121		48.7	60,3	58.8	0.00	14,5	kortsluitbelasting 11&12	62.7	60,3	38.1	0,38
Boventraverse diag new frame	Ш	1.00	125	-24.5 kortsluitbelasting 11812	46.8	60.3	58.8	0.52	8.0	SPLS 1a_0,9_45 Ba Ct2	62.7	60.3	38.1	0.02
Dancashannan dina name fanna				Ŀ										
DOVERTERVETSE GIAG HEVY HAITE	buxbuxb 5355	TMT9-8-81 T-00 T-00	151	10.7 01.5 3 90	52.7	60,3	70.6	0.20	1.8	SPLS 1a 0.9 45 Ba Ct2	98,8	60,3	52,3	0.04

Assessment of groups for strengthened mast (afkeur level)

ZW380 Oost D2.3 RSB-RSD Hoekmast H150° 11

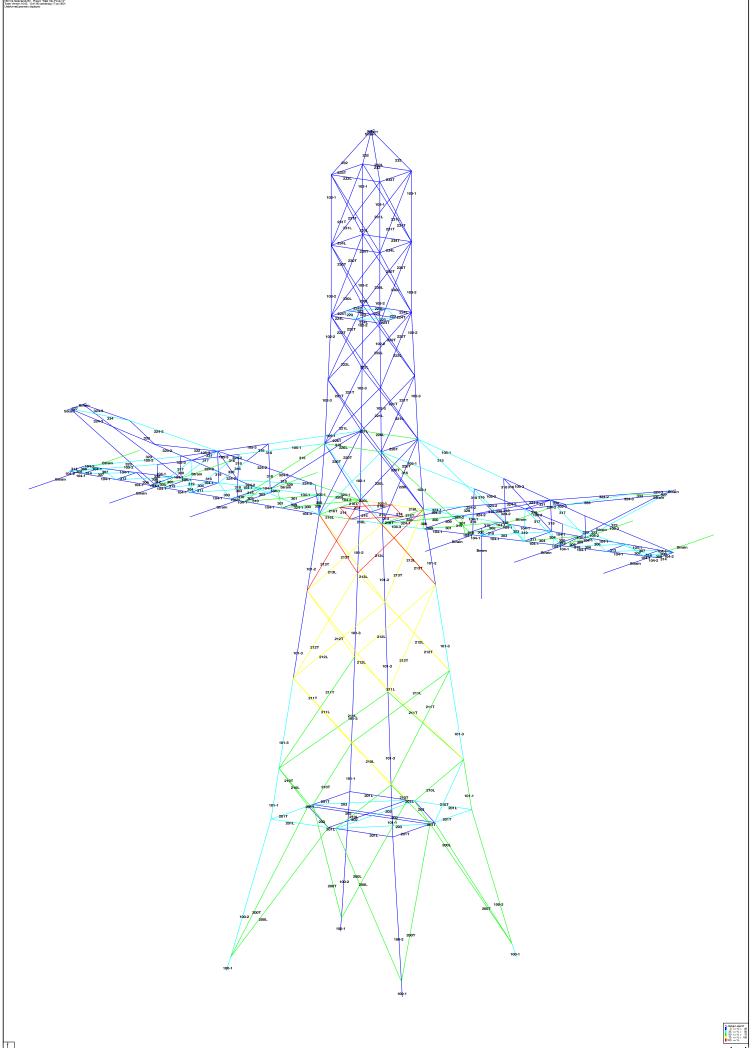
C. (trek) 0.04	0.00	0.06	0.34	0.29	0.03	0,33	0.89	0.07	0.50	0.49	0.22	20.0	0.37	0.05	0.44	0.87	00.00	0.10	0.00	0.31	0.0	0.78	100	0.00	0.00	0.00	0.20	00.00	0.00	0.04	02.0	0.73	0.67	0.88	0.79	0.66	0.35	0.47	0.04	00.0	0.14	00.0	00.00	0.27	0.68	0.95	0.00	0.00	0.22	0.43	0.86	0.51	0.60	0.41	0.0	5.0	0.47	0.87	0.72	0.83	0.54	0.63	0.50	0.30	0.67	0.40	0.45	0.04	0.78	0.70	2
ik (trek) 90,8	18.7	18.7	0.0	85.3	0.0	0.0	44.8	155.2	77.6	258.8	22.0	0.0	950.4	588.0	38.4	61.0	69.7	44.8	32.0	0.0	20 0	0 0	0 11	44.8	1222	0.0	250.2	2,502	3 2 2 5	250.2	145.5	123.3	123,3	90.6	28.0	177.5	0.0	1//.5	116 5	23.3	22.4	23.3	38.4	32.0	23.3	90'06	23.3	2000	0000	453.6	77.6	0.0	8.44	0.0	t 000	38.4	38.4	44.8	44.8	211.2	977,5	1108.8	0.0	320.7	323.4	38.4	211.2	211.2	211.2	211.2	4444
fschuif Stu 80,6	37.7	37.7	0.0	75.4	0.0	75,4	37.7	294.0	117.6	294.0	117.6	0.00	470.4	411.6	37.7	60.3	120.6	37.7	37.7	75.4	27.7	2/./	75.4	7.75	188 7	700.7	188.4	75.4	1367	188 4	188.2	188.2	188,2	117.6	37.7	176.4	0.0	1/6.4	176.4	37.7	37.7	37.7	37.7	37.7	37.7	117,6	37.7	28.8	0.00	352.8	117.6	75.4	37.7	4.0.6	7.75	37.7	37.7	37.7	37.7	218.2	468.6	1163.5	0.0	352.8	349.1	37.7	37.7	210.2	216.2	210.2 C 81C	270.2
ttodsn. A 46.9	36.9	36.9	267.9	162.5	326.7	332,1	194.4	126.7	68.7	204.3	68.7	200 7	536.0	536.0	72.6	142.7	194.4	104.8	60.5	332.1	24.7	24.7	0.46	2 2 2	121 6	317.3	203.0	62.63	126.7	203.0	1316	198.9	131.6	133.1	46.1	143.9	267.9	143.9	131.0	46.1	36.9	46.1	72.6	60.5	46.1	88.1	46.1	1/8.8	720 4	394.0	76.4	332.1	104.8	332.1	0.10	89.9	89.9	104.8	104.8	184.0	880.8	866.2	943.3	394.0	276.6	89.9	104.8	C 1 45 t	190./	102.0	150.00
ek Nei ng 11&1	0				ng 118.1		ng 10&1	ng 10&1	Ct1 Ba	60,000	Ct2 Ba	CIZ Da		1181	Ct1 Ba	ng 10&1		ng 10&1		GI BB	8 5	CT1 53	in trait	C+2	3 5	11 B	į	3 8	3 8	3	£	3	Ct2 Ba	Ct2	10&1	ng 10&1	ng 10&1	ng 10&1	Ct1 Ba		Ct1 Ba			ng 10&1	ng 10&1	Ct2 Ba		5	3 =	Ct Ba	2	Ħ	# :	3 :	3 1	2 5	2	12	2	Ħ	팯			핅	3	Ct2 Ba	3 8	3 8	3 8	3 8	7
Combinatie to	SPLS 1a 0,9 0,	JLS 3 0,9 76	1LS 3_90	21,9 ULS 3_76	cortsluitbelasti	JLS 3 0,9 76	corts uitbelasti	cortsluitbelasti	SPLS 6a_90 Ba	JLS 3 90	SPIS 6a 90 Ba	15 2 0 9 76	153 0 9 76	cortsuitbelasti	SPLS 6a 90 Ba	corts uitbelasti	0'0	kortsluitbelasting 10&1		23.3 SPLS 6a 90 Ba Ct1	PLIS 6a 90 B	SPLS ba 90 Be	nepanine in	SDIS 63 OU B	SPICS 68 90 BS	SPLS 6a 90 Ba	SDIS 63 90 B	SPLS 08 30 B			2015 6a 90 B	SPI S 6a 90 Ba	7 SPLS 6a 90 Ba	SPLS 6a 90 Ba	corts uitbelasti	corts uitbelasti	corts uitbe asti	corts uitbelasti	ortellithelectic		SPLS 6a 90 Ba Ct1			corts uitbelasti	kortsluitbelasting 1081	SPLS 6a 90 Ba		.000	SPLS 64 90 B	2 SPLS 6a 90 Ba C	SPLS 6a 90 Be	SPLS 6a_90 Ba	SPLS 6a 90 Ba	SPLS 6a 90 B	2012 6a 90 B	SPI S 6a 90 A	SPLS 6a 90 At	SPLS 6a 90 Ba	SPLS 6a 90 Al	SPLS 6a 90 Ba	3PLS 6a 90 Bz	JLS 3 0,9 90	JLS 3_0,9_76	90 E	SPLS 6a 90 Ba	6a 90	SPLS 6a 90 An	SPLS 6a 90 Be	e e	PLS od 90 ce	2 - A - A - A - A - A - A - A - A - A -
Opm. Trek C	0'0	1.2 UL	0'06	21,9	11,2 k	25,0	62.2 k	8,6	34.2	1000	97.71	16.71	172.9	20.5 k	16.8	52,3 k	0'0	3,8,	0.0	23,3	24.1	29.4	607	27.5	0 0 02	62.7	٠,	0.00	4	42,0	42.1	89.5	82,7 5	80.0	22,0 kor	95.0 ko	92'0	67.0	110.6	0.0	3.1.5	0'0	0'0	8'e k	15.8 k	83,6	0.0	0.0		150.2	65.6	38'5	22.8	30.9	25.00	20.3	17.5	32.6	27.2	153,0	250,8	543.0	468.6	94,9	185,7 8	15.2	100	178.2	1514	124.7	
·uk) 0,05	0.01	0.02	0.38	0.04	0.11	00.0	0.00	0.11	2.44	0.19	12.0	20 00 0	51	2.17	900	0.30	3.86	0.69	0.02	0.15	70.0	787	00.00	02.0	2,70	10.01	28.0	20.0	200	07.0	191	7.67	0.46	06.0	00.0	00.0	2.03	0.03	00.0	20.0	0.00	90.0	0.73	00.0	00.0	0.91	20.02	10.0	0.20	0.78	2.82	00.0	0.62	0.13	02.04	51	0.46	0.84	9.76	3.95	0,63	9.79	0.71	0.56	2.67	0.45	86.0	1.00	0.81	16.0	00.0
() U.C. (dr	9	9	0.0	2 0	2 5	. 00		0	9	0	t (0	0 0	4	. 9	0	e,	1 (5	2	0	n i	n u	0 4	į u	2 00	0 0	2 0		t	4 6	ų «	000	0 00	2	2 0	2	0	7 0	0 4	0	9	2	8	2	7	2	2 0	200	0.0	9 9	9	80	ın e	00 0	0 0	2 00	80	10	r.	1	9	9	0	9	9	80 1	0.			-	1
Stuik (drui) 103	34	34.5	433	138	138	172		324	129.	432	129	127	950	831	51	82.	94	.09	43	172	00	900	90	90	205	602	250	86.3	250	259	205	205	205	151	43	259	Ö	259	104	43	34	43.	51.	43.	43.	151	43	49 5	0/0	453	129	172.	90.	1/2	100	1	51	09	09	285	1209	1330	0	453	436	51.	285	285	285	285	- Personal
Afschuiving 80.6	37.7	37.7	0.0	75.4	75.4	75.4	120.6	294.0	117.6	294.0	117.6	0.01	470 4	411.6	37.7	60.3	120.6	37.7	37.7	75.4	37.7	3/./	727	27.7	1.00	100.2	188.4	7501	0.300	1884	188.7	188.7	188.2	117.6	37.7	176.4	0.0	1/6.4	176.4	37.7	37.7	37.7	37.7	37.7	37.7	117,6	37.7	2000	0.467	352.8	117.6	75.4	37.7	4.00	7.75	37.7	37.7	37.7	37.7	218.2	468,6	1163,5	0.0	352.8	349.1	37.7	21.7	210.4	216.2	210.2	1
Knik 34.8	25.4				148.1	Н	71.6	100.8	9'0'	167.1	20.0	484.1	484 3	397.4	34.2	62.6	1 72.4	40.5	28.8	358.2	7.76	102.9	7.001	101	145.5	283.9	2310	231.0	117.5	262 2	1516		144.7		16.0	79.8	1	ľ	130.0	27.7	38.3	29.1	35.6	25.5	40.0	93.9	28.7	53.1	704 9	365.0	79.8	**,	116.3	4.00	200	94.2	92.5	108.6		185.1	813,5	789.8	792.5	379.4	281.1	88.1	177.0	173.0	169.0	156.4	
atie druk belasting 118:	pelasting 118.	U,9 /0 uitbelasting 118:	97.6	9/ 6'0 6'0	90 Ba Ct2 Ba	LS 1a 0 Ba All Cts	kortsluitbelasting 1081	90 Ba Ct2 Ba	oelasting 11&	5 3 0,9 76	90 Bd Ct2 Bd	20 Da CL2 Da		pelasting 108.	0.9 76 Ba Ct1	itbelasting 10&1	pelasting 10&	90 Ba Ct1 Ba	0 Ba All Cts	= 9	90 Ba Ct2 Ba	90 Ba CTZ Ba	on by C+2 by	90 Da Ct. Da	90 Ba Ct2 Ba	90 Ba Ct2 Ba	90 Ba Ct2 Ba	90 Ba Ct2 Ba	90 Ba Ct2 Ba	90 Dd CLZ Dd	£	7	90 Ba Ct2 Ba	32			3 0,9 76 Ba Ct2	/e Ba	3	Æ	6	90 Ba Ct1 Ba	9 10		0,9 135 Ba (90 Ba Ct2 Ba	pelasting 108.	90 Ba Ct2 Ba	90 Ba Ct2 Ba	5 6a 90 Ba Ct2 Ba	90 Ba Ct2 Ba	90 Ba Ct1 Ba	90 Ba Ct1 Ba	90 Ba Ct1 Ba	90 Ba Ct1 Ba	90 Ah Ct2 Ba	90 Ah Ct2 Ba	90 Ba Ct1 Ba	90 Ba Ct2	90 Ba Ct2 Ba	9	0	100	90 Ah	90 Ba Ct2	Ah Ct2	3 8	e e	20 00	90 Ba Ct2 Ba	
ruk Combin 1,7 kortsluiti	0.4 kortsluit	korts	ULS 3	3.1 ULS 1a	망용	S	0.0 4.3 kortsluit	S	ž	-32,3 ULS 3 0	ñ	0	241 9 1153 9	1 kortsi	2 SPLS	kortsi	-62.5 kortsluit	6,0 SPLS 6a	0.5 SPLS 1a	-11.1 kortsluitbelasting	S SPLS 58	17 0 kerteliuk	CDI C 6-	S C S S S S S S S S S S S S S S S S S S	SPI C 6a	128 0 SPI S 6a	SDIS	SPIC 6s	SPLS 04	2 8 111 C 3 0	12.5 SPIS 63	18.4 SPIS 6a	-65.9 SPLS 6a	37.2 SPLS 6a	0'0		1.4 SPLS 3	S) C	Ŋ	0.5 SPIS 6a	0.2 SPLS 1a	2.4 SPLS 6a 90 Ba	6.1 kortsluit	0,0	0.0 SPLS 1a	35.9 SPLS 6a	0.6 kortsluit	0.4 SPLS 6a	0 0	273 9 SPLS 6a 90 Ba C	SPL	0.2 SPLS 6a	SPIC	34.2 CDIS 63	100	9	d	SPL S	NLS	176.3 SPLS 6a	5,4 ULS 3_7	11.2 ULS 3_9	50.7 ULS 3_9	SPI	39.6 SPLS 6a	-17.0 SPLS 6a	50 8 SPLS 04	1/6 9 SPLS 68	10.3 SPLS 04	132 1 SPLS 68	
	Ш			98		Ш	183		П			ľ											ı	80	ı		ı			5.	200		l	10	264	165	220	077	162	168	104	162	183 -:	205	123	119	0 7		ı,	67 - 2	I.							82	06	94	57 -28	93	62 -50	09	98	82	60	102	102	107	101
RLZ Slankhe 0.50	00.1	00.1	00.1	00.	00.0	00	00	00	.52	00.0	52	00	8	00	00	00.1	00.1	00.1	00	00.1	2.52	7.52	000	52	52	00	200	8	000	00.0	000	.52	51	.52	00.1	00.1	00:	00.1	7.22	00	.51	00"1	00.1	00.1	00.1	00'1	00.1	00.	000	00	00	00.1	00.1	0.00	22	53	252	.52	.52	.53	00.1	00.1	00	00.	00	53	1,52	255	0.55	55.5	70.1
0.50	1.00	1.00	1.00	1.00	00.1	1,00	1.00	1,00	0.52	1.00	0.52	2001	8 6	1.00	1.00	1,00	1.00	1.00	1.00	1.00	7,0	0.52	00.1	223	22.0	1.83	9 6	9 6	00.1	1 00	00.1	0.52	0.51	0.52	1,00	1.95	2.33	1.75	1 00 5	1.00	0.51	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	2.00	1.00	00.1	200	0.53	0.52	0.52	0.52	0.53	2,56	2.35	2.45	1.00	00.1	0.53	0.52	0.00	0.93	55.0	3
RLX 0.50	1.00	1.00	1.63	2.60	00 1	1,00	1.00	2.00	0.52	2.00	0.52	0.02	2 30	1.00	1.00	1.00	1.00	1.00	1.00	2.00	7.0	7.0	001	0.53	0.52	3.08	1 48	1	1.00	7.00	7.00	0.57	0.51	0.52	1.00	1.00	1.00	1 00	1 00 1	001	0.51	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2 85	1.54	1.00	1.00	1.00	7,00	00.1	0.53	0.52	0.52	0.52	0.53	1.20	2.38	2.40	2.00	1 00	0.53	0.52	0.00	0.00	0.00	4
t Bouten 4M12-5.6t	ш			2M16-5.6t					ш				8M20=5.6t	7M20-5.6t	1M16-5.6t	1M16-8-8t	1M16-8-8t	1M16-5.6t	1M16-5.6t	2M16-5.6t	TMTP-2 PE	1M10-5 50	2016 C 6+	1M16-5 6t	OMOUNT BE	ZMZU"0.01	5M16=5.6+	2M16 5 6*	7070-01W7	FM16 5 6t	2M20-8-81	2M20-8-8t	2M20-8-8t	2M20-5.6t	1M16-5.6t	3M20-5.6t		3M20-5-6t	2M20-5 6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	2M20-5.6t	1M16-5.6t	1M20-5.6t	3FIZU 3 01	6M20-5.6t	2M20-5.6t	2M16-5.6t	1M16-5.6t	1M16 5 6t	10 C OTHT	1M16-5 6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	3M22-5.6t	8M20-5.6t	8M22-5.6t	10 11 00110	6M20-5.6t	3M22-8-8t	1M16-5.6t	1M10-5-51	3M22-5-01	3M22-5-61	2M22 5 61	J. 100 0 00.00
Staalsoort S235	5235	5235 S235	5235	5235	5235	5235	S355	\$235	5235	5235	5233	2523																								5235														5235	5235		- 11		-				5235			- 1		5235	5355	5235	5235	5233	5235	5233	2000
Profie 50x50x4	50x50x4	50x50x4 50x50x4	75x75x8	75x75x8	90x90x8	120x80x10	80x80x8 70x70x7	65x65x6	9x09x09	75x75x8	60x60x6	120×120×11	120x120x11	120x120x11	9x09x09	170×70×7	80x80x8	70X70X7	60x60x5	120×80×10	PSX65X/	65X65X/	CENERAL	6546547	702707	INPION	INDIO	FEVERVE	SEVERYE	DOXOGYO	70×20×7	70×70×7	70×70×7	65x65x7	55x55x5	75x75x8	75x75x8	8x4/x4/	/UX/UX/	50x50x5	50x50x4	50x50x5	9x09x09	60x60x5	50x50x5	65x65x7	50x50x5	PSXPSXP	100140	UNP140	65x65x6	120x80x10	70x70x7	DIXORRANTO	SEVERYE	65x65x6	65x65x6	70X70X7	70x70x7	8x06x06	150x150x14	150x150x14	150x150x14	UNP140	6x06x06	65x65x6	/UX/UX/	SONSONS	SOXOOX	PUXPUXO	2000000
Omschrijving Profiel mr2 50x50x4	t1bh1	11bh2	t1br1	11br1-3	t1or2-2	11bh4	11vd3	nzh1	mvd1	mvh1	nzd1	112U1	nr3-2	nr3-3	1vh2	3oventraverse	1vd2	11vd4	tlvhl	tioh1	7007	1004	CDOT)	1043	myd2	Tori	1011	2-1017	muz mah3	IIZIIZ mvh2	nzd2	mzd3	nvd3	mzd4	2vd1	25br1	t2br1-2	C2br1-3	myb3	-2vh1	2td1	2bh1	2vd2	2vd3	2vh2	mzd5	t2vh3	mths	2or1	.20r1-2	mtd3							l						mvh4	mzd6	120d4	2003	mza,	Myde	mzgo md7	INC
Staafgroep 0 mr2 r	t1bh1	t1bh2	tibri-i	t1br1-3	t1or2-2	t1bh4	t1vd1	mzh1	mvd1	mvh1	mzd1	mr2-1	mr3-2	mr3-3	t1vh2	306	t1vd2	t1vd4	t1vh1	tlohl	7007	11004	chth?	110d3	mud2	11011	110r1=2	- TOTA	- Curm	muh2 ,	mzd2	mzd3	mvd3	mzd4	t2vd1	t2br1-1	t2br1-2	t2br1-3	mirh3	12vh1	t2td1	t2bh1	t2vd2	t2vd3	t2vh2	mzd5	t2vh3	mth3	#20r1-1				ı											mvh4 r							

Date Author Version

Assessment of groups for strengthened mast (afkeur level)

ZW380 Oost D2.3 RSB-RSD Hoekmast H150° 11

0.70	0.64	2000	0.75	0.80	0.84	0.74	0.77	0.62	0.72	0.55	00.00	0.24	0.07	0.22	0,58	0.69	0.72	0.00	0.48	0.07	0.70	0.13	0.04	0.65	00.00	0.19	0.72	0.23	0.85	0.02	000	0.01	0.54	0,01	0.53	0.19	0.42	0.66	0.37	0.02	0.08	0.01	0.01	0.01	0.02	0.01	0,41	0.01	0.01	0.38	20.0	0.02
211.2	00	1782.0	1188.0	140.8	140.8	140,8	140.8	140.8	140.8	140.8	33.3	140.8	27.7	140.8	140.8	0.0	1320.0	140.8	140.8	58.7	176.0	58.7	27.7	176.0	26.0	28.0	28.0	28.0	28.0	28.0	28.5	38.1	52.3	28.0	38.1	38.1	38.1	28.1	52.3	138.1	38.1	38.1	38.1	38.1	38.1	38.1	83.2	69.7	166.3	38.1	30.1	38.1
218.2	00	1444 5	1163.5	145.4	145.4	145,4	145.4	145.4	145.4	145.4	58.8	145.4	58.8	145.4	145,4	0.0	1444.5	145.4	145.4	72.7	145.4	72.7	58.8	145.4	75.4	37.7	37.7	37.7	37.7	37.7	200	60.3	60.3	37.7	60.3	60.3	60.3	50.3	60.3	60.5	60,3	60.3	60.3	60.3	60.3	60.3	94,1	60.3	188.2	60.3	00.0	60.3
192.1	1097 7	1024.1	1024.1	227.7	241.5	241,5	241.5	155,3	155.3	155,3	65.7	241.5	54.7	241.5	155,3	1097.7	1024.1	155.3	155.3	92.7	217.7	92.7	54.7	217.7	59.4	46.1	46.1	46.1	46.1	46.1	7.09	62.7	98.8	46.1	62.7	62.7	62.7	62.7	98.8	62.7	62.7	62.7	62.7	62.7	62.7	62.7	181,9	194.4	1739.7	62.7	00.0	62.7
135,3 SPIS 6a 90 Ba Ct2 Ba	707.1 115.3 0.9 90	762.4 115.3 0.9 90	762 1 US 3 US 26	113.3 SPIS 6a 90 Ba Ct2 Ba	118.6 SPLS 6a 90 Ba Ct1 Ba	103,7 SPLS 6a 90 Ba Ct2 Ba	108.4 SPLS 6a_90 Ba Ct2 Ba	87.5 SPLS 6a 90 Ba Ct1 Ba	100.7 SPLS 6a 90 Ba Ct1 Ba	77,7 SPLS 6a 90 Ba Ct2 Ba	0.1 ULS 3_0,9_104	33,3 ULS 3_0,9_90	2.0 ULS 1a 0,9 90	30.7 ULS 3_0,9_90	82,3 SPLS 6a_90 Ba Ct2 Ba	761.4 ULS 3_0,9_90	738.5 ULS 3 0,9 90	03 F CDIC 63 90 Bs C+1 Bs	67.7 SPIS 6a 90 Ba CF2 Ba	3.9 ULS 1a 90	101,2 SPLS 6a 90 Ba Ct1 Ba	7.7 ULS 3 90	1,2 ULS 1a 0,9 0,9 45	94.7 SPLS 6a_90 Ba Ct2 Ba	0.2 ULS 3_90	5,3 ULS 3_0,9_76	20.1 kortsluitbelasting 1181	6,4 ULS 3_0,9_76	23.7 kortsluitbelasting 1181	30.4 kentellitheliation 1185	0.4 KOLGANDERSON J. 110.1	0.5 SPLS 1a 0.9 45 Ba Ct	28.2 ULS 3 76	0.3 SPLS 1a_0,9_0 Ba All t	20.3 kortsluitbelasting 10&1	7,2 ULS 3_0,9_76	16.0 ULS 3_90	25.3 Korts uitbelasting 118.1	23 6 kertsluttbelasting 118.1	33.6 kortsuithelasting 1181	3.1 kortsluitbelasting 108.1	0.3 kortsluitbelasting 10&1	0.3 ULS 1a 0,9 0,9 76	0.5 SPLS 1a_0,9_76 Ba Ct	0.7 SPLS 1a_0,9_0,9_76 E	0.3 kortsluitbelasting 10&1	34,2 kortsluitbelasting 10&1	0.5 ULS 1a_0,9_135	1.7 ULS 1a_0,9_0,9_0	14.7 Kortsluitbelasting 11&1	10 CD C 1 0 0 0 15 Bo C	0.8 SPLS 1a 0,9 45 Ba All
0.85	0.86	000	0.70	0.77	0.82	69'0	0.77	0.69	0.67	0.54	00.00	0.28	0,10	0.28	0.56	0.91	0.84	890	0.60	0.08	0.76	0.12	0.05	0.78	00.00	0,63	0.19	0.65	0.19	0.75	0.52	0.43	0.01	0.85	0.00	0.02	0.11	0.49	0.77	0.02	0.00	0.00	0.01	0.02	0.02	0.00	0.01	0.41	0.01	0.00	0.00	0,51
285.1	00	1782.0	1425.6	190 1	190 1	190,1	190.1	190.1	190.1	190.1	64.8	190.1	54.0	190.1	190.1	0.0	1782.0	1901	190 1	83.2	237.6	83.2	54.0	237.6	86.4	43,2	43.2	43.2	43.2	43.2	0 00	123	70.6	43.2	58.8	58.8	28.8	20.00	0.07	0.00	28.9	58.8	58.8	58.8	58.8	58.8	117,6	94.1	235.2	20 0	20.00	28.8
218.2	00	1444.5	1163.5	145.4	145.4	145,4	145.4	145.4	145.4	145,4	58.8	145.4	28.8	145.4	145,4	0.0	1444.5	145.4	145.4	72.7	145,4	72.7	58.8	145.4	75.4	37.7	37.7	37.7	37.7	37.7	200	60.3	60.3	37.7	60.3	60.3	60.3	50.3	60.3	. C. C.	60.3	60.3	60.3	60.3	60.3	60.3	94,1	60.3	188.2	5.03	000	60.3
158.8	937 3	27.00	940.7	159.6	155.5	150,5	146.0	141.6	147.5	140,4	19.0	171.1	23.1	171.1	127,3	945.2	1007.1	151.6	130 5	97.3	275.5	97.3	31,7	275.5	40.8	28.6	30.4	32.7	34.8	39.7	48.0	52.9	85.0	51.0	52.9	56.9	96.6	9.00	83.3	47.7	53.4	86.2	43.0	43.2	44.4	86.3	74,5	244.0	1602.3	48./	0.04	47.8
-134.5 SPIS 6a 90 Ba Ct2 Ba	06 2 3 80	858 2 111 C 3 SO	-656.2 U.S 3 30	SPIS 6a 90 Ba Ct2	119.0 SPLS 6a 90 Ba Ct2 Ba	-99.8 SPLS 6a 90 Ba Ct2 Ba	111.6 SPLS 6a_90 Ba Ct1 Ba	-97.9 SPLS 6a 90 Ba Ct2 Ba	-97.2 SPLS 6a 90 Ba Ct2 Ba	-75.9 SPLS 6a 90 Ba Ct2 Ba	-0.1 SPLS 6a_90 Ba Ct2 Ba	-40,8 ULS 3_90	-2.3 ULS 1a 76	-40.4 ULS 3_90	-70,9 SPLS 6a_90 Ba Ct2 Ba	-856,0 ULS 3_90	-842.3 ULS 3 90	-08 K SDIS 63 90 Ba C#2 Ba	-78.8 SPIS 6a 90 Ba Ct2 Ba	-5.9 ULS 3 0.9 90	110.1 SPLS 6a 90 Ba Ct2 Ba	06 6'0 ESIN 6'8	-1,7 ULS 1a 45	-112.8 SPLS 6a_90 Ba Ct2 Ba	0'0	-17.9 kortsluitbelasting 11&1	5.7 ULS 3_0,9_76	-21.2 kortsluitbelasting 1181	-6.7 ULS 3 0,9 76	-28.2 Kortsluitbelasting 118.1	=24 8 Vortellithelasting 1181	-22.9 ULS 3.76	-0.4 SPLS 1a 0,9 0 Ba All (-31.9 ULS 3_76	0'0	-1.4 kortsluitbelasting 10&1	6.6 ULS 3_0,9_90	-28.5 Kortsluitbelasting 1181	-46.1 Kortsluitbelasting 10&1	-22-9 kortsluthelasting 1181	-0.1 SPLS 1a 0.9 76 Ba All	0.1 ULS 1a 0,9 0,9 76	-0.5 ULS 1a 0,9 104	-1.0 ULS 1a_0,9_104	-1.0 ULS 1a 0,9 104	0.0 SPLS 1a 0,9 0,9 76 B	0.4 SPLS 1a 0,9 0,9 104	-24.5 kortsluitbelasting 11&1	-1.0 ULS 1a_90	0.0	-24.6 Kortsluitbeldsting aloa	-24.5 kortsluitbelasting 108.1
112	05	n d	60	111		ı		- 1				ш				-1		П	ı				ı	84	160	178	169	160	152	136	123	113	102	106	113	106	92	114	110	123	112	62	134	133	130	62	178	71	15	121	127	123
0.53	100	8 6	9.5	0.52	0.52	0,52	0.52	0.52	1.00	1.00	1.00	1.00	1.00	1.00	0,54	1.00	0.33	0.0	00 1	1.00	0,33	1.00	1,00	0.33	1.00	1,00	1.00	1.00	1.00	1.00	8 6	1.00	1.00	1,00	1.00	1.00	0.52	0.50	00.7	96.	1.00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	2.00	1.00	3 5	1.00
0.53	2.87	2.0	2.40	0.52	0.52	0,52	0.52	0.52	1.00	1.00	1.00	1.00	1.00	1.00	0,54	2.38	0.33	200	1 00	1.53	0.33				1.00	1.00	1.00	1.00	1.00	1.00	8	1.00	1.00	1,00	1.00	1.00	0.52	0.50	00.1	9 6	1.00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	2.00	00.1	3 6	1.00
0.53	2.40	1 20	2 35	0.52	0.52	0.52	0.52	0.52	1.00	1.00	1.00	1.00	1.00	1.00	0.54	2.31	0.33	000	00	1.00	0,33	1.00	1.00	0.33	1.00	1,00	1.00	1.00	1.00	1.00	000	1 00	1.00	1.00	1,00	1.00	0.52	0.50	00.1	00.1	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00	2.00	1.00	2 6	100
3M22-5.6t		10M22_5 6+	8M22 5 6t	2M22-5-6t	2M22-5.6t	2M22-5.6t	2M22-5.6t	2M22 - 5.6t	2M22-5.6t	2M22-5.6t	1M20-5-6t	2M22-5.6t	1M20-5.6t	2M22-5-6t	2M22-5.6t		10M22-5.6t	2M22-5-55	2M22 5 6t	1M22-5-6t	2M22-5.6t	1M22-5.6t	1M20-5.6t	2M22 5 6t	2M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-8 8+	1M16-8-8t	1M16-8.8t	1M16-5.6t	1M16-8-8t	1M16-8,8t	1M16-8-8t	1M16-8-81	1M16-8-81	1M16-8-8t	1M16-8-8t	1M16-8.8t	1M16-8-8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M20-8-8t	1M16-8-8t	2M20-8-8t	1M16-8-8t	1M16-8-81	1M16-8-8t
5235					5235	5235	5235	5235	5235	5235	5235	5235	5235	5235		5235	5235		5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	5235	2355	5355	5355	5235	S355	5355	S355	5355	5355	5355	5355	8355	S355	5355	S355	S355	5355	S355	5355	5355	5355	S355
mzd9 90x90x8	160x160x15#	160×160×15#	#6170017001 1607160715#	90x90x8	90x90x8	8x06x06	8x06x06	90x90x8	8×06×06	8x06x06	65x65x6	8x06x06	60x60x5	90x90x8	8x06x06	Onderstuk mair 160x160x15#	Onderstuk main 160x160x15#	90x00x8	SYUSYUS	70x70x7	100×100×10	70x70x7	60x60x5	100×100×10	Bovenstuk Bove 55x55x5	Bovenstuk Bove 55x55x5	Bovenstuk Bove 55x55x5	Bovenstuk Bove 55x55x5	Bovenstuk Bove 55x55x5	Bovenstuk Bove 55x55x5	Bovenstuk Bove 50×50×5	Bovenstuk Bove 50x50x5	Bovenstuk Bove 60x60x6	Bovenstuk Bove 55x55x5	Boventraverse 50x50x5	Boventraverse i 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse ' GUXBUXB	Boventraverse (50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse (80x80x8	Boventraverse (80x80x8	Boventraverse HEB160	Boventraverse 50x50x5	Boventraverse (50x50x5	Boventraverse i 50x50x5
	mré.	mr62	mr6=2	mvd8	mzd10	6pvm	mzd11	mvd10	mzd12	mzd13	mth4	mzh5	mtd4	mvh5	mvd11	Onderstuk	Onderstuk	mod14	myd12	mzh6	mzd15	mvh6	mtd5	mvd13	Bovenstuk	Bovenstuk	Bovenstuk	Bovenstuk	Bovenstuk	Bovenstuk	Rovenstuk	Bovenstuk	Bovenstuk	Bovenstuk	Boventrave	Boventrave	Boventrave	Boventrave	Boventrave	Roventrave	Boventrave	Boventrave	Boventrave	Boventrave	Boventrave	Boventrave	Boventrave	Boventrave	Boventrave	Boventrave	Boventiave	Boventrave
6pzm	mr6-2	mr6-1	mr6=3	mvd8	mzd10	6pvm	mzd11	mvd10	mzd12	mzd13	mth4	mzh5	mtd4	mvh5	mvd11	mr8-2	mr8-1	mzd14	mvd12	mzh6	mzd15	mvh6	mtd5	mvd13	280	301-1	301-2	301-3	301-4	301-5	301-7	301-8	301-9	301-10	302	303	304	305	307	300	311	321	312	313	314	315	316	317	320	322	323	325


Date Author Version

Assessment of groups for strengthened mast (verbouw level)

ZW380 Oost D2.3 RSB-RSD Hoekmast H150° 11

U.C. (trek)	0.89	0.87	00.00	0.58	0.71	0.74	69.0	0.84	69.0	0.67	0.05	0.01	0.65	0.53	0.23	0.50	0.66	0.37	0.62	0.88	0.08	0.01	0.01	0.01	0.02	0.01	0.41	0,01	0.01	0.38	0.02	0.04	000
Stuik (trek)	69.7	61.0	69.7	123.3	145.5	123.3	123.3	145.5	323.4	45.8	38.1	38.1	52.3	38.1	38.1	38.1	38.1	52.3	38.1	38.1	38.1	38.1	38.1	38.1	38.1	38.1	83.2	69.7	166.3	38.1	38.1	52.3	* 00
Afschuif	120.6	60.3	120.6	188.2	188.2	188.2	188.2	188.2	349.1	60.3	60.3	60.3	60.3	60.3	60.3	60,3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	94.1	60,3	188.2	60.3	60.3	60.3	,
Nettodsn.	194.4	142.7	194,4	131.6	131.6	198.9	131.6	131.6	276.6	75.3	62.7	62.7	98.8	62.7	62.7	62,7	62.7	98.8	62.7	62.7	62.7	62.7	62.7	62.7	62.7	62.7	181.9	194.4	1739.7	62.7	62.7	98.8	1
Trek Combinatie trek	62.2 kortsluitbelasting 10&1	52.3 kortsluitbelasting 10&1	0.0	71.7 SPLS 6a_90 Ba Ct1 Ba	94.1 SPLS 6a 90 Ba Ct2 Ba	91.5 SPLS 6a 90 Ba Ct2 Ba	84.8 SPLS 6a 90 Ba Ct2 Ba	111.0 SPLS 6a_90 Ba Ct1 Ba	191.3 SPLS 6a_90 Ba Ct2 Ba	30.4 kortsluitbelasting 11&1	2,1 ULS 3_0,9_76	0.5 SPLS 1a 0,9 45 Ba Ct.	34.1 ULS 3_76	20.3 kortsluitbelasting 10&1	8.9 ULS 3 0,9 76	19.2 ULS 3_90	25.3 kortsluitbelasting 11&1	19.5 kortsluitbelasting 11&1	23.8 kortsluitbelasting 11&1	33.6 kortsluitbelasting 11&1	3.1 kortsluitbelasting 10&1	0.3 kortsluitbelasting 10&1	0.4 ULS 1a_0,9_0,9_76	0.5 SPLS 1a_0,9_76 Ba Ct.	0.9 ULS 1a_0,9_0,9_76	0.3 kortsluitbelasting 10&1	34.2 kortsluitbelasting 10&1	0.6 ULS 1a_0,9_135	2.1 ULS 1a 0,9 0,9 90	14.7 kortsluitbelasting 11&1	0.9 SPLS 1a_0,9_45 Ba Ct.	1.9 SPLS 1a_0,9_45 Ba Ct.	114 -C LT C C - 1 C C C C C
•mdo																																	
J.C. (druk)	00.00	0.30	0.86	0.62	0.62	0.63	0.47	0.54	69.0	0.01	0.52	0.52	0.01	00.00	0.02	0.14	0.49	0.77	0.02	0.48	00'0	00.00	0.01	0.03	0.03	00.00	0.01	0,41	0.01	0.00	0.53	0.25	
ik (druk) t	94.1	82.3	94.1	205.8	205.8	205.8	205.8	205.8	436.6	20.6	58.8	58.8	70.6	58.8	58.8	58.8	58.8	20.6	58.8	58.8	58.8	58.8	58.8	58.8	58.8	58.8	117.6	94.1	235.2	28.8	58.8	20.6	000
schuiving St	120.6	60.3	120.6	188.2	188.2	188.2	188.2	188.2	349.1	60.3	60.3	60.3	60.3	60.3	60.3	60,3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	94.1	60,3	188.2	60.3	60.3	60.3	000
Knik A	71.6	62.6	72.4	145.5	151.6	143.6	144.7	130.8	281.1	55.9	48.0	52.9	85.0	52.9	56.9	9.96	58.6	83.3	36.2	47.7	53,4	86.2	43.0	43.2	44.4	86.3	74.5	244.0	1602.3	48.7	46.8	52.7	,
Druk Combinatie druk	0.0	-17.9 kortsluitbelasting 10&1	-62.5 kortsluitbelasting 10&1	-90.7 SPLS 6a_90 Ba Ct2 Ba	94.5 SPLS 6a 90 Ba Ct2 Ba	-90.3 SPLS 6a 90 Ba Ct2 Ba	-67.3 SPLS 6a 90 Ba Ct1 Ba	-70.8 ULS 6a_90 Ba Ct1	-195.3 SPLS 6a_90 Ba Ct2 Ba	-0.4 SPLS 1a_0,9_135 Ba C	-24.8 kortsluitbelasting 11&1	-27.5 ULS 3_76	-0.4 SPLS 1a_0,9_0 Ba All (0.0	-1.4 kortsluitbelasting 10&1	-8-5 ULS 3_0,9_90	-28.5 kortsluitbelasting 11&1	-46.1 kortsluitbelasting 10&1	-0.9 SPLS 1a_0,9_45 Ba Ct.	-22.9 kortsluitbelasting 11&1	-0.1 SPLS 1a 0,9 76 Ba All	-0.1 ULS 1a_0,9_0,9_76	-0.6 ULS 1a_0,9_104	-1.3 ULS 1a_0,9_104	-1.3 ULS 1a_0,9_104	0.0 SPLS 1a 0,9 0,9 76 B	-0.4 SPLS 1a_0,9_0,9_104	-24.5 kortsluitbelasting 11&1	-1.2 ULS 1a 90	0.0	-24.6 kortsluitbelasting 11&1	-13.0 ULS 3_90	and a section of the
nkheid	183	167	181	102	86	103	102	112	86	130	123	113	102	113	106	65	114	116	152	123	112	62	134	133	130	62	178	71	15	121	125	151	
RLZ Slankheid	_			0.52		0.52			1.00			1.00	1.00	1.00					1.00				1.00				1.00	1.00	2.00	1.00		_	,
				52 0.52	1.00	52 0.52			1.00			1.00	00 1.00	00 1 00	1.00				00 1.00										2.00	00 1 00			
						8.8t 0.52			8.8t 1.00			8.8t 1.00	8.8t 1.00										8.8t 1.00	IM16-8-8t 1.0			1.00 I W 1.00		-8.8t 2.00	8.8t 1.00		8.8t 1.00	
t Bouten	1M16-8-8t	1M16-8-8t	1M16-8-81	2M20-8-81	2M20-8-81	2M20-8-81	2M20-8.8t	2M20-8.81	3M22-8-8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8-8t	1M16-8-8t	1M16-8.8t	1M16 8.8t	1M16-8-8t	1M16-8-8t	1M16-8.8t	1M16-8-8t	1M16-8-8t	1M16 8.8t	1M16-8-8t	1M16	1M16	1M16-8.8t	1M20	1M16 8.8t	2M20-8.8t	1M16-8-8t	1M16-8.8t	1M16-8-8t	.00
Staalsoort	S355	8355	S355	S355	S355	5355	8355	S355	S355	S355	S355	8355	5355	5355	S355	S355	S355	S355	S355	8355	S355	S355	S355	S355	S355	S355	S355	S355	S355	S355	S355	S355	LLCC
Omschrijving Profiel	t1vd1 80x80x8	Boventraverse f 70x70x7	t1vd2 80x80x8	mvd2 70×70×7	mzd2 70x70x7	mzd3 70x70x7	mvd3 70x70x7	mvd4 70x70x7	6x06x06 9pzm	Bovenstuk Bove 55x55x6	Bovenstuk Bove 50x50x5	Bovenstuk Bove 50x50x5	Bovenstuk Bove 60x60x6	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse (50x50x5	Boventraverse 50x50x5	Boventraverse v 60x60x6	Boventraverse (50x50x5	Boventraverse (50x50x5	Boventraverse 50x50x5	Boventraverse (50x50x5	Boventraverse (50x50x5	Boventraverse (50x50x5	Boventraverse i 50x50x5	Boventraverse i 50x50x5	Boventraverse (80x80x8	Boventraverse (80x80x8	Boventraverse HEB160	Boventraverse 50x50x5	Boventraverse (50x50x5	Boventraverse (60x60x6	Buch and a construction of
Staafgroep										301-6		301-8	301-9																				

1) The bolted connections on groups t1vd1 and t1vd2 require strengthening with plates. Refer to Appendix D and E. 2) Groups 301-7, 301-8 and 302 t/m 325 are new groups which were added for the upper conductor attachment extension.

ZW380 Oost D2.3 RSD-WDT Lijnportaal Mast 19a

Date Author Version

Exceedance (Tens)			stuik stuik afschuiving, nettodsn.,							
1842 0.48 1842 0.48 1842 0.48 2750 0.45 2752 0.45 0.0 0.32 0.0 0.32 879.3 0.05	0.00 423.9 0.04 732.7 0.06 649.6 0.00 81852.2 0.27 301.5 0.40	244.2 0.17 244.2 0.74 274.1 0.28 274.1 0.28 142.5 0.03 244.2 0.63 244.2 0.63	244.2 0.66 244.2 0.95 244.2 1.06 244.2 1.06 244.2 1.04 93.5 1.67 89.0 0.51	352.8 0.71 219.8 0.37 219.8 0.06 219.8 0.09 219.8 0.06 219.8 0.06 44.5 0.26 17.1 0.08	44.5 0.00 1159.2 0.75 206.7 0.05 206.7 0.04 176.4 0.05 176.4 0.05 176.4 0.05	61.0 0.07 398.0 0.01 117.6 0.03 149.3 0.67 149.3 0.67 93.5 0.62 132.7 0.46 132.7 0.46	122.0 0.38 61.0 0.38 61.0 0.39 150.8 0.13	38.8 0.11 38.8 0.11 176.4 0.15 93.5 0.61 72.8 0.44	93.5 93.5 93.5 93.5 93.5 93.5 93.0 93.0 93.0 93.0 93.0 93.0 93.0 93.0	52.3 0.14 52.3 0.04 52.3 0.01 52.3 0.01 52.3 0.01
7 (ens.) bearing 3199.0 3720.3 2168.8 0.0 813.3	0 0 9 0 7 7 7 7	271.1 271.1 271.1 271.1 271.1 188.2 94.1 271.1 271.1	271.1 271.1 271.1 271.1 271.1 271.1 120.6 806.5	188.2 271.1 271.1 271.1 271.1 271.1 271.1 271.1 271.1	60.3 188.2 188.2 188.2 188.2 188.2 188.2 188.2 60.3	271.1 271.1 94.1 135.6 135.6 135.6 135.6	120.6 60.3 60.3 135.6	135.6 135.6 135.6 94.1 94.1	94.1 94.1 188.2 0.0 188.2	60 3 3 3 3 60 5 3 60 5 3 60 5 3 60 5 5 60 5 5 60 5 60
Net Section Sheat 1661.0 1661.0 1661.0 1661.0 1966.7 838.3 838.3	1065.0 550.4 493.9 1658.2 1510.3 1372.7 425.5	681.6 262.0 337.6 216.4 216.4 165.3 131.7 260.3 260.3	260.3 260.3 260.3 260.3 260.3 131.7 66.2	469.5 204.6 204.6 204.6 204.6 204.6 62.7 169.5	62.7 165.3 165.3 176.5 176.5 117.3 117.3 123.2 98.8	98.8 448.4 181.9 225.8 225.8 131.7 169.3 169.3	121.7 121.7 98.8 98.8 290.1 80.0	290.1 290.1 131.7 131.7 131.7	131.7 131.7 119.2 284.7 681.6 321.1 267.4	80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
015.3 (19.3	8 8 8	SPIC 4 190 Bar (12) SPIC 4 (1) 9 DBar (12) SPIC 4 (1) 9 DBar (12) SPIC 4 (1) 9 DBar (12) ULS 3 (10) 3 135 ULS 12 (1) 9 SSI (13) SPIC 4 (1) 9 DBar (12) SPIC 4 (1) 9 DBar (12)		9PIS 1815 9 0 B CCZ 9PIS 1a_0) 9 45 B CCI 10S 1a_0) 9 45 B B CCI 10S 1a_0) 9 45 B B CCI 10S 1a_0) 9 45 B B CCI 10S 1a_0) 9 B CCI	0,0,0,0,0		SPLS 4		SPLS 4_0,0	SPLS 1a_ULS SPLS 1a_SPLS 1a_SPLS 1a_SPLS 1a_SPLS 3
Exceedance (Comp) — 19150 803, 753. 745. 176, 176, 628.	50.8 15.4 20.8 275.7 0.0 371.4 109.6 68.2	18.13 181.13 187.4 187.4 187.7 187.7 187.7 187.7	1610 2313 222-9 Knik, afschuving 2554 Knik, afschuving, 2554 Knik, afschuving, 40 40-6 40-6	133.1 76.1 131.1 194.8 8.6 8.8 12.1 12.1 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13	2	44.7	36.10 86.10 85.5 23.2 93.3 17.5 17.5	16. 10. 10. 13. 13.	16.3 1.2 0.0 77.0 23.2 23.1 11.9	2 4 8 9 6 4 d
336.9 0.49 336.9 0.53 336.14 0.53 391.4 0.54 2257.9 0.16 1270.1 0.15	470.4 0.07 470.4 0.04 1058.4 0.06 0.0 0.45 793.8 0.05 1852.8 0.00 352.8 0.00	352.8 0.00 352.8 0.72 337.5 0.43 317.5 0.43 255.2 0.43 352.8 0.78 352.8 0.78	352.8 0.92 352.8 0.92 352.8 0.92 352.8 110 352.8 110 102.9 1188 117.6 0.02 1867.6 0.81	332.8 0.38 337.5 0.48 337.5 0.48 337.5 0.00 337.5 0.00 337.5 0.03 337.5 0.03 282.2 0.00	58.8 0.00 235.2 0.00 235.2 0.05 235.2 0.05 235.2 0.05 176.4 0.08 205.8 0.07	70.6 0.06 423.4 0.01 117.6 0.04 158.8 0.05 102.9 0.50 141.1 0.48 141.1 0.48	141.1 0.31 141.1 0.40 70.6 0.31 70.6 0.31 176.4 0.00	1/6,4 0,00 105,8 0,00 176,4 0,00 102,9 0,15 102,9 0,25	102.9 0.27 102.9 0.01 117.6 0.38 294.0 0.58 294.0 0.00 294.0 0.00	70.6 0.13 70.6 0.34 70.6 0.02 70.6 0.02 70.6 0.25 70.6 0.25 70.6 0.25
1.9 Shear (1919) 2.0 3199.0 3.6 3720.3 3.5 2168.8 3.5 0.0 3.1 626.6	7.7 0.0 7.4 182.3 7.4 165.6 7.7 0.0 8.2 406.7 1.1 1897.7 1.7 271.1 8.4 271.1	5.5 271.1 5.5 271.1 5.6 271.1 5.0 271.1 5.0 271.1 6.0 271.1 7. 188.2 7. 188.2 7. 271.1 8. 271.1	2711 2711	1,7 1186.2 1,4 271.1 1,4 271.1 1,4 271.1 1,4 271.1 1,1 271.1 1,2 271.1 1,5 60.3 1,9 271.1	60.3 188.2 188	7.3 60.3 5.4 271.1 5.5 94.1 6.9 135.6 6.0 94.1 7.0 135.6 7.0 135.6 7.1 135.6 7.2 135.6	7.7 120.6 1.9 120.6 1.0 60.3 1.2 60.3 1.7 135.6 1.3 135.6	135.6 135.6 13 135.6 13 135.6 13 135.6 14 1		23.4 60.3 27.5 60.3 59.3 60.3 38.0 60.3 37.7 60.3
(135 (100)) 104681 135 (136) 135 (144) 135 (144) 138 (136) 135 (144) 135 (144) 135 (144) 135 (144)	3 53,5 Ba Ct1 922 3 53,5 5 512 3 53,5 512 5 4,90 Ba Ct2 1222 1 20,5 6 Ct2 1225 5 4,90 Ba Ct2 1225	190 Br C12 276 276 276 276 276 276 276 276 276 27	4 0 9 90 Ba Ct2 199 4 0 90 Ba Ct2 211 4 4 90 Ba Ct2 216 4 90 Ba Ct2 266 4 90 Ba Ct2 266 5 4 90 Ba Ct2 266 5 4 90 Ba Ct2 68 1 1 1 3 4 10 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	3 0.9 9.9 8 acr 2 555 8 dr 1 22 25.5	135 158 116 116 116 116 116 117 118 118 118 118 118 118 118	0.9, 53.5, 94.0, 0.9, 53.5, 94.0, 0.9, 53.5, 90.0, 90.9, 13.5, 90.0, 90.	115.4 90 123.4 10.5 4 90 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4	PICS 4_0,9_00 Ba Ct.1 817.24 37.24 PICS 4_0,9_00 Ba Ct.2 38.24 PICS 4_0,9_00 Ba Ct.2 12.21 PICS 4_0,9_00 Ba Ct.2 12.21 PICS 4_00 Ba Ct.2 12.21		35 35
	-65,5 SPL -18,8 ULS -31,7 VLS -551,2 SPL -61,0 ULS -636,2 SPL -60,0	100 100 100 100 100 100 100 100 100 100	-184.0 SPLS -212.4 SPLS -204.3 SPLS -278.9 SPLS -156.1 SPLS -656.1 ULS	71 -109.4 SPLS 1106 -20.4 SPLS 1106 -20.5 SPLS 112 SPLS 194 -11.2 SPLS 195 11.5 SPLS 1		-2.5 ULS 3 -2.4 ULS 3 -3.3 ULS 3 -77.0 SPLS -47.0 SPLS -44.5 SPLS -64.5 SPLS -66.0 ULS 4	-37.9 ULS 4 -48.3 ULS 4 -18.5 ULS 4 0.0 0.0	23.5.5	-24.9 ULS 3 -24.9 ULS 3 -13.4 ULS 3 -110.0 ULS 3 -37.2 ULS 3 -8.3 ULS 3	-3.1 SPLS -8.9 ULS 3 -2.5 SPLS -0.9 ULS 1 -9.3 ULS 3 -0.7 SPLS -0.7 SPLS
0.33 0.33 0.55 0.50 0.52	0.50 0.50 2.00 1.00 1.50 1.30	0 0 0 0 0 0 0 0	0.52 0.52 0.52 0.52 0.55 0.55 0.55 0.55	1,00 2,00 1,00 (1,00 1,00 1,00 1,00 1,00 1,00	0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	000000		2.89 2.89 2.89	9999999
12M124-8,8t 1,00 12M124-8,8t 1,00 14M124-8,8t 0,33 14M124-8,8t 0,55 6M124-8,8t 0,55 6M124-8,8t 0,55 6M124-8,8t 0,55	4M16-8.8t 6M24-8.8t 3M24-8.8t 7M24-8.8t 2M24-8.8t	2M24-8.8 2M24-8.9 2M24-8.9 2M24-8.9 2M24-8.8 2M20-8.9 2M24-8.9 2M24-8.9 2M24-8.9	2M24-8.8t 2M24-8.8t 2M24-8.8t 2M24-8.8t 2M24-8.8t 1M20-8.8t 6M26-8.8t 6M26-8.8t	2M20-8;8t 2M24-8;8t 2M24-8;8t 2M24-8;8t 2M24-8;8t 2M24-8;8t 2M24-8;8t 2M24-8;8t 2M24-8;8t 2M24-8;8t	1M16-8, 8t 2M20-8, 8t 2M20-8, 8t 2M20-8, 8t 2M20-8, 8t 2M20-8, 8t 2M20-8, 8t 2M20-8, 8t 1M16-8, 8t	1M16-8.08 2M24-8.08 1M24-8.09 1M24-8.09 1M24-8.09 1M24-8.08 1M24-8.09 1M44-8.09	2M16-9, 8 2M16-9, 8 1M16-9, 8 1M16-9, 8 1M14-9, 8 1M24-9, 8	1M24-8,81 1M24-8,81 1M20-8,81 1M20-8,81 1M20-8,81 1M30-8,81		1 MIG-8.81 1.00 1 MIG-8.81 1.0
			100x100x10 5355 100x100x10 5355 100x100x10 5355 100x100x10 5355 70x70x7 5355 50x50x5 5355	ber 1204120412 S355 90,9099 90,9099 90,9099 90,9099 90,9099 181 191 191 191 191 191 191 191 191 1	50x50x5 \$3355 mber 80x80x8 \$3555 mber 80x80x8 \$3555 60x60x6 \$3555 60x60x6 \$3555 70x70x7 \$3555 60x60x6 \$3555	And member 60,600,600,600,600,101,5355 Horizontal member Tra 80,680,80,8355 90,490,93,8355 90,490,93,8355 80,480,83,8355 80,480,83,8355 80,480,83,8355 80,480,83,8355 80,480,83,8355 80,480,83,8355 80,480,83,8355 80,480,83,8355 80,480,83,8355 80,480,83,8355	60x60x6 60x60x6 60x60x6 5355 60x60x6 5355 100x100x10 5355 60x60x6 5355 60x60x6 5355 60x60x6 5355	100x100x10 60x60x6 5355 100x100x10 5355 70x70x7 5355 70x70x7 5355 70x70x7 5355	70270x7 S355 70270x7 S355 70270x7 S355 70270x7 100x100x10 S355 100x10x10 S355 100x10x10 S355 100x10x10 S355 100x10x10 S355	60x60x6 5355 60x60x6 5355 60x60x6 5355 60x60x6 5355 60x60x6 5355 60x60x6 5355 60x60x6 5355
BRKSTK - Main member BRKSTK - Main member Eerste TSSUTK - Main member Eerste TSSUTK - Main member Eerste TSSNTK - Main member Tweede TSSNTK - Main member Tweede TSSNTK - Main member	Tweede TSSNTK - Main member BWISTR - Main member BWISTR - Main member Ferste DWRSH - Main bottom Eerste DWSRN - Main top	Eerste DWSRN - Main top BRKSTK - Diagonal BRKSTK - Diagonal BRKSTK - Diagonal BRKSTK - Horizontal BRKSTK - Horizontal BRKSTK - Horizontal BRKSTK - Diagonal I Eerste TSSITK - Diagonal I Eerste TSSITK - Diagonal I	Eerste TSSNTK - CD 1 Eerste TSSNTK - CD 2 Eerste TSSNTK - CD 2 Eerste TSSNTK - CD 3 Eerste TSSNTK - CD 3 Eerste TSSNTK - CD 3 Eerste TSSNTK - CD 4	Tweeder TSSIRT. C. 0.1 Tweeder TSSIRT. C. 0.1 Tweeder TSSIRT. C. 0.2 Tweeder TSSIRT. C. 0.2 Tweeder TSSIRT. C. 0.2 Tweeder TSSIRT. C. 0.2 Tweeder TSSIRT. C. 0.3	Veedee 1'SSNTK - CD 4' Tweeder 1'SSNTK - Horizontal mee Favored 1'SSNTK - Horizontal mee BWSTK - CD 1 BWSTK - CD 2 BWSTK - CD 2	WINSTR - HORIZORIA member BANSTR - Boven Horizontal mem BANSTR - Boven Horizontal mem Traverse - CD 1 Traverse - CD 2 Traverse - CD 3 Traverse - CD 4 Traverse - CD 5	Traverse - CD 7 Traverse - CD 8 Traverse - CD 8 Traverse - CD 9 Traverse - Bottom horizontal 1 Traverse - Bottom horizontal 2 Traverse - Bottom horizontal 3 Traverse - Bottom horizontal 3	Traverse - Bottom horizontal 4 Traverse - Bottom horizontal 5 Traverse - Bottom horizontal 6 Traverse - Front diagonal 1 Traverse - Front diagonal 2 Traverse - Front diagonal 3 Traverse - Front diagonal 3	Front vertical 2 Front vertical 3 Front diagonal 5 Front diagonal 6 Front diagonal 6 Front diagonal 6	Traverse - Top diag 1 Traverse - Top diag 2 Traverse - Top diag 3 Traverse - Top diag 4 Traverse - Top diag 5 Traverse - Top diag 6 Traverse - Top diag 6 Traverse - Top diag 6

Date Author Version

Assessment of groups for strengthened mast (afkeur level)

ZW380 Oost D2.3 RSD-WDT Lijnportaal Mast 19a

0.45	0.11	0.04	90.0	0.03	0.05	0.00	0.27	0.40	0.3	0.74	69.0	0.28	0.20	0.26	0.62	0.65	0.71	0.93	0,93	0.87	0.88	50.0	0.01	0.74	0.38	90.0	0.09	0.03	0.01	0.17	0.07	0.03	0.00	0.05	0.05	0.04	0.04	0.05	0.08	0.07	0.01	0.03	0.52	0.62	0.46	0,50	0.69	0.38	0.39	0.15	0.13	0.15	0,11	0.15	0.40	0.44	0.15	0.17	0.00	0.38	0.10	0.12
3715.0	2122.8	879.3	879.3	423.9	732.7	549.6	1852.2	301.5	0.00	244.2	301.5	274.1	47.7 E	93.5	244.2	244.2	244.2	244.2	244.2	293.1	293.1	1/6.4	1497.6	352.8	219.8	219.8	219.8	219.8	219.8	44.5	217.1	195.4	44.5	159.2	206.7	206.7	176.4	176.4	61.0	61.0	398.0	117.6	149.3	93.5	132.7	132,7	61.0	122.0	61.0	61.0	150.8	176.4	38.8	176.4	93.5	72.8	93.5	93.5	60.4	258.4	0.0	122 0
3720.3	2168.8	813.3	1626.6	482.3	1626.6	406.7	1897.7	2/1.1	0.0	271.1	271.1	271.1	188 2	94.1	271.1	271.1	271.1	271.1	271.1	542.2	542.2	138.2	806.5	188.2	271.1	271.1	271.1	271.1	2/1.1	60.3	271.1	271.1	60.3	188.2	188.2	188.2	188.2	188.2	60.3	60.3	271.1	94.1	135.0	94.1	135.6	135,6	60.3	120.6	60.3	60.3	135.6	135.6	135,6	135.6	1 1 1 6	94.1	94.1	94.1	94.1	188.2	100	1200.2
1661.0	1661.0	838 3	838.3	C 550.4	493.9	1510.3	1372.7	425.5	681.6	262.0	337.6	216.4	165 2	131.7	260.3	260.3	260.3	260.3	260,3	307.0	307.0	200.9	916.5	469.5	204.6	204.6	204.6	204.6	204.6	62.7	169.5	160.3	62.7	165.3	176.5	176.5	117.3	117.3	98.8	98.8	448.4	181.9	222.0	131.7	169.3	169,3	98.8	121.7		98.8	290.1	290.1	80.0	290.1	131.7	131.7	131.7	131.7	119.2	284.7	521.0	261.1
0,9_135	0,9 135	0,9_155 a_0,9_45 Ba Ct	0,9_53,5	,9 53,5 Ba	9 53,5 Ba	1	0,9 90 Ah All	45	90 Ba Ct2	0,9 90 Ba Ct2	0,9 90 Ba Ct2	0,9 135	0,91,00,0	90 Ba Ct2	0,9 90 Ba Ct2	0,9 90 Ba Ct2	0,9 90 Ba Ct2	90 Ba Ct2	0,9 90 Ba Ct2	0,9 90 Ba Ct2	90 Ba Ct2	0,9 90 Ba Ct2	20 Da C(2	90 Ba Ct2	90 Ba Ct1	a 0,9 45 Ba Ct	53,5	a 0,9 135 Ba (47 0.9 0.9 53	90 Ba Ct2	90	0,9 90 Ba Ct2	135	3 6	9 53 5	3,9 53,5	0,9 53,5 Ba C	0,9_135	53.5	53,5	53,5	135	0,9 90 An All	90 Ah All Cts	0,9 90 Ah All	0,9 90 Ah All	0,9 90 Ah All	0,9 90 Ah All	0,9 90 Ah All	06	90 Ba Ct2	90 Ba Ct2	06	4 90 Ba Ct2	06		0,9 90 Ba Ct2	0,9 90 Ba Ct2 0.9 90.5	2122	0,9_135	0,9 135	55,5
755.5 ULS 3	174.7 ULS 3	35.4 SPLS 1a	46.1 ULS 3	13.2 SPLS 3	23.9 SPLS 3	0.0	371,3 SPLS 4	109.6 01.5 3	116.6 SPIS 4	181 1 SPLS 4	187.9 SPLS 4	01.53	4 ULS 2	SPIS 4	SPLS 4	158.5 SPLS 4	SPLS 4	SPLS 4	SPLS 4	255 5 SPLS 4	SPLS 4	164.6 SPLS 4	416.1 115.4	7 SPLS 4	7 SPLS 4	11.7 SPLS 1	19.0 ULS 1a	6.8 SPLS 1	1.3 SPLS 1	7,7 SPLS 4 9	12.2 ULS 3	4.8 SPLS 4	0.1 0153	7.4 SPIS 3	9.2 UIS 3	7.6 ULS 3.	5.1 SPLS 3	5.4 ULS 3	4.6 ULS 3	4.0 ULS 3	3.8 ULS 3	3.0 ULS 3	/1.1 SPLS 4	57.7 SPLS 4	61.1 SPLS 4	67.0 SPLS 4	41.6 SPLS 4	45.5 SPLS 4	23.2 SPLS 4	9.3 ULS 3	17.5 SPLS 4	16.9 SPIS 4	4.1 ULS 3	20.7 SPLS 4	37.7 ULS 4	32.2 ULS 3	13,9 SPLS 4	16.2 SPLS 4	0.0	70.9 ULS 3	73.7 116.2	0010 707
0.54	0.17	0.14	0.05	0.04	0.06	0.15	0.52	00.00	000	0.62	0.72	0.43	0.40	0.09	0.77	0.71	0.92	0.96	0,93	0.93	0.90	0.93	0.02	0.61	0.22	0.14	0.00	0.04	0.08	0.20	0.01	0.03	0.00	0.00	0.05	0.00	0.08	60.0	0.07	0.06	0.01	0.04	0.57	0.50	0.48	0,49	0.56	0.40	0.31	0.00	0.00	0.00	0.01	0.00	0.25	0.00	0.20	0.01	0.37	0.58	0.27	0.00
386.9	257.9	270.1	270.1	470.4	058.4	793.8	852.2	352.8	0.00	352.8	352.8	317.5	31/.3	102.9	352.8	352.8	352.8	352.8	352,8	423.4	423.4	175.4	587.6	352.8	317.5	317.5	317,5	317.5	31/.5	58.8	282.2	282.2	58.8	235.2	235.2	235.2	176.4	176.4	70.6	70.6	423.4	117.6	156.6	102.9	141.1	141,1	70.6	141.1	70.6	70.6	176.4	176.4	105.8	176.4	102.9	102.9	102.9	102.9	117.6	294.0	0.0	0.462
20.3	2168.8 2	813.3	1 26.6	482.3	26.6	106.7	1897.7	71.1	1.1/	71.1	171.1	271.1	1 1/1	94.1	71.1	71.1	71.1	71.1	71.1	542.2	242.2	200	20.0	88.2	71.1	71.1	71.1	71.1	71.1	60.3	71.1	71.1	60.3	88.2	88.2	88.2	188.2	88.2	60.3	60.3	71.1	94.1	33.0	94.1	35.6	35,6	60.3	20.6	60.3	60.3	35.6	35.6	35,6	35.6	94.1	94.1	94.1	94.1	94.1	88.2	0.0	7.22
3.8 37	1.5 21	8.9	0.7 16	2.4	2.4 16	8.2	2.1 18	7.7	7.6	2 9	6.5	3.0	2.0	0.5	6.2	6.2		7.7	7.7	5.3	2.3	200	2.0	0.7	8.4	8.0	8.4	8.4	0.0	8.5	6.6	2 6.6	9.6	0.0	100	8.5	5.2	5.2	4.3	4.3	5.4	5.0	9.0	5.0	8.3	2.0	6.3	4.9	1.4	9.2	3.7	5.6	0.1	2.3	5.5	2.2	1.0	1.2	6.3	1,7		140.0
168	174	Ba Ct1 88	92	51	51	165	Ct2 122	12	13) Ba Ct2 27	Ct2 27	17	17	7	Ct2 19	90 Ba Ct1 19	CEZ IS	D Ba Ct2 21	Ct2 21	Ct2 31) Ba Ct2 31	20	111) Ba Ct2 55	3,5 Ba Cl 22	la Ct1 17	a 0,9 0,9 53,5 25	a Ct2 25	24	0,9 90 Ba Ct2 3) Ba Ct2 21	Ct2 21	LO T	53 5 Ba : 11	18	18	7	7	5	7	0,9_53,5 50	5 11 All Chr. 23	All Cts 22	Ah All 14	90 Ba Ct2 17	21	90 Ah All Cts 11	13	13	m	23	30) Ba Ct1 8	ć) Ba Ct2 12	ω,	Ct1 21	14 17 17 17 17 17 17 17 17 17 17 17 17 17		31		
ULS 3_135 ULS 3_135	288 5 ULS 3 135	10	ULS 3_53,5	ULS 3_53,5	m 5	ULS 1a 90,5	5.4			SPLS 4_90 Ba	SPLS 4_90 Ba	ULS 3 135	CDI C 4 GO Bs CF2	11 S 1a 0	SPLS 4 90 Ba	SPLS 4 90 Ba	SPLS 4 90 Ba	SPLS 4 0,9 91	SPLS 4 90 Ba	SPLS 4_90 Ba Ct2	SPLS 4 0,9 91	SPLS 4 90 Ba	ULS 2 135	SPLS 4 0.9 91	SPLS 3 0,9 5.	SPLS 3 53,5 E	SPLS 1a 0,9 (SPLS 1a 45 B	ULS 18 90	7.6 SPLS 4 0.9 90	SPLS 4_0,9_91	SPLS 4 90 Ba	ULS 3_135	SPI S 13 0 9 1	UIS 3 53.5	5 ULS 3 53,5	ULS 3_53,5	ULS 3_135	ULS 3 0.9 53	ULS 3 0,9 53	ULS 3 0,9 53	ULS 3 0,9 13	SPLS 4_90 An	SPLS 4 0,9 91	SPLS 4 90 Ba	ULS 4 90	SPLS 4 90 Ah	ULS 4 90	ULS 4 90		000	0.0	0.8 SPLS 4 0,9 90 Ba	9	23.8 SPLS 4 0.9 90	1	SPLS 4_90 Ba	ULS 4 90 SPLS 1a 45 B	-13.4 ULS 3_53,5	ULS 3_135	37.2 ULS 3 0,9 53,5	8.3 ULS 3 U,9 53
47 898 5 51 879.6	Н					2 -61.0 ULS		9 0		5 167.1	5 -194.8	74.8	72.0	33	4 150.9	4 1383	1840	3 -208.1	3 -203.0	2 291.9	2 284 1	1049	П	ı		Ш		ш		46 7.6	Ш		0.0	2.9	3	3 10.5	7 -6.1	29-	3.0	1 2.5	5 -2.4	333	-/0.8	0 47.0	6 -64,4	2 -65.9	-33.7	9 -483	0 -18.5	1 0,0	3 0'0	0.0					П			Н		
										12	12	133	7 0 0	24	14	14	17	1	13	11	110	200	1		П	1				-			10	14	01	10	13	13	17	17	80	12	5 0		8	91			L.	20	91	7							282			
1.00 1.00	Ш					Ш		ı			П			ı					П		ı		ı	ı	0.53 0.53	П	0.52 0.52			1.00	П	2.00 1.00	ı			П		0.50 0.50			Ш		ı					0.50 0.50	П		1.00		1.00 1.00						1.00	Н		ı
1.00	Ш					Ш					П			ı					П		ı			ı		П				1.00	П		ı			П					Ш		ı						П		1 00	1.00	1.00	1.00	100	1.00	1.00	1.00	1.00	1 00	1.00	7,00
12M24-8.8t	8M24-8.8t	6M24-8.8t	M24-8.8t	4M16-8.8t	M24-8.8t	3M24-8.8t	M24-8.8t	M24-8.8t	M24=0.01	M24-8.8t	M24-8.8t	M24-8.8t	M20-8 8t	M20-8.8t	M24-8.8t	2M24-8.8t	M24-8 8t	M24-8.8t	M24-8.8t	M24-8.8t	M24-8.8t	M20-8 8t	M24-8-8t	M20-8.8t	M24-8.8t	M24-8.8t	M24-8.8t	M24-8.8t	M24-8-8t	M16-8-8t	M24-8.8t	M24-8.8t	M16-8.8t	M20-8.8t	M20-8.8t	M20-8.8t	M20-8.8t	M20-8.8t	M16-8-8t	M16-8-8t	M24-8.8t	M20-8.8t	M24-6.61	M20-8,8t	M24-8.8t	M24-8.8t	M16-8.8t	ZM16-8.8t	M16-8.8t	M16-8.8t	M24-8-8t	M24-8.8t	1M24-8.8t	M24-8.8t	M20-8.8t	1M20-8.8t	M20-8.8t	1M20-8.8t	M20-8.8t	2M20-8.8t	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ZMZU-8-81
S355 1 S355 1																														5355																													5355 1			
<180×16# S3 <180×16# S3	x180x16# S3	<130x12# 53	(130x12# S3	(100x10 S3	(100x10 S3	(160x15# S3	x160x15# S3	(100x10 53	(100x10 53	<100x10 S3	<100x10 S3	90x9 S3	30x8 53	20x7	<100x10 S3	(100x10 S3	(100×10 S3	(100x10 S3	<100x10 S3	x100x12 S3	x100x12 53	XIOUXIZ 53	1000 1160v15# 53	(120x12 S3	90x9 S3						Ш													70x7 S355				50x6 5355	П					<100×10 S355								
Eerste TSSNTK 180x180x16# S	a TSSNTK 180	de TSSNTI 130	de TSSNTI 130	TK - Main 100	TK - Main 100	Eerste DWSRM 160x160x15# S3	a DWSRM 160	DWSKM 100	DWSRM 100	TK - Diagc 150	TK - Diagc 150	TK - Horiz 90x	TK = CD 1 80x	TK - Diagr 70x	E TSSNTK 100	a TSSNTK 100	TSSNIK 100	E TSSNTK 100	e TSSNTK 100	B TSSNTK 100	E TSSNTK 100	D TCCNTK FOX	TSSNTK 160	E TSSNTK 120	Tweede TSSNTI 90x90x9	de TSSNTI 90x90x9	Tweede TSSNTI 90x90x9	de TSSNTI 90x	de ISSNII90X	Tweede TSSNTI 50x50x5	de TSSNTI 80x	de TSSNTI 80x	de TSSNTI 50x	de TSSNTI 80x	TK - CD 1 80x	TK - CD 1 80x	TK - CD 2 60x	TK - CD 2 60x	BVNSTK - Horiz 60x60x6	TK - Horiz 60x	TK - Bove 120	TK - Bove 80x	rse - CD 190x	rse - CD 3 70x	rse - CD 480x	rse - CD 5 80x	rse - CD 6 60x	Traverse - CD 860x60x6	rse - CD 5 60x	Traverse - Botti 60x60x6	rse - Botti 100	rse - Botti 100	Traverse - Botti 60x60x6	rse - Botti 100	rse - Fron 70x	rse - Fron 70x	rse - Fron 70x	rse - Fron 70x	Traverse - Fron 80x80x8	Traverse - Fron 100x100x10	Traverse - Fron 100x100x10	LZE - LIUII TOO
BRKS	Eerst	Twee	Twee	BVNS	BVNS	Eerst	Eerst	Teret	Forst	BRKS	BRKS	BRKS	DRAG	BRKS	Eerst	Eerst	Faret	Eerst	Eerst	Eerst	Eerst	Force	Forefe	Eerst	Twee	Tweede	Twee	Twee	Iwee	Twee	Twee	Twee	Twee	Twee	BVNS	BVNS	BVNS	BVNS	BVNS	BVNS	BVNS	BVNS	Trave	Trave	Trave	Trave	Trave	Trave	Trave	Trave	Trave	Trave	Trave	Trave	Trave	Trave	Trave	Trave	Trave	Trave	Trave	Have

Date Author Version

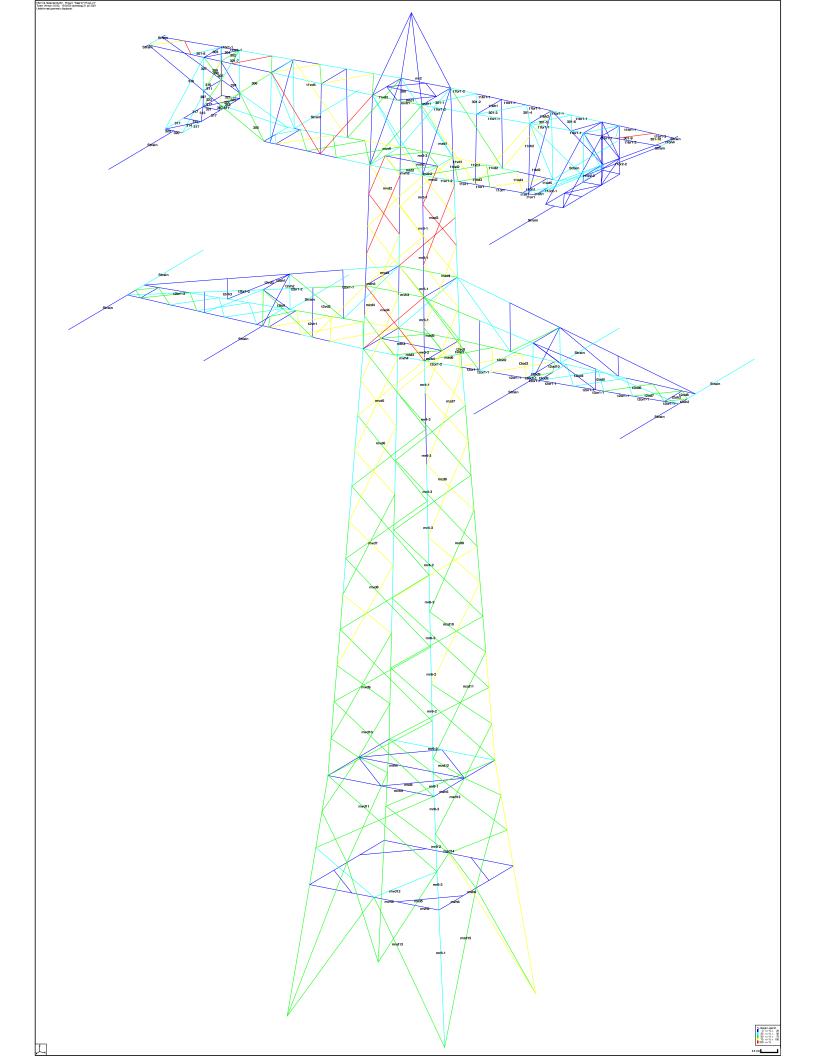
Assessment of groups for strengthened mast (afkeur level)

ZW380 Oost D2.3 RSD-WDT Lijnportaal Mast 19a

ğ						
Stuik (trek)	3 52.3	52.3	52.3	52.3	52.3	6 63
fschui	9	. 09	.09		.09	00
Nettodsn.	98.8	8.86	98.8	98.8	98.8	0 00
Trek Combinatie trek	2.3 SPLS 1a 0,9 0 Ba All (8,6 ULS 3_135	0.6 ULS 1a_0,9_0,9_45	0,7 SPLS 1a 0,9 0,9 0 Ba	14.1 ULS 3_0,9_53,5	0 0 CDIC 12 O Da C+1
Opm.						
D.C. (d	0.34					
ik (druk)	20.6	70.6	20.6	20.6	70.6	200
fschuiving Stu	60.3	60.3	60.3	60.3	60.3	0 00
	26.3			П		
Druk Combinatie druk	-8.8 ULS 3_135	2.4 SPLS 1a 0 Ba Ct2	-0.9 ULS 1a_135	-9.3 ULS 3_53,5	0.7 SPLS 1a 0 Ba All Cts	3 63 0 0 6 3 11 0 66-
	241			П		
꺙	1.00	1.00	1.00	1.00	1.00	00
RLY	1.00	1.00	1.00	1.00	1.00	00
RLX	1.00	1 00	1.00	1.00	1 00	00
Bouten	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8-8t	100 0 01
Staalsoort	2355	S355	5355	5355	2355	2262
Omschrijving Profiel	Traverse - Top 60x60x6	Traverse - Top 60x60x6	Traverse - Top 60x60x6	Traverse - Top 60x60x6	Traverse - Top 60x60x6	Transcret Ton Chuchuc
groep						

Opm.2						
U.C. (trek)	0.04	0.16	0.01	0.01	0.27	000
	52.3					
ĕ	60.3					
Nettodsn.	8.86	8.86	98.8	98.8	8.86	8 80
Trek Combinatie trek	2.3 SPLS 1a 0,9 0 Ba All (8,6 ULS 3_135	0.6 ULS 1a_0,9_0,9_45	0,7 SPLS 1a_0,9_0,9_0 Ba	14.1 ULS 3_0,9_53,5	O & CDIC 1s O Bs C+1
opm,						
U.C. (druk)	0.34	60.0	0.02	0.25	0,02	0.55
tuik (druk)	0.3 70.6	9'0'	20.6	20.6	20.6	20.6
Afschuiving 5	60.3	60.3	60.3	60.3	60.3	603
	26.3					
Druk Combinatie druk	-8.8 ULS 3_135	-2.4 SPLS 1a 0 Ba Ct2	-0.9 ULS 1a_135	-9.3 ULS 3_53,5	-0.7 SPLS 1a 0 Ba All Cts	-33 8 III C 3 0 0 53 5
kheid	241	234	138	190	191	178
RLZ Slan	1.00	1.00	1.00	1.00	1.00	00 F
RLY	1.00	1.00	1.00	1.00	1.00	00 1
RLX	1,00	1,00	1.00	1,00	1,00	-
Bouten	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	1M16_8 8t
Staalsoort	5355	S355	5355	5355	S355	CSER
	9×	9×	9×1	9×,	9×	ye

Date Author Version


Assessment of groups for strengthened mast (verbouw level)

ZW380 Oost D2.3 RSD-WDT Lijnportaal Mast 19a

Stuik (trek)	542.2 293.1	293.1	176.4	
Nettodsn.	307.0	307.0	366.9	
Trek Combinatie trek	263.5 SPLS 4_0,9_90 Ba Ct2	265.8 SPLS 4_90 Ba Ct2	170.0 SPLS 4 0,9 90 Ba Ct2	
•wdo				
U.C. (druk)	96'0	0.93	0.97	
Stuik (druk)	423.4	423.4	176.4	
Afschuiving	315.3 542.2 423.4 0.96	542.2	188.2	
Knik	315.3	315.3	301.9	
Druk Combinatie druk	-302.0 SPLS 4_90 Ba Ct2	-293.5 SPLS 4_0,9_90 Ba Ct2	-170.3 SPLS 4 90 Ba Ct2	
eid	112		92	
RLZ Slankheid	0.55	0.55	1.00	
RLY	0.55	0.55	1.00	
RLX	0.55	0.55	1.00	
Bouten	2M24-8.8t	2M24-8-8t	1M20-8.8t	
Staalsoort	S355	\$355	S355	
Omschrijving Profiel	Eerste TSSNTK 100x100x12	Eerste TSSNTK 100x100x12	Eerste TSSNTK 100x100x12	
Staafgroep	213L	213T	214	

Notes

¹⁾ The bolted connections on groups 2131/T and 214 require strengthening using plates. Refer to Appendix D and E.

Assessment of groups for initial mast (afkeur level)

ZW380 Oost D2.3 RSD-MDK Winkelmast 150° Mast 97

			afschuiving, stuik														nettodsn. stuik	stuik	nettodsn.			nettodsn stuik	1																						
7 0.00 7 0.47 0 0.06	9 0 50	2 0.03 0 0.35	8 1.64	9 0 23	0 0 21	0 0.23	0.00	38.4 0.50	8 0.05	0 0.31	8 0.62	8 0.46	8 0.72	0.50	2 0.37	5 0.33	1 0.43	6 1.13	6 0.92	0 0.78	5 0.67	5 0.47	5 0.61	4 0.14	4 0.00	3 0.65	3 0.00	6 0.00	0 0.27	6 0.72	8 0.59	0 0.41	4 0.57	4 0.46	8 0.71	5 0.49	8 0.56	7 0.29	2 0.96	2 0.91	2 0.74	2 0.60	0 0.57	0.66	0.49
18.7 22.4 18.7 0.0	258	1115	4 4 5	77	98	. 0	1045.4	38	44	0 :	4 4	44	44	0	259	177.	522	77	: 6	28.0	771	177	116	22.5	38 23	32	103.5	305	0 0	06	0 44	32	38	38	4	211	1108	320	211	44	211	2117	0 0	1782	1100
37.7	294.0	75.4	37.7	117.6	75.4	0.0	581.8	37.7	37.7	75.4	37.7	37.7	37.7	0.0	188.4	235.2	552.7	117.6	117.6	37.7	176.4	176.4	176.4	37.7	37.7	37.7	37.7	117 6	0.0	117.6	37.7	37.7	37.7	37.7	37.7	218.2	1163.5	352.8	37.7	218.2	218.2	218.2	218.2	1444.5	1165.0
36.9	5 204	2 361.7 2 277.6 5 332.1	2 104.8	2 68.7	63.6	0 299.7	2 524.6	2 72.6	2 104.8	332.1		2 94.8		0 317.3	2 293.9	1 126.7	162.1	115.4	133,1	1 46.1	1 143.9	1	1 99.7	.2 36.9	72.6	1 60.	149.4	184	2 479.4	1 88 1	2 332.1	2 332.1	2 89.5	2 89 5	2 104.8	2 184.0	0 866.2	2 438	2 89.9	104.8	1 196.7	1 193.2	192.1	0 1024.1	1024.1
SPLS 1a_0,9_0,9_135 Ba All C ULS 3_84, ULS 3_0,9_84	ULS 3_94	kortsluitbelasting 10&1 kortsluitbelasting 10&1 ULS 3_0,9_84,	kortsluitbelasting 10&1 SPLS 6a_90 Ba Ct1 Ba Cl	SPLS 6a_90 Ba Ct1 Ba Ct	SPLS 6a 90 Ba Ct2 Ba Ct	ULS 3_0,9_5	ULS 3_0,9_9 kortsluitbelasting 1181	SPLS 6a_90 Ba Ct1 Ba Cl	kortsluitbelasting 10&12	SPLS 6a_90 Ba Ct2 Ba C	SPLS 6a 90 Ba Ct1 Ba Ct2 SPLS 6a 90 Ba Ct1 Ba Ct2	kortsluitbelasting 1181	SPLS 6a_90 Ba Ct2 Ba Ct:	ت ص	SPLS 6a_90 Ba Ct1 Ba Ct	SPLS 6a_90 Ba Ct2 Ba Ct	ULS 3_0,9	SPLS 6a 90 Ba Ct2 Ba Ct	0 Ba Ct2 Ba	kortsluitbelasting 1081	kortsluitbelasting 10&1 kortsluitbelasting 10&1	SPLS 6a 90 Ba Ct1 Ba Ct2	kortsluitbelasting 1081	SPLS 6a_90 Ba Ct1 Ba Ct2		kortsluitbelasting 10811 kortsluitbelasting 10811	SPLS 6a_90 Ba Ct2 Ba Cl	SPIS 6a 90 Ah All Cts Ba C	SPLS 6a 90 Ba Ct1 Ba Ct	SPLS 6a_90 Ba Ct2 Ba Cl		SPLS 6a_90 Ba Ct1 Ba Ct. SPLS 6a_90 Ah Ct2 Ba Ct.	12 Ba	12 Ba	12	SPLS 6a_90 Ba Ct1 Ba Cl SPLS 6a_90 Ba Ct1 Ba Cl	m r	JLS 6a 90 Ba	a Ct2	SPLS 6a 90 Ah Ct1 Ba Cl SPLS 6a 90 Ba Ct2 Ba Cl	SPLS 6a 90 Ba Ct2 Ba Ct	SPLS 6a_90 Ba Ct2 Ba Ct	SPLS 68 90 Ba CTZ Ba CJ 9 9 9 9	015 3 0,9 5	9 6,0 E SJU
0,0 %PL 10,4 1.0 94.8	102.0	10.4 7.3 26.4	27.6	36.2	11.8	140.4	154.9	18.7 knik, afschuiving, stuik 0.0		23.1	23,3	17.2	27.0	63.1	6.69	41.8	9.69	knik 87.5	83.4	21.8	96.4	67.8	209	3.0	0.0	9.0	82,3		129.2	63.5	37,0	30.5	21.6	17.3	26,7	146-1	488.4	93.3	14.9	34.5	144.8	146.3	129,3	677.3	501.1
0.02 0.09 0.33	0.01	0.14	0.00	0.47	0.19	0.37	0.17	0.07 1.65 knik, aft	0.77	0.15	0.66	0.48	0.68	0.51	0.81	0.27	0.58	1.02	0.86	0.00	0.00	0.01	0.00	0.00	0.72	0.00	0.71	0.00	0.66	0.67	0.00	0.13	0.69	0.46	0.77	0.88	0.72	0.62	0.90	0.99	0.74	0.74	0.77	0.82	0.63
34.6 34.6 0.0	432.0	155.5 155.5 172.8	60.5	129.6	86.4	0.0	1045.4	51.8	90 2	172.8	60.5	60.5	60.5	0.0	259.2	259.2	129.6	129.6	151.2	43.2	259.2	259.2	194.4	34.6	51.8	43.2	172.8	151.2	0.0	151.2	1/2.8	172.8	51.8	51.8	60.5	1209.6	1330.6	453.6	285.1	60.5	285.1	285.1	0.0	1782.0	1475.0
37.7 37.7 37.7 0.0	294.0	75.4 75.4 75.4	37.7	117.6	75.4	0.0	581.8	37.7	37.7	75.4	37.7	37.7	37.7	0.0	188.4	235.2	552.7	117 6	117.6	37.7	176.4	176.4	176.4	37.7	37.7	37.7	117.6	117 6	0.0	117.6	37.7	37.7	37.7	37.7	37.7	218.2	1163.5	352.8	37.7	37.7	218.2	218.2	0.0	1444.5	1163.5
25.5 28.5 30.1 179.5	199.4	155.3 192.2 352.1	40.0	70.6	60.1	490.4	397.4	34.2	40.5	358.2	97.6	108.2	101.5	247.1	231.0	117.1	225.3	85.3	99.7	16.7	80.1 54.5	109.8	26.6	38.7	36.3	25.9	201.6	63.3	367.2	94.5	344.6 104.6	348.5	95.2	92.2	103.5	187.6	800.0	325.0	199.6	109.9	175.5	1/1.4	161.1	948.1	951.2
rtsluitbelasting 11812 S 3 0,9 84,5 rtsluitbelasting 11812 S 3 0.9 90	53_0,9_90 51a_0,9_0,9_84,5	'LS 6a_90 Ba Ct1 Ba Ct2 rtsluitbelasting 10&12 'LS 1a_0 Ba Ct1	rtsluitbelasting 10812	rtslutbelasting 11812	1.5 6a 90 Ba Ct2 Ba Ct1	Š	.S 3_95,5 irtsluitbelasting 10&12	NS 3 0,9 84,5 Ba Ct1	LS 6a 90 Ba Ct1 Ba Ct2	rtsluitbelasting 11812	'LS 6a_90 Ba Ct2 Ba Ct1	rtslutbelasting 11812	LS 6a_90 Ba Ct1 Ba Ct2	'LS 6a_90 Ba Ct2 Ba Ct1	LS 6a_90 Ba Ct2 Ba Ct1	LS 6a_90 Ba Ct1 Ba Ct2	.S 3_90 1.S 6a 90 Ba Ct2 Ba Ct1	LS 6a 90 Ba Ct2 Ba Ct1	LS 6a_90 Ba Ct2 Ba Ct1	rrsluitbelasting 10611	LS 3 0,9 90 Ba Ct2	PLS 3 0,9 90 Ba Ct2 PLS 6a 90 Ba Ct1 Ba Ct2	15 54 50 By C+1 By C+2	LS 1a_0,9_0,9_0 Ba Ct1	PLS 6a_90 Ba Ct1 Ba Ct2 ortsluitbelasting 10&11		PLS 6a 90 Ba Ct2 Ba Ct1	rtslutbelasting 10&11	LS 6a 90 Ba Ct2 Ba Ct1	LS 6a_90 Ba Ct2 Ba Ct1	LS 6a 90 Ba Ct1 Ba Ct2 LS 6a 90 Ba Ct1 Ba Ct2	N.S. 6a_90 Ba Ct1 Ba Ct2 N.S. 6a_90 Ah Ct2 Ba Ct2	LS 6a 90 Ah Ct2 Ba Ct2	LS 6a 90 Ah Ct2 Ba Ct2	.S 6a_90 Ba Ct2	LS 6a_90 Ba Ct2 Ba Ct1 .S 3 90	53 95,5	yı,	22	2 2	2	LS 6a_90 Ba Ct2 Ba Ct1	œ.	53 95,5	2 3 90
153 -0.4 kv 139 -2.4 U 132 -1.3 kv 92 -59.0 U						Ш												Ш			0.0	8 6 99	000		2.4					Ш							Ш							Ш	
1.00 1.00 1.00 0.53 0.53 0.53 1.00 1.00 1.00 3.00 1.00 1.00	3.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00	0.52 0.52 0.52	1.00 1.00 1.00	2.40 1.20 1.20	2.40 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00	1 00 1 00 1 00	2.00 1.00 1.00	0.52 0.52 0.52	1 00 1 00 1 00	0.52 0.52	3.08 1.83 1.83	1.48 1.00 1.00	1.00 1.00 1.00	2 00 1 00 1 00	0.52 0.52 0.52	1 00 1 00 1 00	1.00 1.00 1.00	1.00 1.95 1.00	0.52 0.52 0.52	1.00 1.00	0.51 0.51 0.51	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1 00 1 00 1 00	2.85 1.65 1.65	1 00 1 00 1 00	1.00 2.00 1.00	2.00 1.00 1.00	0.52 0.52 0.52	0.52 0.52	0.52 0.52 0.52	0.53 0.53 0.53 1.20 2.56 1.00	2.38 2.35 1.00	2.00 1.00 1.00	0.53 0.53 0.53	0.52 0.52 0.52	0.53 0.53 0.53	0.52 0.52 0.52	2.40 2.37 1.00	1 20 2 40 1 00	2.35 2.42 1.00
1M16-5,6t 1.00 1.00 1 1M16-5,6t 0.53 0.53 0 1M16-5,6t 1.00 1.00 1	5M20-5.6t 4M16-5.6t	2M16-5.6t 2M16-5.6t 2M16-5.6t	1M16-5 6t 1M16-5 6t	2M20-5.6t	2M20-3.00 2M16-5.6t	10.C-0.2M2	8M22-5.6t 7M20-5.6t	1M16-5.6t 1M16-5.6t	1M16-5 6t	ZM16-5.6t	1M16-5.6t 1M16-5.6t	1M16-5.6t	1M16-5.6t	ZM20-5.6t	5M16-5.6t	4M20 5 6t	10M20-5.6t 2M20-5.6t	2M20-5.6t	2M20-5.6t	1M16-5.6t	3M20-5.6t	3M20-5.6t 2M20-5.6t	3M20-5.6t	1M16-5.6t	1M16-5.6t 1M16-5.6t	1M16-5.6t 1M16-5.6t	2M20-5.6t 1M16-5.6t	2M20-5.6t 5M20-5.6t	8M20-5 6t	2M20-5.6t	2M16-5.6t 1M16-5.6t	2M16-5.6t 1M16-5.6t	1M16-5.6t	1M16-5.6t	1M16-5.6t	3M22-5.6t 8M20-5.6t	8M22-5.6t	6M20-5.6t	3M22-5.6t 1M16-5.6t	1M16-5.6t 3M22-5.6t	3M22-5 6t	3M22-5.6t	3M22-5-bt	10M22-5.6t	8M22-5.01
50x50x4 S235 50x50x4 S235 50x50x4 S235 75x75x8 S235	75x75x8 5235 75x75x8 5235	90x90x9 \$235 90x90x9 \$235 120x80x10 \$235	70×70×7 S235 70×70×7 S235	60x60x6 5235 50x60x6 5235	55x55x5 5235 55x55x5 5235 60x60x6 5235	120x120x11 5235	120x120x11 5235 120x120x11 5235	60x60x6 S235 70x70x7 S235	70×70×7 S235	120x80x10 5235	65x65x7 S235 65x65x7 S235	65x65x7 S235 55x55x5 <2335	65x65x7 S235	UNP100 S235	UNP100 S235	65x65x6 5235	UNP100 S235 65x65x6 S235	65x65x6 5235	65x65x7 5235	55x55x5 S235	75x75x8 5235 75x75x8 5235	75x75x8 S235 70x70x7 S235	65x65x6 5235 50x50xF 5235	50x50x3 5233 50x50x4 5235	50x50x5 5235 60x60x6 5235	60x60x5 S235 50x50x5 S235	90x90x8 S235 50x50x5 S235	65x65x7 S235 75x75x7# 5235	UNP140 S235	65x65x7 5235	120x80x10 5235 65x65x7 5235	120x80x10 5235 60x60x5 5235	65x65x6 5235 65x65x6 5235	65x65x6 5235	70x70x7 \$235	90x90x8 5235 150x150x14 5235	150x150x14 S235	UNP140 5235	90x90x8 S235 65x65x6 S235	70x70x7 S235 90x90x8 S235	90x90x8 S235	90x90x8 5235 90x90x8 5235	160x160x15; S235	160×160×15:5235	16UX16UX1545235
	8.5	1													2							3																							
t1bh1 t1td2 t1bh2 t1br1	tibri-	tlor2-, tlor2-; t1bh4	tlvd1 tlvd3	mvd1	mtd1	mr3	mr3-2 mr3-3	t1vh2	t1vd4	t10h1	tlod2	t1od5	t1od3	mvd2 tlor1	tlor1-	mzh2	mvh2	mzd3	mzd4	t2vd1	t2br1	t2br1-	mvh3	t2td1	t2bh1 t2vd2	t2vd3	mzd5 t2vh3	mth3	t2or1	mtd3	t2oh2 t2od10	t2od9	t2od7	t2od5	t2od1	mr4	mr4-2	mvh4	mzd6	t2od3 mzd7	9pvm	mzd8	mzd9	mr6-2	mro-s

Date Author Version

Assessment of groups for initial mast (afkeur level)

ZW380 Oost D2.3 RSD-MDK Winkelmast 150° Mast 97

																										stuik	stuik																							
69'0	0.73	09.0	0.70	0.55	00.00	0.21	0.04	0.22	0.58	0,62	0.65	0.68	0.62	0.46	0.08	99.0	0,16	0.04	0.64	00.00	0.22	0.76	0.26	0.89	0.02	1.08	1.07	0.01	0.04	0.01	0.53	0.21	0.44	0.66	6.0	10.0	60.0	00.00	0,01	0.01	0.02	0.01	0.43	0.01	0.01	0,38	0.02	0.04	0.02	0.89
140,8	140.8	140.8	140,8	140.8	33.3	140.8	27.7	140.8	140.8	0.0	1320.0	1518.0	140.8	140.8	58.7	176.0	28.7	27.7	176.0	26.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	38.1	38.1	38.1	38.1	38.1	38.1	30.4	28.1	38.1	38.1	38.1	38.1	38.1	38.1	83.2	69.7	166.3	38.1	38.1	52.3	38.1	61.0
145.4	145.4	145.4	145,4	145.4	58.8	145.4	58.8	145.4	145.4	0.0	1444.5	1444.5	145.4	145.4	72.7	145.4	72.7	58.8	145.4	75.4	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	60.3	60.3	60.3	60.3	60,3	50.3	00.0	60.3	60.3	60.3	60,3	60.3	60.3	60.3	94.1	60.3	188.2	60,3	60.3	60,3	60.3	60.3
241,5	241.5	155.3	155,3	155.3	65.7	241.5	54.7	241.5	155.3	1097.7	1024.1	1024.1	155.3	155.3	92.7	217.7	92.7	54.7	217.7	63.6	46.1	46.1	46.1	46,1	46.1	46.1	46.1	46.1	62.7	62.7	62.7	62.7	62.7	62.7	0.00	62.7	62.7	62.7	62,7	62.7	62.7	62.7	181.9	194.4	1739.7	62,7	62.7	98.8	62.7	142.7
SPLS 6a_90 Ba Ct2 Ba Ct1	SPLS 6a_90 Ba Ct2 Ba Ct1	SPLS 6a_90 Ba Ct1 Ba Ct2	SPLS 6a_90 Ba Ct1 Ba Ct2	SPLS 6a_90 Ba Ct1 Ba Ct2	ULS 3_0,9_135	ULS 3 0,9 90	ULS 1a_0,9_45	ULS 3_0,9_95,5	SPLS 6a_90 Ba Ct2 Ba Ct1	ULS 3_0,9_95,5	ULS 3_0,9_95,5	ULS 3_0,9_90	SPLS 6a_90 Ba Ct1 Ba Ct2	SPLS 6a_90 Ba Ct2 Ba Ct1	ULS 3_95,5	SPLS 6a_90 Ba Ct1 Ba Ct2	ULS 3_95,5	ULS 1a_0,9_45	SPLS 6a 90 Ba Ct2 Ba Ct1	ULS 3_95,5	0LS 3_0,9_90	kortsluitbelasting 11&12	ULS 3_0,9_90	kortsluitbelasting 11&12	SPLS 1a_0,9_135 Ba Ct1	kortsluitbelasting 11&12	ULS 3_84,5	SPLS 1a_0,9_0 Ba Ct1	ULS 3_0,9_90	SPLS 1a 0,9 45 Ba Ct1	kortsluitbelasting 11812	ULS 3_0,9_84,5	0LS 3 90	Kortslurtbelasting 11&12	kontainithelisting 10012	Fortshithelisting 10012	kortsluitbelasting 11812	kortsluitbelasting 10812	ULS 1a 0,9 0,9 84,5	ULS 1a 0,9 0,9 84,5	SPLS 1a 0,9 84,5 Ba All Cts	kortsluitbelasting 11&12	kortsluitbelasting 11812	ULS 1a_0,9_135	ULS 1a 0,9 0,9 90	kortsluitbelasting 11&12	LS 1a 0,9 0,9 45 Ba All Cts	SPLS 1a_0,9_45 Ba Ct2	SPLS 1a 0,9 45 Ba Ct1	kortsluitbelasting 10&12
97.4	102.8	84.0	98'3	7.77	0"0								87.2	64.9	4.8	96.3	9,2	1.2	93.4	0.2	6,1	21.2	7.4	25,1	9.0	30.2	29.9	0.3	1.4	0.5	20.0	7.8	16.6	25.2	1361	23.4	3.3	0.2	0,3				Ш	0,5	1.6	14,3	0.9 SP	1.9	8.0	53.9
0,64	0.75	0.64	0,63	0.53	0.00	0.23	0,05	0.29	0.54	0,82	0.77	0.82	0.61	09.0	0.05	0.71	0,11	0.05	0.77	00.00	99.0	0.22	69'0	0,22	0.74	0.01	0.01	0.00	0.50	0.46	0.00	0.02	0.12	0.47	000	0.02	0.00	00.00	0,01	0.02	0.03	00.00	0.01	0.41	0.01	00.00	0.52	0.20	0.53	0.31
190,1	190.1	190.1	190.1	190.1	64.8	190.1	54.0	190.1	190.1	0.0	1782.0	1782.0	190.1	190.1	83.2	237.6	83.2	54.0	237.6	86.4	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	58.8	58.8	58.8	58.8	200	20.00	0.00	0 00	28.8	58.8	58.8	58.8	58.8	58.8	117.6	94.1	235.2	58.8	58.8	70.6	28.8	82.3
145,4	145.4	145.4	145.4	145.4	58.8	145.4	58.8	145.4	145.4	0.0	1444.5	1444.5	145.4	145.4	72.7	145.4	72.7	58.8	145.4	75.4	37.7	37.7	37.7	37.7	37.7	37.7	37.7	37.7	60.3	60.3	60.3	60.3	60.3	60.3	200	60.3	60.3	60.3	60,3	60.3	60.3	60.3	94.1	60.3	188.2	60.3	60.3	60.3	90.3	60.3
152,4	147.8	143.4	149.3	138.7	19.0	171.1	23,1	126.3	127.3	955.6	1007.1	988.3	153.0	130.5	97.3	275.5	97.3	31.7	275.5	40.8	28.6	30.5	32.7	34.9	39.9	42.1	48.2	50.9	48.4	52.9	53.2	57.2	96.8	29.5	26.0	2000	53.3	86.2	42.9	43.2	44.5	86.3	74.4	244.2	1602.3	48.6	46.9	52.4	47.6	63.0
93.5 SPLS 6a 90 Ba Ct2 Ba Ct1	-108.9 SPLS 6a_90 Ba Ct1 Ba Ct2	-92.3 SPLS 6a 90 Ba Ct2 Ba Ct1	-91.7 SPLS 6a_90 Ba Ct2 Ba Ct1	.2 Ba	0,0 SPLS 1a_0 Ba All Cts	-33.7 ULS 3 95,5	-1.2 ULS 1a_45	-37.0 ULS 3_95,5	-68.5 SPLS 6a_90 Ba Ct1 Ba Ct2	-786.1 ULS 3_95,5	-770.9 ULS 3_95,5	-807.6 ULS 3_95,5	-89.1 SPLS 6a_90 Ba Ct2 Ba Ct1	-78.7 SPLS 6a_90 Ba Ct2 Ba Ct1	-3.9 ULS 3_0,9_95,5	-102.6 SPLS 6a_90 Ba Ct1 Ba Ct2	-8 0 ULS 3 0,9 95,5	-1.7 ULS 1a_45	-112.0 SPLS 6a 90 Ba Ct2 Ba Ct1	0.0	-18.9 kortsluitbelasting 118.12	-6.6 ULS 3_0,9_90	-22.5 kortsluitbelasting 11812	-7.7 ULS 3_0,9_84,5	-28.0 kortsluitbelasting 118.12	-0.5 SPLS 1a_0,9_135 Ba Ct1	-0.4 SPLS 1a_0,9_0 Ba All Cts	-33.9 ULS 3_84,5	-24.2 kortsluitbelasting 11&12	24.3 ULS 3 84,5	0'0	-1.3 kortsluitbelasting 11812	7.1 ULS 3.0,9 95,5	-27.7 Kortslutbelasting 11&12	-0.0 CDIC 1: 0.0 0.0 4E D: C+2	22 4 kortellithelasting 10812	-0.1 SPLS 1a 0.9 84,5 Ba Ct2	0 1 ULS 1a 0,9 0,9 84,5	-0.5 ULS 1a 95,5	-1.0 ULS 1a_95,5	-1.3 ULS 1a 95,5	0.0 SPLS 1a 0,9 84,5 Ba All Cts	-0.4 SPLS 1a_0,9_0,9_95,5 Ba All Cts	-24.7 kortsluitbelasting 11812	-0.9 ULS 1a 0,9 0,9 90	0'0	-24.2 kortsluitbelasting 10812	-10.7 ULS 3_95,5	-25.5 kortsluitbelasting 11812	-18.8 kortsluitbelasting 108.12
117	121	124	119	128	295	103	220	133	138	22	44	48	110	135	107	84	107	175	84	160	178	169	160	152	135	129	113	107	122	113	112	105	92	114	153	124	112	62	134	133	130	62	178	71	15	121	125	152	123	166
0.52 0.52	2M22-5.6t 0.52 0.52 0.52	0.52 0.52	1.00 1.00	1.00 1.00	1.00 1.00 1	1.00 1.00	1.00	1.00 2.00	0.54	2,31 2,38	0.33 0.33 (1.20 2.08	05.0	2M22-5.6t 1.00 1.00 1.00	1.00 1.53	0.33 0.33	1.00 1.53	1.00 1.00	0.33 0.33	1,00	1.00 1.00	1.00 1.00	1M16-5.6t 1.00 1.00 1.00	1.00 1.00	1.00	1M16-5 6t 1 00 1 00 1 00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00	0.52 0.52	1M16-8-8t 0.50 0.50 0.50	1.00	1 00 1 00 1	1.00 1.00	1M16-8 8t 1 00 1 00 1 00	1M16-8 8t 1 00 1 00 1 00	1M16-8.8t 1.00 1.00 1.00	1.00 1.00	1M16-8 8t 1 00 1 00 1 00	1.00 1.00	1M16-8.8t 1.00 1.00 1.00	2.00 2.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00	1M16-8.8t 1.00 1.00 1.00
90x90x8 S235	90x90x8 S235		90x90x8 S235						90x90x8 S235	160×160×15+S235	160x160x15+S235	(15			70x70x7 S235	×10		60x60x5 S235	x10				55x55x5 S235			55x55x5 S235	55x55x5 S235			50×50×5	50×20×5	50x50x5		50x50x5 5355			ı	50x50x5	ne 50x50x5 S355	ne 50x50x5 S355	50×50×5	ne 50x50x5 S355	П				Ш			70×70×7 S355
6pvm	mzd11	mvd10	mzd12	mzd13	mth4	mzh5	mtd4	mvh5	mvd11	Onderstuk main member	Onderstuk main member	Onderstuk main member	mzd14	mvd12	mzh6	mzd15	mvh6	mtd5	mvd13	Bovenstuk Boven Diaphram Hrz	Bovenstuk Bovenvlak Diag	Bovenstuk Bovenvlak Diag	Bovenstuk Bovenvlak Diag	Bovenstuk Bovenvlak Diag	Bovenstuk Bovenvlak Diag	Bovenstuk Bovenvlak Diag	Bovenstuk Bovenvlak Diag	Bovenstuk Bovenvlak Diag	Bovenstuk Bovenvlak Diag	Bovenstuk Bovenvlak Diag	Boventraverse upper horizontal (new)	Boventraverse upper horizontal (new	Boventraverse upper CD (new)	Boventraverse lower CD (new)	Descriptions of the new forms	Boyentraverse disc new frame	Boventraverse horiz new frame	Boventraverse under horiz new frame	Boventraverse under diag new frame	Boventraverse under diag new frame	Boventraverse under diag new frame	Boventraverse under horiz new frame	Boventraverse overhang diag new frame 80x80x8	Boventraverse overhang diag new frame 80x80x8	Boventraverse ketting connection beam HEB160	Boventraverse horiz new frame	Boventraverse diag new frame	Boventraverse diag new frame	Boventraverse diag new frame	Boventraverse front diag (new)
6pvm	mzd11	mvd10	mzd12	mzd13	mth4	mzh5	mtd4	mvh5	mvd11	mr8-2	mr8-1	mr8-3	mzd14	mvd12	mzh6	mzd15	mvh6	mtd5	mvd13	280	301-1	301-2	301-3	301-4	301-5	301-6	301-9	301-10	301-7	301-8	302	303	304	305	300	300	311	321	312	313	314	315	316	317	320	322	323	324	325	306

Date Author

Assessment of groups for strengthened mast (afkeur level)

ZW380 Oost D2.3 RSD-MDK Winkelmast 150° Mast 97

Foreign and the state of the st 9916 69 90 Ah MI Charles 69 90 Ah MI Charles 69 90 B Chi 18 90 B C 9 10&1 9 10&1 Ct2 Ba kortsluitbelasting 10 kortsluitbelasting 10 SPLS 6a_90 Ba Ct2 | Care | | Continuation of the cont 7 SPLS 3 0,9 90 Ba Ct2 7 SPLS 3 0,9 90 Ba Ct2 8 SPLS 6a_90 Ba Ct1 Ba 8 SPLS 6a_90 Ba Ct1 Ba 4 SPLS 6a_90 Ba Ct1 Ba 1 SPLS 6a_90 Ba Ct1 Ba 4 SPLS 6a_90 Ba Ct1 Ba 4 SPLS 6a_90 Ba Ct1 Ba 6 SPLS 6a_90 Ba Ct1 Ba 6 SPLS 6a_90 Ba Ct1 Ba | Onest | Ones

Date Author Version

Assessment of groups for strengthened mast (afkeur level)

ZW380 Oost D2.3 RSD-MDK Winkelmast 150° Mast 97

0.67	0,57	0.66	0.49	0.76	0.83	69'0	0.73	0.00	2.5	000	0.00	0.04	0.22	0.58	0.62	0.65	0.68	0.62	0.46	0.08	99.0	0.16	0.04	0.04	0.00	0.25	0.72	0.27	0.02	0.67	99.0	0.01	0.03	0.01	0.53	0.44	0.67	0.36	0.61	0.85	60.0	0.00	0.01	0.02	0.07	0.01	1.0	100	0.38	0.02	0.04	0.02	0.88
								ı	1	ı	ı		L										1	1	ı	ı		ı	L					1	1	ı	П							1	ı	1		П	L		52.3		
П													l																					ı									ı							l	60.3		
192.1	7,701	1024.1	1024.1	227.7	241.5	241.5	241.5	135.3	155.3	133.3	241 5	54.7	241.5	155,3	1097.7	1024.1	1024.1	155,3	155.3	92.7	217.7	92.7	54.7	21/1/	03.0	104	1 40 1	46.1	46.1	75.3	75,3	46.1	62.7	62.7	62.7	7 65	62.7	98.8	62.7	62.7	62.7	62.7	/77	62.7	77.0	101.0	104 4	1739.7	62.7	62.7	8.86	62.7	142.7
129.2 SPLS 6a_90 Ba Ct2 Ba	629,3 ULS 3 0,9 90	677.3 ULS 3 0.9 90	501,1 ULS 3 0,9 90	a 90 Ba Ct2	a_90 Ba Ct1	a_90 Ba Ct2	102.7 SPLS 6a_90 Ba Ct2 Ba	94.1 SPLS 64 90 Bd Ct1 Bd	38.2 SPLS 6a 90 Ba Ct1 Ba	77.7 SPLS 64_90 Bd CLI Bd	20 4 115 3 0 0 00	1.1 1115 12 0.9	30.8 UIS 3 0.9 95.5	81,5 SPLS 6a 90 Ba Ct2 Ba	684.6 ULS 3_0,9_95,5	664.7 ULS 3_0,9_95,5	696.1 ULS 3 0,9 90	87.2 SPLS 6a_90 Ba Ct1 Ba	64.9 SPLS 6a_90 Ba Ct2 Ba	4.8 ULS 3_95,5	96.3 SPLS 6a_90 Ba Ct1 Ba	9.2 ULS 3_95,5	1,2 ULS 1a_0,9_45	93.4 SPLS 68 - UZ 88	6.4 115 3 0 90	Oc. 5.015 September 1999	7.7 III C 2 0 0 00	24 0 korteliithelesting 1181	0,5 SPLS 1a 0.9 135 Ba C	30.8 kortsluitbelasting 11&1	30,0 ULS 3_84,5	0.3 SPLS 1a 0,9 0 Ba All t	1.3 ULS 3_0,9_90	0.5 SPLS 1a 0,9 45 Ba Ct	20,3 Kortslutbelasting 11&1	166 013 3 04,3	25.6 kortslutbelasting 1181	19.0 kortsluitbelasting 10&1	23,2 kortsluitbelasting 10&1	32.3 kortsluitbelasting 11&1	3.3 kortsluitbelasting 118.1	0.2 kortsluitbelasting 10&1	0.3 ULS 1a 0,9 0,9 84,5	0.6 ULS 1a 0,9 0,9 84,5	O.7 SPLS 1d U.9 O4.5 Dd .	O.5 Kortsuitbelesting 110.1	05,0 Korcajurospacing 1101	1.6 III 5 1a D 9 90	14.5 kortslutbelasting 118.1	0.9 SPLS 1a 0,9 0,9 45 E	1,9 SPLS 1a_0,9_45 Ba Ct	0.8 SPLS 1a_0,9_45 Ba Ct	53 2 borteluithalacting 1081
0.81	0,77	0.82	0.63	0,72	0.78	0,64	0.75	0.64	0.03	0000	0.00	0.05	0.29	0,54	0.82	0,77	0.82	0,61	0.60	0.05	0.71	0.11	0.05	0.00	0.00	0.00	0.66	0.00	0.76	0.01	10,0	0.90	0.51	0.46	0.00	0.02	0.48	0.78	0.02	0.47	00.00	0.00	0.01	0.02	0.00	0.00	0.01	0.47	0.00	0.52	0.21	0.54	0.30
285.1	0.0	1782.0	1425.6	190.1	190.1	190.1	190.1	130.1	130.1	130.1	1001	1 0 7 5	190.1	190,1	0.0	1782.0	1782.0	190.1	190.1	83.2	237.6	83.2	54.0	237.5	40.0	40.5	43.2	43.2	43.2	70.6	70,6	43.2	58.8	28.0	20.00	0.00	0 00	70.6	58.8	58.8	58.8	58.8	20.00	28.0	0 0	32.0	117.0	735.7	58.8	58.8	70.6	58.8	0 00
218.2	0.0	1444.5	1163.5	145.4	145.4	145,4	145.4	140.4	40.4	T40 0	145.4	8 8 8 8	145.4	145,4	0.0	1444.5	1444.5	145.4	145.4	72.7	145.4	72.7	80	145.4	4.07	7 7 7 6	5/./	27.7	37.7	60.3	60,3	37.7	60.3	60.3	60.3	60.09	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	00.3	5.00	34.1	188.7	60.3	60.3	60.3	60.3	000
161.1	948,1	948.1	951.2	161.6	157.5	152,4	147.8	143.4	149.5	130.7	1711	23.1	126.3	127,3	955.6	1007.1	988.3	153.0	130.5	97.3	275.5	97.3	31.7	2/2/2	40.0	20.0	50.5	34.9	39.9	56.3	66,1	50.9	48.4	52.9	53.2	27.70	59.2	82.5	36.0	47.3	53,3	86.2	47.9	43.2	0,44	500.3	244.2	1607 3	48.6	46.9	52.4	47.6	0 00
-131.1 SPLS 6a_90 Ba Ct1 Ba	-727.9 ULS 3 95,5	-779.4 ULS 3 95.5	-596.6 ULS 3 90	104.9 SPLS 6a 90 Ba Ct2 Ba	-113 1 SPLS 6a_90 Ba Ct2 Ba	-93.6 SPLS 6a_90 Ba Ct2 Ba	-108.8 SPLS 6a_90 Ba Ct1 Ba	-94.4 SPLS 64 90 Bd Ct2 Bd	-91.6 SPLS 68 90 B8 Ct2 B8	75.7 SPLS 64 90 64 CL2 64	-33 7 IIIC 3 OF F	1.2 1115 1a 45	-37.0 UIS 3 95.5	-68.5 SPLS 6a 90 Ba Ct1 Ba	-786.5 ULS 3 95,5	-771.2 ULS 3 95,5	-808.0 ULS 3 95,5	-89 1 SPLS 6a 90 Ba Ct2 Ba	-78.7 SPLS 6a_90 Ba Ct2 Ba	-3.9 ULS 3_0,9_95,5	-102.7 SPLS 6a_90 Ba Ct1 Ba	-8.0 ULS 3_0,9_95,5	-1.7 ULS 1a 45	-112.0 SPLS 68_90 Ba CtZ Ba	-10 1 Portrainthologica 118.1	-co ilic 2 0 0 00	-31 F Portellithelecting 118.1	8 1 1115 3 0 9 84 5	-28.5 kortsluitbelasting 118.1	-0.4 SPLS 1a 0,9 135 Ba C	-0.4 SPLS 1a_0,9_0,9_0 Ba	-33.9 ULS 3_84,5	-24.7 kortsluitbelasting 118.1	-24.3 ULS 3 84,5	0.0	-7 1 HIS 2 OF DEF	-28.1 kortsluitbelasting 118.1	-47.2 kortsluitbelasting 108.1	0.8 SPLS 1a 0,9 0,9 45 B	-22.2 kortsluitbelasting 10&1	-0.1 SPLS 1a 0,9 84,5 Ba /	0.1 ULS 1a_0,9_0,9_84,5	-0.5 ULS 1a 95,5	10 ULS 1a 95,5	1.3 ULS 18 95,5	0.0 SPLS 1a 0,9 84,5 Ba /	-24 7 Vorteliithelecting 1181	-24.7 KOTCSINILIDERSHING ALCOL	0.0	-24.2 kortsluitbelasting 108.1	-10,8 ULS 3_95,5	-25.5 kortsluitbelasting 11&1	-18.2 kortshifthelasting 1081
110	22			ı		ш		ш	ш	ш							Ш		- 1	107	84	107	175	4 6	120	0/1	160	152	135	129	113	107	122	113	112	107	114	117	153	124	112	62	134	133	130	170	27.	4 L	121	125	152	123	000
0.53	1,00	1.00	1.00	0.52	0.52	0,52	0.52	70.0	00.1	1.00	8.1	00.1	1.00	0.54	1.00	0.33	1.00	0.50	1.00	1.00	0.33	1.00	1.00	0.33	00.1	00.1	1.00	1.00	1,00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	0.50	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	3.6	1.00	200	1.00	1.00	1.00	1.00	00,
П		l				0,52		ı		00.7			l		l		П				١		ı	0.33	Ϊ		ľ	1.00	1,00	1,00	1,00	1.00	1.00	1.00	1.00	T-00	0.50				1.00	Ì	ı	1.00	ı					l	Ï	1,00	1
0.53	2,40	1.20	2.35	0.52	0.52	0.52	0.52	70.0	1.00	1.00	1.00	-	1.00	0.54	2.31	0.33	1.20	1 00	1.00	1.00	0.33	1.00	1.00	0.33	00.7	00.1	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.50	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	20 T	200	1.00	1.00	1.00	1.00	1.00	
3M22-5.6t		10M22-5.6t	8M22-5.6t	2M22 - 5.6t	2M22 5 6t	2M22-5.6t	2M22 5 6t	2M22-5-01	2M22-5.60	107777 E C+	2M22 5 64	1M20.5.6t	2M22 5.6t	2M22-5 6t		10M22-5-6t	10M22-5.6t	2M22 - 5.6t	2M22-5.6t	1M22-5.6t	2M22 - 5.6t	1M22-5.6t	1M20-5.6t	ZMZZ 5.60	1M16 F 6+	1010-01M1	1M10-5 0t	1M16 5 6t	1M16-5 6t	1M16-8.8t	1M16-8-8t	1M16-5.6t	1M16-8-8t	1M16-8-8t	1M16-8-8t	1M16-0-01	1M16-8-8t	1M16-8-8t	1M16-8-8t	1M16-8-8t	1M16-8-8t	1M16 8.8t	1M16-8-8t	1M16-8-8t	TMTD-0-01	1M16-8-8t	1M16.884	2M20-8-8t	1M16-8-8t	1M16-8-8t	1M16-8.8t	1M16-8-8t	11416-0 04
	# S235			5235	5235	5235	5235	5235	5235	5233	5233	5235	5235	5235		# 5235		S235	S235		-1	5235	П	5235	5235	5233	5233	5233	5235	S355	5355	5235	S355	5355	5355	3333	5355	8355	8355	8355	S355	S355	2322	5355	2322	5355	5333	5355	5355	8355	S355	5355	-
8x06x06 8pzm	160×160×15#			8×06×06	_			90x90x9			avoavoa avoavoa	60x60x5			stuk main	Onderstuk main 160x160x15#	tuk mair					70x70x7		mvais 100x100x10	Bovenstuk Bove 55X55X5	Boverskill Bove 33X33X3	Bovenstuk Bove 55x55x5	Bovenstuk Bove 55x35x3	Bovenstuk Bove 55x55x5	Bovenstuk Bove 55x55x6	Bovenstuk Bove 55x55x6	Bovenstuk Bove 55x55x5	Bovenstuk Bove 50x50x5	Bovenstuk Bove 50x50x5	Boventraverse 50x50x5	Boverillavel se i 30x30x3	Boventraverse 50x50x5	Boventraverse · 60x60x6	Boventraverse : 50x50x5	Boventraverse : 50x50x5	Boventraverse 50x50x5	Boventraverse 50x50x5	Boventraverse i 50x50x5	Boventraverse 50x50x5	Traverse DOXOUS	Boventraverse i SOXSOXS	Boventiaverse (80x80x8	Boventraverse BUXBUXB	Boventraverse 50x50x5	Boventraverse (50x50x5	Boventraverse (60x60x6	Boventraverse 50x50x5	1.01.01
	mr6	mr6-2	mr6-3	8pvm	mzd10	6pvm	mzd11	OTRALI	ZIDZUZ	TIZU13	- Water	Mtd4	mvh5	mvd11	Onders	Onders	Onders	mzd14	mvd12	mzh6	mzd15	mvh6	mtd5	WV013	Boyon	Boven	Boyens	Rovens	Bovens	Bovens	Bovens	Bovens	Bovens	Bovens	Bovent	Bovent	Bovent	Bovent	Bovent	Bovent	Bovent	Bovent	Bovent	Bovent	Dovent	Boyent	Rovent	Rovent	Bovent	Bovent	Bovent	Bovent	
6pzm	mr6-2	mr6-1	mr6-3	mvd8	mzd10	6pvm	mzd11	OTDALL	MZ012	mzu13	1	mtd4	mvh5	mvd11	mr8-2	mr8-1	mr8-3	mzd14	mvd12	mzh6	mzd15	mvh6	mtd5	mva13	201-1	100	201-2	301.0	301-5	301-6	301-9	301-10	301-7	301-8	302	200	305	307	308	309	311	321	312	313	215	315	212	320	322	323	324	325	ŀ

Date Author Version

Assessment of groups for strengthened mast (verbouw level)

ZW380 Oost D2.3 RSD-MDK Winkelmast 150° Mast 97

Staafgroep Omschrijving Profiel		t1vd2 80x80x8	mzd2 70x70x7	mzd3 70x70x7	mvd3 70x70x7	mvd4 70x70x7	Bovenstuk Bove 55x55x6	Bovenstuk Bove 55x55x6	Bovenstuk Bové 50x50x5	Bovenstuk Bové 50x50x5	Boventraverse i 50x50x5	Boventraverse i 50x50x5	Boventraverse 150x50x5	Boventraverse 50x50x5	Boventraverse v 60x60x6	Boventraverse (50x50x5	Boventraverse (50x50x5	Boventraverse 50x50x5	Boventraverse 150x50x5	Boventraverse i 50x50x5	Boventraverse i 50x50x5	Boventraverse 150x50x5	Boventraverse 50x50x5	Boventraverse (80x80x8	Boventraverse (80x80x8	Boventraverse HEB160	Boventraverse 50x50x5	Boventraverse (50x50x5	Boventraverse (60x60x6	
Staalsoort	8355	8355	8355	S355	S355	S355	8355	8355	8355	S355	S355	8355	S355	8355	8355	S355	S355	S355	S355	S355	S355	S355	S355	S355	8355	8355	8355	S355	8355	
Bouten	1M16-8.8t	1M16-8-8t	2M20-8-8t	2M20-8-8t	2M20 8 8t	2M20-8-8t	1M16-8-8t	1M16-8-8t	1M16 8 8t	1M16-8-8t	1M16-8-8t	1M16-8.8t	1M16-8.8t	1M16-8-8t	1M16-8-8t	1M16-8-8t	1M16-8-8t	1M16-8-8t	1M16-8-8t	1M16-8-8t	1M16-8-8t	1M16 8 8t	1M16-8.8t	1M20-8-8t	1M16-8.8t	2M20-8-8t	1M16-8.8t	1M16-8.8t	1M16-8.8t	
RLX	1.00	1.00		0.52			1.00	1.00	1.00	1.00	1.00	1.00			1,00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1,00	1.00	
RLY RLZ	1.00 1.00	1.00	1.00 1.00	0.52 0.52	0.51 0.51	0.52 0.52	1.00	1.00	1.00 1.00	1.00 1.00	1.00 1.00	1,00	0.52 0.52	0.50 0.50	1.00 1.00	1,00 1,00	1.00 1.00	1.00 1.00	1.00 1.00		1.00 1.00	1.00 1.00						1.00 1.00	1.00 1.00	
Z Slankheid				2 102		2 109								0 114													0 121			
Druk Combinatie druk	0.0	-64.0 kortsluitbelasting 10&1	-91.9 SPLS 6a_90 Ba Ct2 Ba	-89.6 SPLS 6a_90 Ba Ct2 Ba	-64.5 SPLS 6a_90 Ba Ct1 Ba	-68.5 SPLS 6a 90 Ba Ct1 Ba	-1.1 ULS 3_0,9_90	-0.4 SPLS 1a_0,9_0,9_0 Ba	-24.7 kortsluitbelasting 11&1	-29.5 ULS 3_84,5	0.0	-1.3 kortsluitbelasting 1181	-9.0 ULS 3_0,9_95,5	-28.1 kortsluitbelasting 1181	-47.2 kortsluitbelasting 10&1	-0.8 SPLS 1a_0,9_0,9_45 B	-22.2 kortsluitbelasting 10&1	-0.1 SPLS 1a_0,9_84,5 Ba /	-0.1 ULS 1a_0,9_0,9_84,5	-0.6 ULS 1a 95,5	-1.3 ULS 1a 95,5	-1.5 ULS 1a_95,5	0.0 SPLS 1a_0,9_84,5 Ba /	-0.4 SPLS 1a_0,9_0,9_95,5	-24.7 kortsluitbelasting 11&1	-1.1 ULS 1a 0,9 0,9 90	0.0	-24.2 kortsluitbelasting 10&1	-13.0 ULS 3_95,5	
۹	71.6	72.4	154.5	144.5	145.0	134.3	56.3	66.1	48.4	52.9	53.2	57.2	96.8	59.2	82.5	36.0	47.3	53.3	86.2	42.9	43.2	44.5	86.3	74.4	244.2	1602.3	48.6	46.9	52.4	
schulving Stulk (druk)	120.6	120.6	188.2	188.2	188.2	188.2	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60,3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	94.1	60.3	188.2	60.3	60,3	60.3	
k (druk) U.C. (druk)													58.8 0.15														58.8 0.00			
-MdO																														
Trek Combinatie trek	63.8 kortsluitbelasting 10&1	0.0	91.4 SPLS 6a_90 Ba Ct2 Ba	90.3 SPLS 6a_90 Ba Ct2 Ba	79.9 SPLS 6a_90 Ba Ct2 Ba	110.3 SPLS 6a 90 Ba Ct1 Ba	30.8 kortsluitbelasting 11&1	36.4 ULS 3_84,5	3.0 ULS 3_0,9_90	0.5 SPLS 1a_0,9_45 Ba Ct:	20.3 kortsluitbelasting 11&1	9.7 ULS 3_0,9_84,5	20.0 ULS 3_90	25.6 kortsluitbelasting 11&1	19.0 kortsluitbelasting 10&1	23.2 kortsluitbelasting 10&1	32.3 kortsluitbelasting 11&1	3.3 kortsluitbelasting 11&1	0.2 ULS 1a_95,5	0.4 ULS 1a 0,9 0,9 84,5	0.7 ULS 1a 0,9 0,9 84,5	0.9 ULS 1a_0,9_0,9_84,5	0.3 kortsluitbelasting 11&1	35.6 kortsluitbelasting 11&1	0.6 ULS 1a_0,9_135	2.0 ULS 1a 0.9 0.9 90	14.5 kortsluitbelasting 11&1	0.9 SPLS 1a_0,9_0,9_45 B	1.9 SPLS 1a_0,9_45 Ba Ct:	
Nettodsn.	163.1	163.1	131.6	198.9	131.6	131.6	75.3	75.3	62.7	62.7	62.7	62.7	62.7	62.7	98.8	62.7	62.7	62.7	62.7	62.7	62.7	62.7	62.7	181.9	194.4	1739.7	62.7	62.7	98.8	
Afschuif	120.6	120.6	188.2	188.2	188.2	188.2	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60,3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	94.1	60.3	188.2	60.3	60,3	60.3	
ᇙ																														

Notes

The bolted connections on groups t1vd1 and t1vd2 require strengthening with plates, Refer to Appendix D and E.
 Groups 301-7, 301-8 and 302 t/m 325 are new groups which were added for the upper conductor attachment extension.

APPENDIX C

Redundant members analysis

Knikverkorters initial construction (afkeur)

GT-BD H1 Mast 1

2021-06-18 M H Khan 1.8 Date: Author: Version:

	Z															
	Exceedance Type															
	Highest U.C.	0,35	0,37	0,45	0,45	0,45	0,35	0,35	0,35	08'0	0,57	0,36	0,68	0,35	0,41	000
Moment	Cap. (kNm)	1.24	1.24	1.24	1,46	1,46	1,24	1.24	1,24	0,72	0,72	4.76	1,71	2,27	1,46	+ 2+
	let Section Cap. (kN)	48.4	48.4	48.4	65.7	65.7	48.4	48.4	48.4	31.7	31,7	179.7	82.9	8'96	65.7	0
Bearing	_	47.5	47.5	47.5	50.5	50.5	47.5	47.5	47.5	30.3	30,3	8'69	52.4	61,1	50,5	P 00
Cap.	Bolt (kN)															
Buckling	Cap. (kN)	77.0	44.7	36.5	36.5	36,9	49.5	74.9	52.7	17.1	27.8	30.3	26.9	41.0	21,8	000
	Moment (kNm)															
Normal	Force (kN)	16,5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	1.5	1.5	1.5	1.5	2.5	2.5	
	Slender ness	88	154	180	191	190	141	95	133	237	167	346	218	217	240	00+
	Angle (°)	0	89	0	40	41	0	0	9	0	0	0	0	0	0	•
	Length (m)	1,029	1,80	2,10	2,43	2,41	1,65	1,07	1,56	2,31	1,63	6,81	4,65	3,18	4,73	. 7 7
	Quality	8,8	8.8	8.8	8.8	8,8	8'8	8.8	8.8	8'8	8,8	8'8	8.8	8'8	8,8	c
	Bolt	M20	M20	M20	M20	M20	M20	M20	M20	M16	M16	M20	M20	M20	M20	MAG
	Steel Quality	S235	S235	S235	S235	S235	S235	S235	S235	S235	S235	S235	S235	S235	S235	1000
	Profile	9'097	9'097	9'097	P 165,6	P'297	9'097	9'097	9'097	L50,5	L50,5	L100,8	170,6	L75,7	165,6	2001
	Schematization	Enkele staaf	Enkele staaf	Enkele staaf	Enkele staaf	Enkele staaf	Enkele staaf	Enkele staaf	Enkele staaf	Enkele staaf	Enkele staaf	Enkele staaf	Kniksteun op 0,5L	Enkele staaf	Kruisende staaf halverwege	Tales obses
	Section	Onderstuk	Onderstuk	Onderstuk	Onderstuk	Onderstuk	Onderstuk	Onderstuk	Onderstuk	Doorsnede A-A	Doorsnede A-A	Doorsnede A-A	Doorsnede A-A	Doorsnede B-B	Doorsnede B-B	Trespendents
	Posnr.	231	59	529	56	25	24	23	22	42	43	40	41	49	47	000
	Suckling Cap. Bearing N	Normal Buckling Cap. Bearing Moment Steel Length Angle Slender Force Moment Cap. Bolt Cap. Net Section Cap. Highest E Schematization Profile Quality Bolt Quality (m) (°) ness (KN) (KNm) (KN) (KN) (KN) Cap. (KN) (KNm) U.C.	Normal Buckling Cap. Bearing Moment Section Schematization Profile Quality Bolt Quality (m) (°) ness (kN) (kNm) (kN) (kN) (kN) (ap. (kN) (kNm) U.C. Onderstuk Enkele staaf L60.6 S235 M20 8.8 1.029 0 88 16.5 0.26 77.0 94.1 47.5 48.4 1.24 0.35	Normal Buckling Cap. Bearing Moment Steel Length Angle Stender Force Moment Cap. Bolt Cap. Net Section Cap. Highest E Section Schematization Profile Quality Bolt Quality (m) (°) ness (kN) (kNm) (kN) (kN) (kN) (kN) (kN) (LG, Cap. Highest E Section Cap. Not Section Cap. Not Section Cap. Highest E Section Cap. Not Section Ca	Section Schematization Profile Quality Bolt	Section Schematization Profile Quality Cap. Cap.	Section Schematization Profile Quality Steel Lingth Angle Stee	Section Schematization Profile Quality Bott Augle Steel Cap. Bott Cap. Bott Cap. Cap.	Section Scetton Steel Length Angle Stend Force Moment Cap. Both Cap. Net Section Cap.	Section Schematization Profile Quality Bott Quality Chin Chin	Section Schematization Profile Quality Bott Augle Steel Augle Augle	Section Schematization Profile Quality Mornal Augina Augina	Section Schematization Profile Quality Bott Quality Cm) Cm)	Steel Stee	Section Steel Length Angle Action Sender Force Action Normal Action (Cap.) Bolt (May)	Section Steel Profile Quality Longth Angle Steel Force Force

Knikverkorters initial construction (afkeur)

RSB-RSD H150° Mast 11

2021-06-18 M H Khan 1.8 Date: Author: Version:

													Shear						
										Normal		Buckling	Cap.	searing		Moment			
				Stee			Length	Angle		Force M	Moment	Cab.	Bolt	Cap.	Net Section	Cap. H	Highest	Exceedance	
Posnr.	ir. Section	Schematization	Profile	Quality	Bolt	Quality	Œ	3		(KN)	(KNM)	(KN)	(KN)	(KN)	Cap. (kN)	(KNM)		lype	Notes
23	Onderstuk	Enkele staaf	L60,5	S235	M20	8,8	92'0	0		10.1	0.19	73.1	94.1	39.6	40,3	1,05	0,25		
21	Onderstuk	Enkele staaf	L60,5	S235	M20	8,8	1,46	99		10.1	00.0	48.0	94.1	39.6	40,3	1,05	0,25		
19	Onderstuk	Enkele staaf	L60.5	S235	M20	8.8	1,51	0		10.1	0.38	46.3	94.1	39.6	40.3	1.05	0.36		
18	Onderstuk	Enkele staaf	L60,5	S235	M20	8,8	1,86	42		10.1	00.0	36.3	94.1	39.6	40,3	1,05	0,28		
44	Onderstuk	Enkele staaf	L60,5	S235	M20	8,8	1,67	38		10,1	00.0	41,4	94.1	39.6	40,3	1,05	0,25		
43	Onderstuk	Enkele staaf	L60.5	S235	M20	8.8	1,13	0		10.1	0.28	60.7	94.1	39.6	40.3	1.05	0.27		
34	Doorsnede A-A	Enkele staaf	P'297	S235	M20	8.8	3,59	0		1.7	06'0	20.3	94.1	50.5	65.7	1.46	0.62		
47	Doorsnede B-B	Enkele staaf	L60,5	S235	M20	8,8	2,24	0		1.0	0.56	28.4	94.1	39.6	40,3	1,05	0,53		
48	Doorsnede C-C	Enkele staaf	L60.5	S235	M20	8.8	2.04	0	174	2.8	0.51	32.2	94.1	39.6	40,3	1.05	0.49		
49	Doorsnede D-D	Enkele staaf	L60.5	S235	M20	8.8	0.98	0		2.8	0.25	8.99	94.1	39.6	40.3	1.05	0.23		
-100	Donostule	Enland others	000	1000	CM	0	000			4	2	707	5	77.0	707	100	000		

Knikverkorters initial construction (afkeur)

RSB-RSD Lijnportaal Mast 19a

2021-06-18 M H Khan 1.8 Date: Author: Version:

									_	Vormal	8			aring	_	Moment			
				Steel			Length	Angle	Slender	Force				-	let Section	Cap.	Highest	Exceedance	
Posnr.	Section	Schematization	Profile	Quality	Bolt	Quality	(m)	€	ness	(kN)	(kNm)	(kN)	(kN)	(kN) C	Cap. (kN)	(kNm)	n'c'	Туре	Notes
K22	Onderstuk	Enkele staaf	L50,5	S355	M16	8,8	0,675	0	69	16,9	0.17	82.4	60.3	41.3	43.1	1.08	0.41		
K19	Onderstuk	Enkele staaf	L50.5	S355	M16	8,8	96'0	28	66	16.9	00'0	61.2	60,3	41.3	43.1	1.08	0,41		
K21	Onderstuk	Enkele staaf	L50.5	S355	M16	8,8	1,09	0	112	16.9	0.27	53.4	60,3	41.3	43.1	1.08	0,41		
K18	Onderstuk	Enkele staaf	L50.5	S355	M16	8,8	1,23	41	127	16.9	00'0	46.1	60,3	41.3	43.1	1.08	0,41		
K20	Onderstuk	Enkele staaf	L50,5	S355	M16	8,8	1,51	0	155	16.9	0.38	35.4	60,3	41.3	43.1	1.08	0,48		
K17	Onderstuk	Enkele staaf	L50,5	2322	M16	8,8	1,79	52	183	16.9	00'0	27.8	60,3	41.3	43.1	1,08	0,61		
D29	Horiz verband	Enkele staaf	L70.7	S355	M20	8,8	3,17	0	233	1.7	0.79	37.8	94.1	83.2	131.7	2.99	0.27		
H3	Horiz verband	Kruisende staaf halverwege	L80,8	S355	M20	8,8	4,62	0	191	1.7	0.58	55.7	94.1	95.0	181.9	4.46	0,13		
K1	1e Tussenstuk	Enkele staaf	9'097	S355	M16	8,8	1,84	0	157	17.4	0.46	49.8	60,3	52.3	98.8	1.88	0,35		
K2	1e Tussenstuk	Enkele staaf	9'097	S355	M16	8,8	1,43	0	122	17.4	0.36	69.3	60,3	52.3	98.8	1,88	0,33		
K11	1e Tussenstuk	Enkele staaf	L50,5	S355	M16	8,8	1,13	0	116	17.4	0.28	51.3	60,3	41.3	43.1	1.08	0,42		
D51	Horiz verband	Enkele staaf	L70,7	S355	M20	8,8	1,67	0	123	11.1	0.42	94.0	94,1	83.2	131.7	2,99	0,14		
H71	Horiz verband	Kruisende staaf halverwege	L50,5	S355	M16	8,8	2,52	0	166	11.1	0.32	26,1	60,3	41.3	43.1	1,08	0,43		
K12	2e Tussenstuk	Enkele staaf	L50,5	S355	M16	8,8	66'0	0	102	9.5	0.25	59.5	60,3	41,3	43.1	1,08	0,23		
K14	2e Tussenstuk	Enkele staaf	L50,5	S355	M16	8,8	0,88	0	91	9.2	0.22	9'99	60,3	41.3	43,1	1,08	0,22		
0.75				1100	0	0	010	•				0	000		,	,	000		

Knikverkorters initial construction (afkeur)

2021-06-18 M H Khan 1.8 Date: Author: Version:

MDK-RSD W150° Mast 97

													Shear						
									-	Normal		uckling	Cap.	earing		Moment			
				Steel			Length	Angle	Slender	Force	oment	Cap.	Bolt	Cap. N	Vet Section	å	Highest		
Posnr.	r. Section	Schematization	Profile	Quality	Bolt	Quality	Œ	©	ness	(kN)	kNm)	(kN)	(kN)		Cap. (kN)	Ê	U.C.	Type	Notes
24	Onderstuk	Enkele staaf	L60.5	S235	M20	8,8	92'0	0	65	10.1	0.19	73.1	94.1	39.6	40.3	1,05	0,25		
23	Onderstuk	Enkele staaf	L60.5	S235	M20	8'8	1,46	99		10.1	0.00	48.0			40.3	1,05	0.25		
25	Onderstuk	Enkele staaf	L60.5	S235	M20	8'8	1,51	0		10,1	0,38	46.3			40.3	1,05	0.36		
21	Onderstuk	Enkele staaf	F09.5	S235	M20	8'8	1,86	42		10.1	0.00	36.3			40.3	1,05	0.28		
27	Onderstuk	Enkele staaf	L60.5	S235	M20	8'8	1,67	38		10.1	0.00	41.4			40.3	1.05	0.25		
56	Onderstuk	Enkele staaf	L60.5	S235	M20	8'8	1,13	0		10.1	0.28	60.7			40.3	1,05	0.27		
16	Doorsnede A-A	Enkele staaf	P'297	S235	M20	8,8	3,59	0		1,3	06'0	20.3			65.7	1.46	0,62		
20	Doorsnede B-B	Enkele staaf	F09.5	S235	M20	8'8	2,24	0		1.0	0.56	28.4			40.3	1,05	0,53		
25	Doorsnede C-C	Enkele staaf	F09.5	S235	M20	8,8	2,04	0		2.8	0.51	32.2			40.3	1,05	0.49		
18	Doorsnede D-D	Enkele staaf	L60,5	S235	M20	8'8	66'0	0		2.8	0.25	66.5			40.3	1,05	0.24		
251	Bovenstuk	Enkele staaf	9'097	S235	M20	8,8	66'0	0		2.0	0.25	78.7			48,4	1,24	0,20		
ļ				1000				ŀ									-		

APPENDIX D

Shear blocks and miscellaneous calculations

Joint Strengthening

A number of bolted connections on the four structures require strengthening with plates. The purpose of the plates are to place the existing bolts in double shear, thereby increasing the shear capacity of the joints. The figures which follow show the locations which require plates. New bolts are depicted in blue and existing bolts in green.

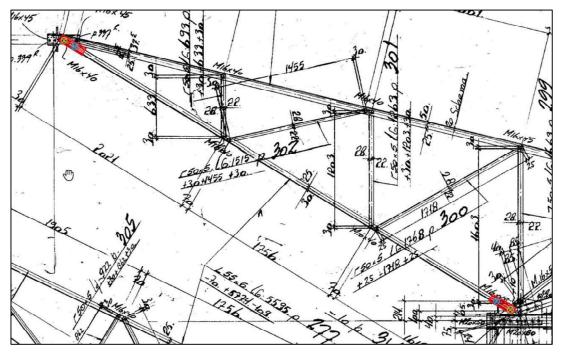


Figure D.1 Mast 1 GT-BD member P277

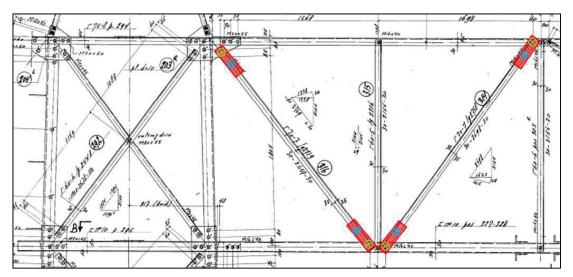


Figure D.2 Mast 11 RSB-RSD (members 314 and 316) and Mast 97 RSD-MDK (members 81 and 82).

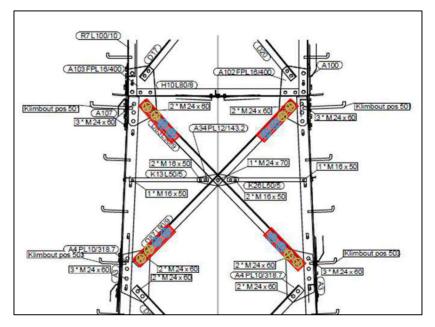


Figure D.3 Mast 19a RSD-WDT members D76, D78 and D87

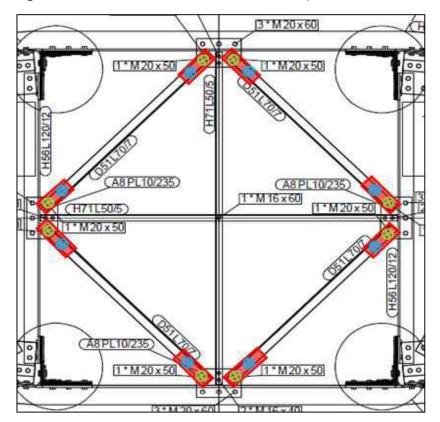


Figure D.4 Mast 19a RSD-WDT members D51

Table D.1, Table D.2 and Table D.3 summarise the net section and bearing capacity calculations for the plates.

Table D.1 Details for the members which require joint strengthening

Mast nr	Pos nr (from asset data)	Group nr (from PLS Tower)	Member size	Bolt info	Force (kN)
1	P277	110-1, 110-2, 110-3	L70x7	1xM16	83.15
11	316	T1VD1	L80x8	1xM16	62.35
11	314	T1VD2	L80x8	1xM16	62.64
19a	D51	214	L100x12	1xM20	170.32
19a	D76, D78, D87	213L/ T	L100x12	2xM24	302.00
97	81	T1VD1	L80x8	1xM16	63.91
97	82	T1VD2	L80x8	1xM16	64.13

Table D.2 Net section capacity check for the plates

Pos Nr	Force (kN)	Plate width (mm)	Plate thickness (mm)	Plate area (mm2)	Member width (mm)	Member thick (mm)	Member area (mm2)	Plate force (kN)	Bolt hole diam (mm)	Net area (mm2)	Net section cap (kN)	Check (Net section cap > plate force)
P277	83.15	70	10	700	70	7	735	40.56	18	520	134.784	ОК
316	62.35	80	10	800	80	8	960	28.34	18	620	160.704	ок
314	62.64	80	10	800	80	8	960	28.47	18	620	160.704	ок
D51	170.32	100	10	1000	100	12	1800	60.83	22	780	202.176	ОК
D76, D78, D87	302.00	100	10	1000	100	12	1800	107.86	26	740	191.808	ОК
81	63.91	80	10	800	80	8	960	29.05	18	620	160.704	ОК
82	64.13	80	10	800	80	8	960	29.15	18	620	160.704	ОК

 Table D.3
 Bearing capacity check for the plates

Pos Nr	Plate force (kN)	Bolt end distance (mm)	Short edge distance (mm)	Bolt hole diam (mm)	k1	Bolt diam (mm)	Alpha	Plate thickness (mm)	Bearing capacity (kN)	Check (bearing cap > plate force)
P277	40.56	30	35	18	2.50	16	0.56	10	64.00	ок
316	28.34	30	40	18	2.50	16	0.56	10	64.00	ок
314	28.47	30	40	18	2.50	16	0.56	10	64.00	ок
D51	60.83	40	50	22	2.50	20	0.61	10	87.27	ок
D76, D78, D87	107.86	45	50	26	2.50	24	0.58	10	199.38	ОК
81	29.05	30	35	18	2.50	16	0.56	10	64.00	ок
82	29.15	30	35	18	2.50	16	0.56	10	64.00	ок

Project: GT-BD150 Mast: 1 - Afkeur

<u>s</u>	<u>hear blocks</u>	NEN-EN 1993-1-1 en NEN-EN 1994-1-1	Datum:	2021-06-18
			Auteur:	TBR
			Versie:	1.4

Load			Results	·	
Compression	F _{Ed,c}	1019 kN	Compression	U.C. 0.82	2 < 1,00 OK
Tension	$F_{Ed,t}$	800 kN	Tension	U.C. 0.77	7 < 1,00 OK
Main leg					
Profile		L200.24	Capacity shear blocks	_	
Steel material		S235	$A_{f1} =$	6000) mm²
Cross section		9059 mm²	$A_{f2} =$	13392	2 mm²
Axial capacity	N_{pl}	2129 kN	Slope	1	: 5
Width	b	200 mm	$C_A = \sqrt{(A_{f2}/A_{f1})} =$	1.49)
Thickness	t	24 mm	$f_{jd} = C_A \times f_{cd} =$	19.9	N/mm²
ength in concrete		1190 mm	$F_{Rd,c} = n_c \times A_{f1} \times f_{jd} =$	837	7 kN
			$F_{Rd,t} = n_t \times A_{f1} \times f_{jd} =$	837	7 kN
Shear blocks main le	e g				
Vidth	b	30 mm			
hickness	h	30 mm	Capacity foot plate	4 7	_
ength	L	200 mm	$k_d =$	1.73	
Velds	a	4 mm	$f_{jd} = C_A \times f_{cd} =$		l N/mm²
.t.c. separation	S	150 mm	$c = t\sqrt{(f_{yd} / 3f_{jd})} =$		9 mm
lumber for compr.	n _c	7 -	$m^* = min(c,m) =$) mm
lumber for tension	n_t	7 -	Type foot plate	Diagonally	cut
			Effective for	Compr. and	
oot plate			$A_{p,c} =$		1 mm²
hickness	t	30 mm	$F_{Rd,c} = A_{p,druk} \times f_{jd} =$		5 kN
Ext. length	m	10 mm	$A_{p,t} =$	8472	2 mm²
Velds	a	4 mm	$F_{Rd,t} = A_{p,t} \times f_{jd} =$	196	5 kN
Pile		B	Capacities	401	
lame		Buispaal	F _{rd,c,plate} =		5 kN
Diameter		400 mm	$F_{rd,blocks,c} =$		7 kN
hickness		10 mm	$F_{rd,c} = F_{rd,blck} + F_{rd,footplate}$		
Cross section		12252 mm ²	U.C. compression		2 < 1,00 OK
Steel material		S235	Welds foot plate (see no		5 kN
Capacity		2879 kN	$F_{rd,t} = min. (welds / foo$	' '	5 kN
Concrete strength		C25/30	$F_{rd,blocks,t} =$		7 kN
			$F_{rd,t} = F_{rd,blck} + F_{rd,footplate}$		
Shear blocks pile			U.C. tension		7 < 1,00 OK
Vidth	b	30 mm	U.C. welds	0.66	5 < 1,00 OK
hickness	h	30 mm			
ength	L	300 mm	Capacity shear blocks) mm²
Velds	a	4 mm	$A_{f1} =$) mm ²
.t.c. separation Iumber for compr.	S	375 mm 8 -	$A_{f2} = C_{f2} = C_{f2} + C_{f2} + C_{f3} + C_{f4} + C$	1.73	
lumber for compr. Iumber for tension	n _c	8 - 8 -	$C_A = \sqrt{(A_{f2}/A_{f1})} = f_{id} = k_d \times f_{cd} =$		5 - 1 N/mm²
iumber für tensiöll	n_t	0 -	$F_{Rd,c} = R_d \times F_{cd} = F_{Rd,c} = R_c \times A_{f1} \times F_{id} = F_{rd}$	23.1 166 3	
Design value concre	te strenath		U.C. compression		1 < 1,00 OK
Material factor	γ _c	1.5	$F_{Rd,t} = n_t \times A_{f1} \times f_{jd} =$	1663	,
Add. mat. factor	γm	1.25 -	U.C. tension		3 < 1,00 OK
rd =	/m	13.3 N/mm ²	U.C. welds		1 < 1,00 OK
· -		14,			,
Steel tower stub			"Splitting" of pile		
ield strength	$f_{yd} =$	235 N/mm ²	Spread of forces		5 °
Tensile strength	$f_{ud} =$	360 N/mm ²	Length force flow) mm
			Splitting force) kN/m
			Yield strength wall	* **	N/mm²
			Capacity tubular pile) kN/m
			U.C.	0.09	9 < 1,00 OK

GT-BD150 Project: Mast: 1 - Afkeur

Welds of shear blocks of main leg Out-of-plane loading

Plate		Welds		F _{t.Ed}
t =	30 mm	a =	4 mm	M _{Ed}
Grade	S235	l =	200 mm	F _{v.//.Ed}
$f_{yd} =$	235 N/mm ²	$\beta_w =$	0.8 -	Variab
$f_u =$	360 N/mm²	$\gamma_{M2} =$	1.25 -	F _{v,Ed}

Member forces

Factor	1.2	
$F_{t,Ed} =$	0 k	κN
$F_{v,Ed} = F_{rd,c} / n =$	143 k	κN
$F_{v//,Ed} =$	0 k	κN
$M_{Ed} = 1/2 b / h \times F_{v,Ed} =$	2.15 k	ίNm

Check

$\sigma_{vw,Ed} =$	239 N/mm ²	≤	1
σ_1 =	120 N/mm ²	≤	(

Stress components	
$\sigma_1 = \tau_1 = F_{t,Ed} \sqrt{2} / 4al =$	⁰ N/mm²
$\sigma_1 = \tau_1 = F_{v,Ed} \sqrt{2} / 4al =$	63 N/mm²
	63 N/mm²
$b^* = b + 2/3a\sqrt{2}$	33.8 mm
$\sigma_1 = \tau_1 = 0.706 M_{Ed} / al b^* =$	56 N/mm²
$\tau_{//} = F_{v//,Ed} / 2al =$	0 N/mm²
$\sigma_{\text{vw,Ed}} = \sqrt{(\sigma_1^2 + 3\tau_1^2 + 3\tau_{//}^2)} =$	239 N/mm²

$f_u/\beta_w\gamma_{M2} =$ 360 N/mm² $0.9f_u/\gamma_{M2} =$ 259 N/mm²

U.C. = 0.66 OK U.C. = 0.46 OK

Welds of shear blocks of pile Out-of-plane loading

M		C4		
$f_u =$	360 N/mm ²	γ _{M2} =	1.25	F _{v,Ed}
$f_{yd} =$	235 _{N/mm²}	$\beta_w =$	0.8 -	
Grade	S235	l =	300 mm	<u> </u>
t =	30 mm	a =	4 mm	F _{t,Ed}
Plate		Welds		

Member forces

Factor	1.2
$F_{t,Ed} = 1/2 b / h x F_{v,Ed} =$	125 kN
$F_{v,Ed} =$	249 kN
$F_{v//,Ed} =$	0 kN
$M_{Ed} =$	0.00 kNm

$\sigma_1 = \tau_1 = F_{t,Ed} \sqrt{2} / 2aI =$	37 N/mm²		
$\sigma_1 = \tau_1 = F_{v,Ed} \sqrt{2} / 2aI =$	73 N/mm ²		
	110 N/mm ²		

$$\begin{split} \tau_{//} &= F_{v/I,Ed} / \, 2aI = & 0 \; N/mm^2 \\ \sigma_{wv,Ed} &= \sqrt{(\sigma_1^{\; 2} + 3\tau_1^{\; 2} + 3\tau_{//}^{\; 2})} = & 220 \; N/mm^2 \end{split}$$

Check

$\sigma_{\text{vw,Ed}} = \sigma_1 = 0$	220 N/mm² 110 N/mm²	$f_u / \beta_w \gamma_{M2} =$ $0.9 f_u / \gamma_{M2} =$	360 N/mm² 259 N/mm²	U.C. = U.C. =	0.61 OK 0.43 OK

Welds of foot plate

$f_u / \beta_w \gamma_{M2} =$		360 N/mm ²
Weld size	a =	4 mm
Length	I = 2b + 2b - t =	752 mm
Capacity	$F_{Rd} = a \times I \times f_{w,d} / \sqrt{3} =$	625 kN

Project: RSB-RSD150 Mast: 11 - Afkeur

Shear blocks	NEN-EN 1993-1-1 en NEN-EN 1994-1-1	Datum:	2021-06-18
		Auteur:	TBR
		Versie:	1.4

Load			Results	
Compression	$F_{Ed,c}$	858 kN	Compression U.C.	0.89 < 1,00 OK
Tension	F _{Ed.t}	745 kN	Tension U.C.	0.86 < 1,00 OK
	,-			
Main leg				
Profile		L150.14	Capacity shear blocks mair	n leg
Steel material		S235	$A_{f1} =$	5700 mm ²
Cross section		4030 mm ²	A _{f2} =	7000 mm ²
Axial capacity	N _{pl}	947 kN	Slope	1: 5
Width	b	150 mm	$C_A = \sqrt{(A_{f2}/A_{f1})} =$	1.11
Thickness	t	14 mm	$f_{id} = C_A \times f_{cd} =$	14.8 N/mm ²
Length in concrete	·	2440 mm	3- ··	505 kN
Length in concrete		2440 11111	$F_{Rd,c} = n_c \times A_{f1} \times f_{jd} =$ $F_{Rd,t} = n_t \times A_{f1} \times f_{id} =$	505 kN
Shear blocks main le	ea		r Rd,t — Tit X 741 X 1jd —	303 KIV
Width	b b	50 mm		
Thickness	h	30 mm	Capacity foot plate	
Length	Ľ	190 mm	k _d =	1.73 -
Welds	a	4 mm	$f_{id} = C_A \times f_{cd} =$	23.1 N/mm ²
c.t.c. separation	S	75 mm	$c = t\sqrt{(f_{vd} / 3f_{id})} =$	58 mm
•				
Number for compr.	n _c	6 -	m* = min(c,m) =	30 mm
Number for tension	n _t	6 -	Type foot plate	Diagonally cut
			Effective for	Compr. and tension
Foot plate			$A_{p,c} =$	19782 mm²
Thickness	t	25 mm	$F_{Rd,c} = A_{p,druk} \times f_{jd} =$	457 kN
Ext. length	m	30 mm	$A_{p,t} =$	15752 mm ²
Welds	a	5 mm	$F_{Rd,t} = A_{p,t} \times f_{jd} =$	364 kN
Pile			Capacities	
Name		Buispaal	F _{rd,c,plate} =	457 kN
Diameter		470 mm	F _{rd,blocks,c} =	505 kN
Thickness		10 mm		962 kN
			$F_{rd,c} = F_{rd,blck} + F_{rd,footplate} =$	
Cross section		14451 mm ²	U.C. compression	0.89 < 1,00 OK
Steel material		S235	Welds foot plate (see next pa	
Capacity		3396 kN	$F_{rd,t} = min.$ (welds / foot plate	
Concrete strength		C25/30	F _{rd,blocks,t} =	505 kN
			$F_{rd,t} = F_{rd,blck} + F_{rd,footplate} =$	869 kN
Shear blocks pile			U.C. tension	0.86 < 1,00 OK
Width	b	25 mm	U.C. welds	0.52 < 1,00 OK
Thickness	h	25 mm		
Length	L	1414 mm	Capacity shear blocks pile	2
Welds	a	4 mm	$A_{f1} =$	35343 mm ²
c.t.c. separation	S	300 mm	$A_{f2} =$	106029 mm²
Number for compr.	n_c	3 -	$C_A = \sqrt{(A_{f2}/A_{f1})} =$	1.73 -
Number for tension	n_t	3 -	$f_{jd} = k_d \times f_{cd} =$	23.1 N/mm ²
			$F_{Rd,c} = n_c \times A_{f1} \times f_{jd} =$	2449 kN
Design value concre	ete strength		U.C. compression	0.35 < 1,00 OK
Material factor	γ_{c}	1.5	$F_{Rd,t} = n_t \times A_{f1} \times f_{jd} =$	2449 kN
Add. mat. factor	γ_{m}	1.25 -	U.C. tension	0.30 < 1,00 OK
$f_{cd} =$		13.3 N/mm ²	U.C. welds	0.51 < 1,00 OK
Steel tower stub			"Splitting" of pile	
Yield strength	$f_{yd} =$	235 N/mm ²	Spread of forces	45 °
Tensile strength	f _{ud} =	360 N/mm ²	Length force flow	2215 mm
. cc.ic ou crigar	·ua	333 14/111111	Splitting force	168 kN/m
			Yield strength wall $f_{vd} =$, _
			Capacity tubular pile	4700 kN/m
			U.C.	0.04 < 1,00 OK
			U.C.	U.U4 < 1,UU UK

0.52 OK

0.36 OK

RSB-RSD150 Project: Mast: 11 - Afkeur

Welds of shear blocks of main leg Out-of-plane loading

Plate		Welds		F _{t.Ed}	
t =	50 mm	a =	4 mm	↑ M _{Ed}	
Grade	S235	l =	150 mm	F _{v.//.Ed}	
$f_{yd} =$	235 N/mm ²	$\beta_w =$	0.8 -	, varieties	
$f_u =$	360 N/mm²	$\gamma_{M2} =$	1.25 -	, –	$F_{v,Ed}$

Member forces

Melliber forces		
Factor	1.2	
$F_{t,Ed} =$	0	kN
$F_{v,Ed} = F_{rd,c} / n =$	101	kN
$F_{v//,Ed} =$	0	kN
$M_{Ed} = 1/2 b / h x F_{v,Ed} =$	1.52	kNm

Check

CHECK		
$\sigma_{\text{vw,Ed}}$ =	185 N/mm²	≤
σ_1 =	93 N/mm²	≤

stress components	
$\sigma_1 = \tau_1 = F_{t,Ed} \sqrt{2} / 4al =$	⁰ N/mm²
$\sigma_1 = \tau_1 = F_{v,Ed} \sqrt{2} / 4al =$	60 N/mm²
	60 N/mm²
$b^* = b + 2/3aV2$	53.8 mm
$\sigma_1 = \tau_1 = 0.706 M_{Ed} / al b^* =$	33 N/mm²
$\tau_{//} = F_{v//,Ed} / 2al =$	0 N/mm²
$\sigma_{vv,Ed} = \sqrt{(\sigma_1^2 + 3\tau_1^2 + 3\tau_{//}^2)} =$	185 N/mm ²

U.C. = $f_u/\beta_w\gamma_{M2} =$ 360 N/mm² $0.9f_u/\gamma_{M2} =$ 259 N/mm² U.C. =

Welds of shear blocks of pile
Out-of-plane loading

Plate		Welds		
t =	25 mm	a =	4 mm	F _{t.Ed}
Grade	S235	l =	1414 mm	. ↓
$f_{yd} =$	235 N/mm ²	$\beta_w =$	0.8 -	
$f_u =$	360 N/mm ²	γ _{M2} =	1.25 -	F _{v,Ed}
Member forces		Stress com	ponents	
Factor	1.2	$\sigma_1 = \tau_1 = F_{t,Ed} $	¹ 2 / 2al =	31 N/mm ²
$F_{t,Ed} = 1/2 b / h x F_{v,Ed} =$	490 kN	$\sigma_1 = \tau_1 = F_{v,Ed}$	2 / 2al =	61 N/mm ²
$F_{v,Ed} =$	979 kN			92 N/mm²
$F_{v//,Ed} =$	0 kN			·
M _{Ed} =	0.00 kNm			
		$\tau_{//} = F_{v//,Ed} / 2aI$	=	0 N/mm²
		= - 1/c 2	1 2 - 2 1 2 - 2 1 -	184 N/mm m 2

Check 184 N/mm² $\sigma_{vw,Ed} =$ $\sigma_1 =$ 92 N/mm² $\sigma_{\text{vw,Ed}} = \sqrt{(\sigma_1^2 + 3\tau_1^2 + 3\tau_{//}^2)} =$ 184 N/mm² 360 N/mm² U.C. = 0.51 OK $f_u/\beta_w\gamma_{M2} =$ $0.9f_u / \gamma_{M2} =$ 259 N/mm² U.C. = 0.35 OK

Welds of foot plate

$f_u / \beta_w \gamma_{M2} =$	•	360 N/mm ²
Weld size	a =	5 mm
Length	I = 2b + 2b - t =	572 mm
Capacity	$F_{Rd} = a \times I \times f_{w,d} / \sqrt{3} =$	594 kN

Project: RSB-RSD150 Mast: 19a - Afkeur

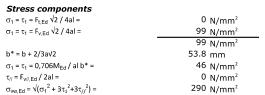
Shear blocks	NEN-EN 1993-1-1 en NEN-EN 1994-1-1	Datum:	2021-06-18
		Auteur:	TBR
		Versie:	1.4

Load	_		Results	
Compression	F _{Ed,c}	919 kN	Compression U.C.	0.84 < 1,00 OK
Tension	F _{Ed,t}	766 kN	Tension U.C.	0.81 < 1,00 OK
Main leg				
Profile		L180.16	Capacity shear blocks main le	ea
Steel material		S355	A _{f1} =	4000 mm ²
Cross section		5540 mm ²	$A_{f2} =$	25000 mm²
Axial capacity	N _{pl}	1967 kN	Slope	1: 5
Width	b	180 mm	$C_A = \sqrt{(A_{f2}/A_{f1})} =$	2.50
Thickness	t	16 mm	$f_{id} = C_A \times f_{cd} =$	37.3 N/mm ²
Length in concrete	·	3500 mm	$F_{Rd,c} = n_c \times A_{fi} \times f_{id} =$	448 kN
Length in concrete		3300 11111	$F_{Rd,t} = n_t \times A_{f1} \times f_{id} =$	448 kN
Shear blocks main l	'eg		10,0	
Width	b	50 mm		
Thickness	h	25 mm	Capacity foot plate	
Length	L	160 mm	k _d =	1.73 -
Welds	a	4 mm	$f_{jd} = C_A \times f_{cd} =$	25.9 N/mm ²
c.t.c. separation	s	950 mm	$c = t\sqrt{(f_{yd} / 3f_{jd})} =$	53 mm
Number for compr.	n_c	3 -	$m^* = min(c,m) =$	30 mm
Number for tension	n _t	3 -	Type foot plate	Diagonally cut
	•		Effective for	Compr. and tension
Foot plate			A _{p,c} =	24892 mm ²
Thickness	t	30 mm	$F_{Rd,c} = A_{p,druk} \times f_{jd} =$	644 kN
Ext. length	m	30 mm	$A_{p.t} = A_{p.t}$	19352 mm ²
Welds	a	5 mm	$F_{Rd,t} = A_{p,t} \times f_{id} =$	501 kN
	-		· Kuje · · · · · · · · · · · · · · · · · · ·	
Pile			Capacities	
Name		Buispaal	$F_{rd,c,plate} =$	644 kN
Diameter		508 mm	F _{rd,blocks,c} =	448 kN
Thickness		10 mm	$F_{rd,c} = F_{rd,blck} + F_{rd,footplate} =$	1092 kN
Cross section		15645 mm ²	U.C. compression	0.84 < 1,00 OK
Steel material		S235	Welds foot plate (see next page)) 865 kN
Capacity		3677 kN	$F_{rd,t} = min. (welds / foot plate) =$	= 501 kN
Concrete strength		C28/35	F _{rd,blocks,t} =	448 kN
			$F_{rd,t} = F_{rd,blck} + F_{rd,footplate} =$	949 kN
Shear blocks pile			U.C. tension	0.81 < 1,00 OK
Width	b	30 mm	U.C. welds	0.67 < 1,00 OK
Thickness	h	30 mm		
Length	L	1533 mm	Capacity shear blocks pile	2
Welds	a	5 mm	$A_{f1} =$	45993 mm ²
c.t.c. separation	S	200 mm	$A_{f2} =$	107317 mm²
Number for compr.	n_c	2 -	$C_A = \sqrt{(A_{f2}/A_{f1})} =$	1.53 -
Number for tension	n_t	2 -	$f_{jd} = k_d \times f_{cd} =$	22.8 N/mm ²
Danian and			$F_{Rd,c} = n_c \times A_{f1} \times f_{jd} =$	2098 kN
Design value concre		1 -	U.C. compression	0.44 < 1,00 OK
Material factor	γс	1.5	$F_{Rd,t} = n_t \times A_{f1} \times f_{jd} =$	2098 kN
Add. mat. factor	γm	1.25 -	U.C. tension	0.37 < 1,00 OK
f _{cd} =		14.9 N/mm ²	U.C. welds	0.48 < 1,00 OK
Steel tower stub			"Splitting" of pile	
Yield strength	f _{vd} =	355 N/mm ²	Spread of forces	45 °
Tensile strength	$f_{ud} =$	490 N/mm ²	Length force flow	3256 mm
	·uu		Splitting force	118 kN/m
			Yield strength wall $f_{vd} =$	235 N/mm ²
			Capacity tubular pile	4700 kN/m

Project: RSB-RSD150 Mast: 19a - Afkeur

Welds of shear blocks of main leg Out-of-plane loading

Plate		Welds		F _{t.Ed}	
t =	50 mm	a =	4 mm	↑ M _{Ed}	
Grade	S355	l =	160 mm	F _{v.//.Ed}	
$f_{yd} =$	355 N/mm ²	$\beta_w =$	0.9 -		
$f_u =$	490 N/mm ²	$\gamma_{M2} =$	1.25 -		v,Ed


Member forces

Factor	1.2
F _{t,Ed} =	0 kN
$F_{v,Ed} = F_{rd,c} / n =$	179 kN
$F_{v//,Ed} =$	0 kN
$M_{Ed} = 1/2 \text{ b } / \text{ h x } F_{v,Ed} =$	2.24 kNm

2.24 kNm

Check

$\sigma_{\text{vw,Ed}}$ =	290 N/mm²	≤
σ ₁ =	145 N/mm ²	≤

 $f_u/\beta_w\gamma_{M2} =$ 436 N/mm² $0.9f_u/\gamma_{M2} =$ 353 N/mm²

U.C. = 0.67 OK

0.41 OK U.C. =

Welds of shear blocks of pile Out-of-plane loading

Plate			Welds			
t =	30 mm		a =	5 mm	$F_{t,Ed}$	1
Grade	S235		l =	1533 mm	•	,
$f_{yd} =$	235 N/mm ²		$\beta_w =$	0.8 -		
$f_u =$	360 N/mm ²		γ_{M2} =	1.25 -		F _{v,Ed}
Member forces			Stress compo			
Factor	1.2		$\sigma_1 = \tau_1 = F_{t,Ed} \sqrt{2} /$	2al =	29 N/ı	mm²
$F_{t,Ed} = 1/2 b / h \times F_{v,Ed} =$	629 kN		$\sigma_1 = \tau_1 = F_{v,Ed} \sqrt{2}$	′ 2al =	58 N/ı	mm²
$F_{v,Ed} =$	1259 kN				87 N/ı	mm ²
$F_{v//,Ed} =$	0 kN					
M _{Ed} =	0.00 kNm					
			$\tau_{//} = F_{v//,Ed} / 2aI =$		0 N/I	mm²
			$\sigma_{vw,Ed} = \sqrt{(\sigma_1^2 + 31)}$	$\tau_1^2 + 3\tau_{//}^2$) =	174 N/ı	mm²
Check				- "	,	
$\sigma_{vw,Ed} =$	174 N/mm ²	≤	$f_u / \beta_w \gamma_{M2} =$	360 N/mm ²	U.C. =	0.48 OK
$\sigma_1 =$	87 N/mm²	≤	$0.9f_u/\gamma_{M2} =$	259 N/mm²	U.C. =	0.34 OK

Welds of foot plate

$f_u / \beta_w \gamma_{M2} =$		436	N/mm ²
Weld size	a =	5	mm
Length	I = 2b + 2b - t =	688	mm
Capacity	$F_{Rd} = a \times I \times f_{w,d} / \sqrt{3} =$	865	kN

Project: RSD-MDK150 Mast: 97 - Afkeur

Shear blocks	NEN-EN 1993-1-1 en NEN-EN 1994-1-1	Datum:	2021-06-18
		Auteur:	TBR
		Versie:	1.4

Results _____

Load	-	707 12	Results	0.02 : 4.00 01
Compression	F _{Ed,c}	787 kN	Compression U.C.	0.82 < 1,00 OK
Tension	F _{Ed,t}	668 kN	Tension U.C.	0.77 < 1,00 OK
Main leg				
Profile		L150.14	Capacity shear blocks main le	ea
Steel material		S235	A _{f1} =	5700 mm ²
Cross section		4030 mm ²	A _{f2} =	7000 mm ²
Axial capacity	N _{pl}	947 kN	Slope	1: 5
Width	b	150 mm	$C_A = \sqrt{(A_{f2}/A_{f1})} =$	1.11
Thickness	t	14 mm	$f_{id} = C_A \times f_{cd} =$	14.8 N/mm ²
Length in concrete		2440 mm	$F_{Rd,c} = n_c \times A_{f1} \times f_{id} =$	505 kN
J			$F_{Rd,t} = n_t \times A_{f1} \times f_{id} =$	505 kN
Shear blocks main l	eg		•	
Width	b	50 mm		
Thickness	h	30 mm	Capacity foot plate	
Length	L	190 mm	$k_d =$	1.73 -
Welds	a	4 mm	$f_{jd} = C_A \times f_{cd} =$	23.1 N/mm ²
c.t.c. separation	s	75 mm	$c = t\sqrt{(f_{yd} / 3f_{jd})} =$	58 mm
Number for compr.	n_c	6 -	$m^* = min(c,m) =$	30 mm
Number for tension	n _t	6 -	Type foot plate	Diagonally cut
			Effective for	Compr. and tension
Foot plate			$A_{p,c} =$	19782 mm²
Thickness	t	25 mm	$F_{Rd,c} = A_{p,druk} \times f_{jd} =$	457 kN
Ext. length	m	30 mm	$A_{p,t} =$	15752 mm²
Welds	a	5 mm	$F_{Rd,t} = A_{p,t} \times f_{jd} =$	364 kN
Pile			Capacities	
Name		Buispaal	$F_{rd,c,plate} =$	457 kN
Diameter		470 mm	$F_{rd,blocks,c} =$	505 kN
Thickness		10 mm	$F_{rd,c} = F_{rd,blck} + F_{rd,footplate} =$	962 kN
Cross section		14451 mm²	U.C. compression	0.82 < 1,00 OK
Steel material		S235	Welds foot plate (see next page)	•
Capacity		3396 kN	$F_{rd,t}$ = min. (welds / foot plate) =	
Concrete strength		C25/30	$F_{rd,blocks,t} =$	505 kN
			$F_{rd,t} = F_{rd,blck} + F_{rd,footplate} =$	869 kN
Shear blocks pile			U.C. tension	0.77 < 1,00 OK
Width	b	25 mm	U.C. welds	0.52 < 1,00 OK
Thickness	h	25 mm		
Length	L	1414 mm	Capacity shear blocks pile	252422
Welds	a	4 mm	$A_{f1} =$	35343 mm ²
c.t.c. separation	S	300 mm	$A_{f2} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}$	106029 mm²
Number for compr. Number for tension	n _c	3 - 3 -	$C_A = \sqrt{(A_{f2}/A_{f1})} = f_{id} = k_d \times f_{cd} =$	1.73 -
Number for tension	n _t	3 -	$f_{jd} = K_d \times f_{cd} =$ $F_{Rd,c} = n_c \times A_{f1} \times f_{jd} =$	23.1 N/mm² 2449 kN
Design value concre	te strenath		$F_{Rd,c} = \Pi_c \times A_{f1} \times I_{jd} = U.C.$ compression	0.32 < 1,00 OK
Material factor	γ _c	1.5	$F_{Rd,t} = n_t \times A_{f1} \times f_{jd} =$	2449 kN
Add. mat. factor	rc Ym	1.25 -	U.C. tension	0.27 < 1,00 OK
$f_{cd} =$	1 m	13.3 N/mm ²	U.C. welds	0.27 < 1,00 OK 0.51 < 1,00 OK
		. • /		,
Steel tower stub			"Splitting" of pile	
Yield strength	$f_{yd} =$	235 N/mm ²	Spread of forces	45 °
Tensile strength	$f_{ud} =$	360 N/mm²	Length force flow	2215 mm
			Splitting force	151 kN/m
			Yield strength wall $f_{yd} =$	235 N/mm ²
			Capacity tubular pile	4700 kN/m
			U.C.	0.03 < 1,00 OK

0 N/mm²

60 N/mm² 60 N/mm² 53.8 mm 33 N/mm²

0 N/mm²

0.52 OK 0.36 OK

185 N/mm²

RSD-MDK150 Project: 97 - Afkeur Mast:

Welds of shear blocks of main leg Out-of-plane loading

Plate		Welds		F _{t.Ed}
t =	50 mm	a =	4 mm	M _{Ed}
Grade	S235	l =	150 mm	F _{v.//.Ed}
$f_{yd} =$	235 N/mm ²	$\beta_w =$	0.8 -	Variety
$f_u =$	360 N/mm²	$\gamma_{M2} =$	1.25 -	F _{v,Ed}

Stress components $\sigma_1 = \tau_1 = F_{t,Ed} \sqrt{2} / 4al =$

 $\sigma_{\text{vw,Ed}} = \sqrt{(\sigma_1^2 + 3\tau_1^2 + 3\tau_{//}^2)} =$

 $\sigma_1 = \tau_1 = F_{v,Ed} \sqrt{2} / 4al =$

 $b^* = b + 2/3a\sqrt{2}$ σ_1 = τ_1 = 0,706M_{Ed} / al b* = $\tau_{//} = F_{v//,Ed} / 2al =$

Member forces

riember forces	
Factor	1.2
$F_{t,Ed} =$	0 kN
$F_{v,Ed} = F_{rd,c} / n =$	101 kN
$F_{v//,Ed} =$	0 kN
$M_{Ed} = 1/2 b / h x F_{v,Ed} =$	1.52 kNm

Check

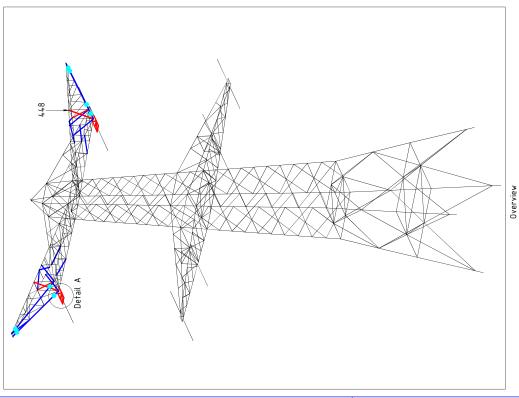
$\sigma_{vw,Ed}$ =	185 N/mm ²	≤	$f_u/\beta_w\gamma_{M2} =$	360 N/mm ²	U.C. =
σ_1 =	93 N/mm ²	≤	$0.9f_u / \gamma_{M2} =$	259 N/mm ²	U.C. =

Welds of shear blocks of pile Out-of-plane loading

Plate			Welds			
t =	25 mm		a =	4 mm	$F_{t,Ed}$	1
Grade	S235		=	1414 mm	•	,
$f_{yd} =$	235 N/mm ²		$\beta_w =$	0.8 -		
$f_u =$	360 _{N/mm²}		γ_{M2} =	1.25 -		F _{v,Ed}
Member forces			Stress comp			
Factor	1.2		$\sigma_1 = \tau_1 = F_{t,Ed} \sqrt{2} /$	2al =	31 N/ı	mm²
$F_{t,Ed} = 1/2 b / h \times F_{v,Ed} =$	490 kN		$\sigma_1 = \tau_1 = F_{v,Ed} \sqrt{2}$		61 N/I	mm²
$F_{v,Ed} =$	979 kN				92 N/ı	mm ²
$F_{v//,Ed} =$	0 kN					
M _{Ed} =	0.00 kNm					
			$\tau_{//} = F_{v//,Ed} / 2al =$		0 N/I	mm²
			$\sigma_{\text{vw.Ed}} = \sqrt{(\sigma_1^2 + 3)^2}$	$\tau_1^2 + 3\tau_{//}^2$) =	184 N/ı	mm²
Check				- "	,	
$\sigma_{vw,Ed} =$	184 N/mm ²	≤	$f_u / \beta_w \gamma_{M2} =$	360 N/mm ²	U.C. =	0.51 OK
$\sigma_1 =$	92 _{N/mm²}	≤	$0.9f_u/\gamma_{M2} =$	259 N/mm²	U.C. =	0.35 OK

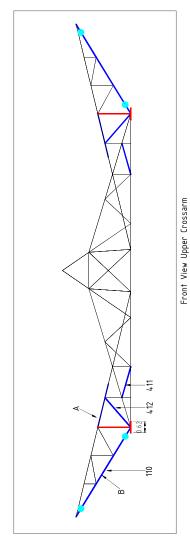
Welds of foot plate

$f_u / \beta_w \gamma_{M2} =$	•	360 N/mm ²
Weld size	a =	5 mm
Length	I = 2b + 2b - t =	572 mm
Capacity	$F_{Rd} = a \times I \times f_{w,d} / \sqrt{3} =$	594 kN



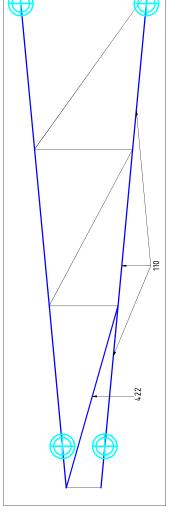
APPENDIX E

Drawings



451

452


453

677

-05

Towards crossarm

Detail A

VNC

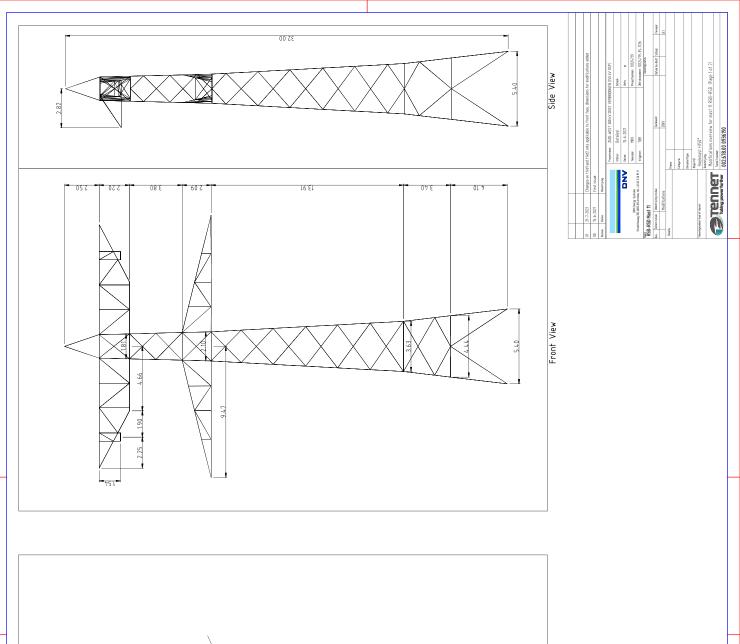
Witness Spokes Street Was 18 18 35 81 H

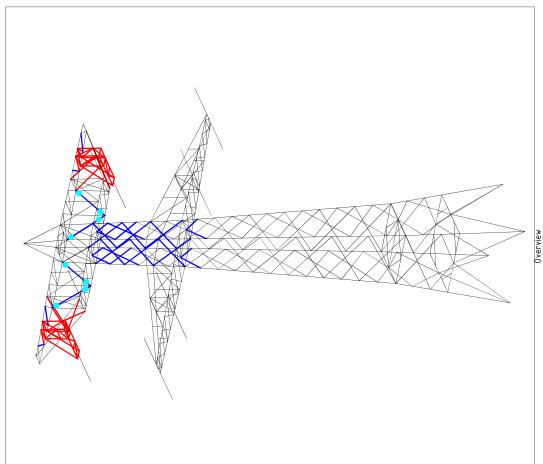
Notes and legend:

ize for new redundants is L50x50x5

Other changes according to the table

De quantip & so rotted


New member


Profile exchanged

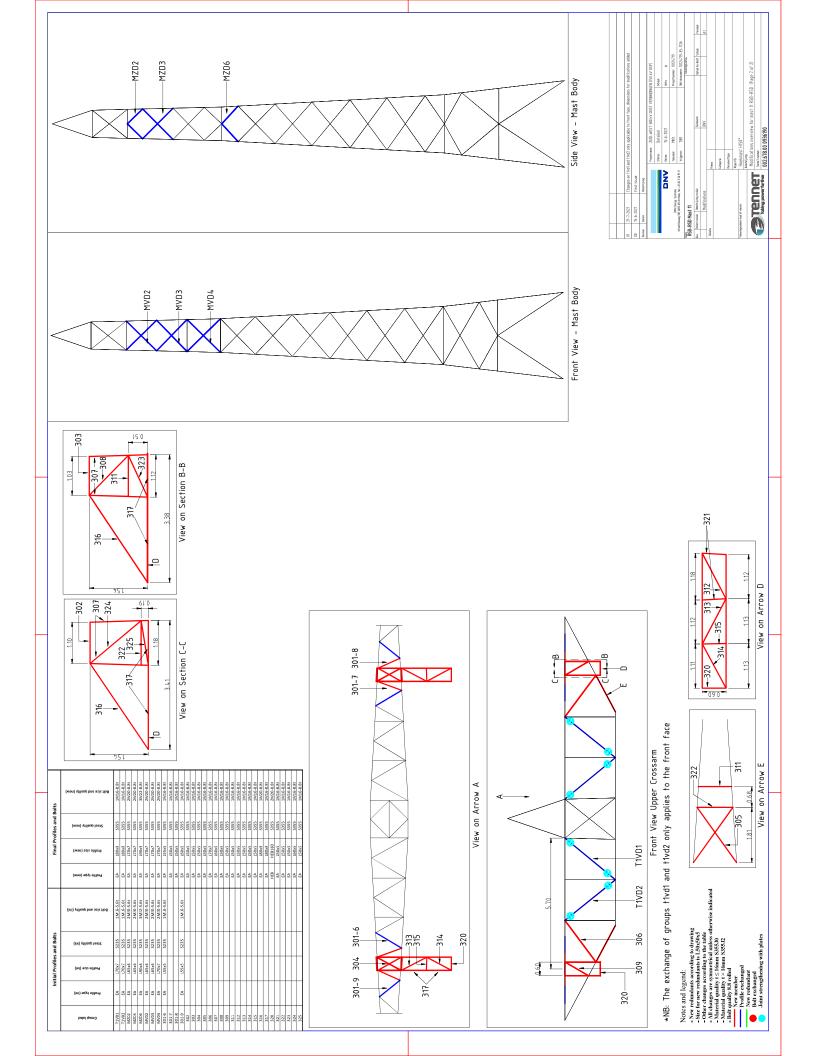
New redundant

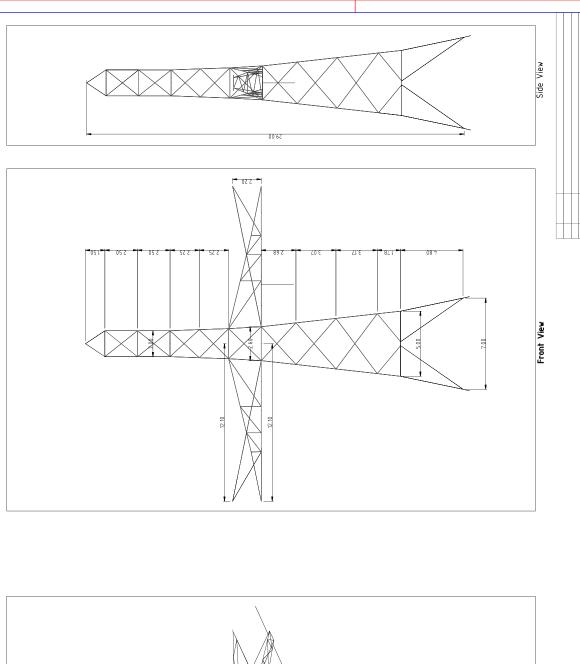
Bolt exchanged

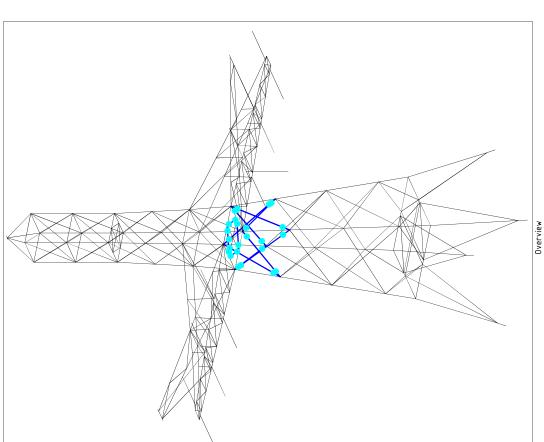
Joint strengthening with plates

Notes and legend:
- New redundants according to drawing
- Size for new redundants is L50x50x5

Other changes according to the table All changes are symmetrical unless otherwise indicated

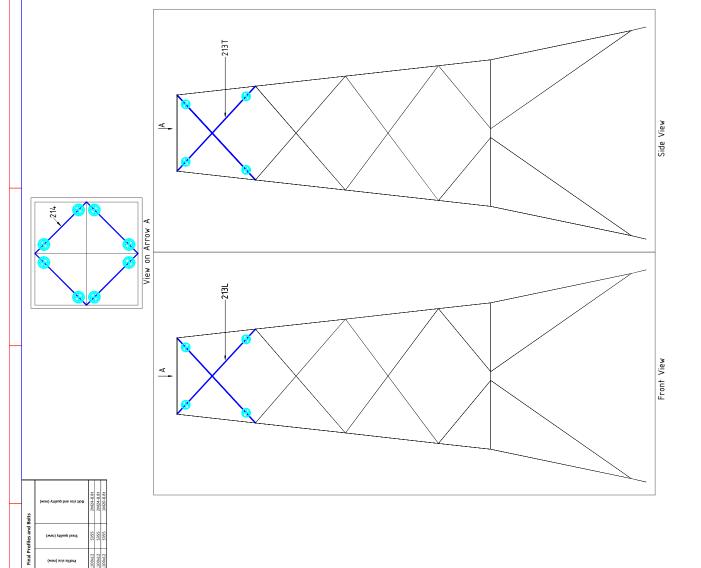

laterial quality t > formin 555502
laterial quality t > 16mm 535512
olt quality 88 rolled


New member

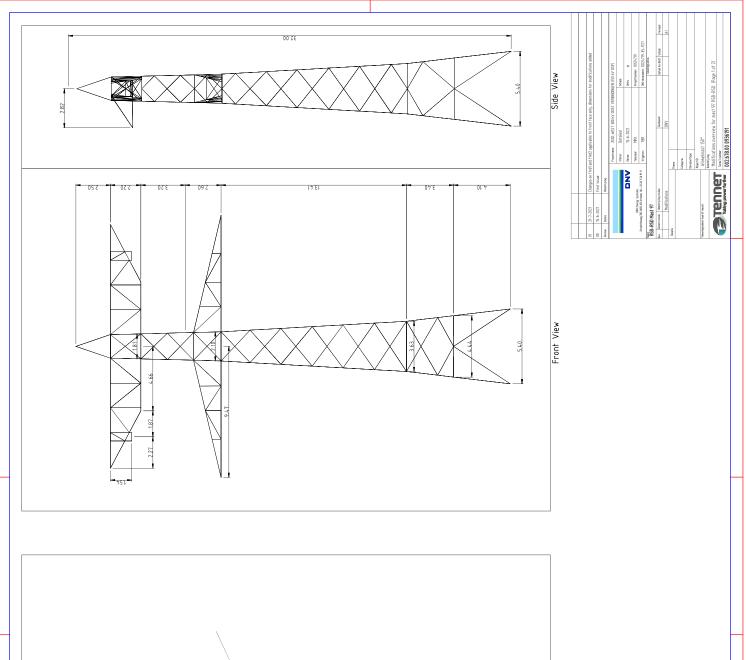

Profile exchanged

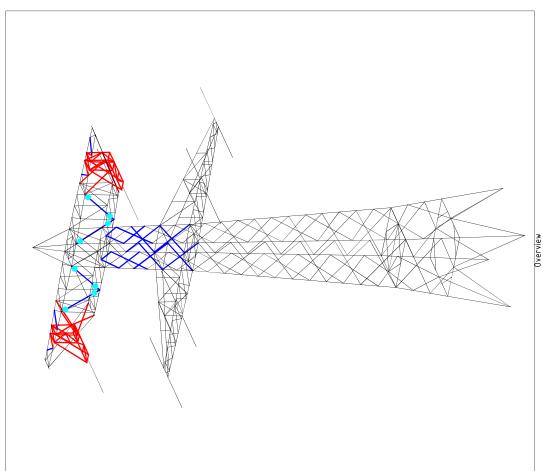
Profile exchanged

New redundant
Bolt exchanged
Joint strenethering with plates



ANO



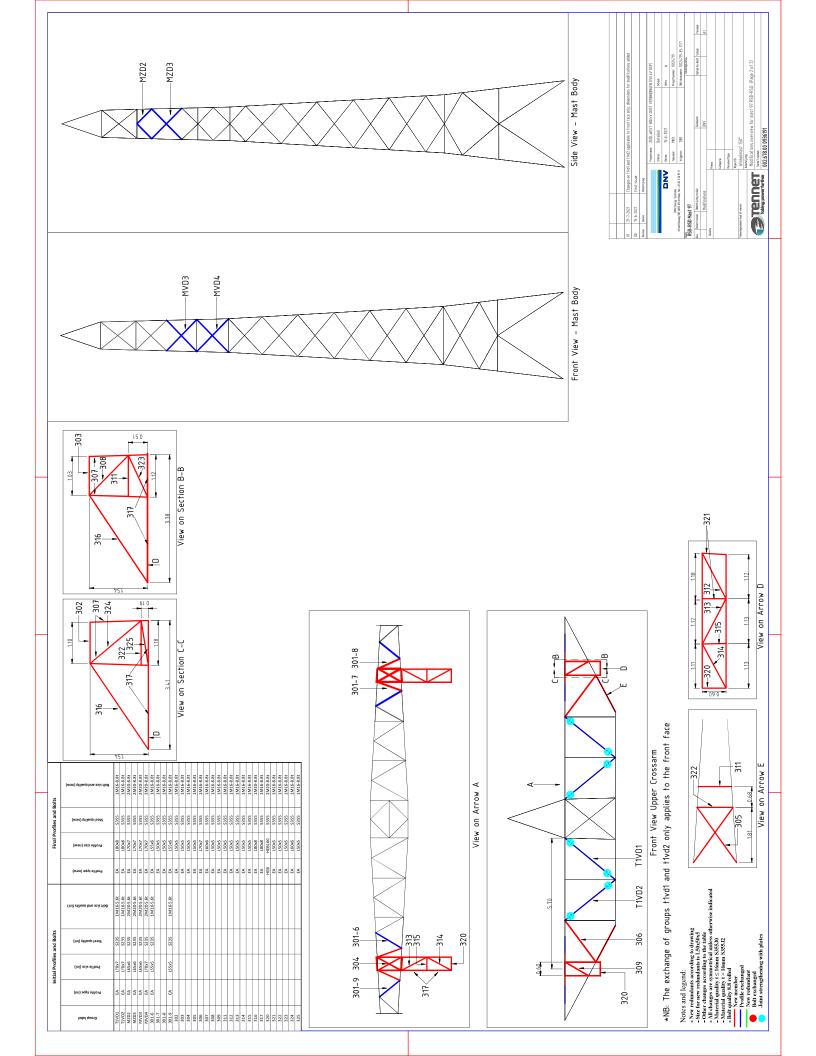


Initial Profiles and Bolts

213L 213T 214

| Compared NO NO DAV Energy Systems Ulruchtsness 310, 6812 AR Armhon, 145 +31 26 3 S6 91 11 RSB-RSD Mast 19a
lev. Outer reside Orachijvely revise
| Nadifications | Nadifications |

Notes and legend:
- New redundants according to drawing
- Size for new redundants is 1.50x50x5


II changes are symmetrical unless herwise indicated laterial quality t≤16mm \$355.10 laterial quality t>16mm \$355.12

Profile exchanged

New redundant

Bolt exchanged

Joint strength plates

About DNV

DNV is a global quality assurance and risk management company. Driven by our purpose of safeguarding life, property and the environment, we enable our customers to advance the safety and sustainability of their business. We provide classification, technical assurance, software and independent expert advisory services to the maritime, oil & gas, power and renewables industries. We also provide certification, supply chain and data management services to customers across a wide range of industries. Operating in more than 100 countries, our experts are dedicated to helping customers make the world safer, smarter and greener.